Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://rep.vsu.by/handle/123456789/1346
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorКраснобаев, Е. А.-
dc.date.accessioned2014-05-06T09:30:59Z-
dc.date.available2014-05-06T09:30:59Z-
dc.date.issued2013-
dc.identifier.citationКраснобаев, Е. А. Распознавание дорожных знаков на изображениях методом Speeded Up Robust Features (SURF) / Е. А. Краснобаев // Веснік Віцебскага дзяржаўнага ўніверсітэта. – 2013. – № 3 (75). – С. 18-23. – Библиогр.: с. 23 (4 назв.)ru_RU
dc.identifier.issn2074-8566-
dc.identifier.urihttps://rep.vsu.by/handle/123456789/1346-
dc.description.abstractВ статье рассматривается задача автоматического обнаружения и распознавания дорожных знаков на изображе-ниях. Для ее решения применялась технология Speeded Up Robust Features (SURF), позволяющая находить на изображе-ниях сцены и знака особенные точки, рассчитывать их дескрипторы, инвариантные к масштабу и вращению и выпол-нять их сопоставление. В результате работы найден критерий отбора корректных соответствий пар точечных осо-бенностей, повышающий качество распознавания дорожного знака. Разработано программное обеспечение, реализую-щее алгоритм распознавания с использованием библиотеки OpenCV 2.4. Точность распознавания составила 85% при ограничениях на соотношение разрешения сцены, эталонного знака и знака в сцене 5:2:1, максимальный угол наблюдения – 15°, расстояние до знака – 50 м. = We consider the problem of automatic detection and recognition of traffic signs in the image. The chosen technology is «Speeded Up Robust Features (SURF)». This technology is used to find singular points in the scenes and traffic sign, to calculate their descriptors that are invariant to scale and rotation, and perform their comparison. We found the selection criteria of correctly corresponding of features point, which enhance the quality of recognition of the traffic sign. Software has been developed, which implements recognition algorithm using library OpenCV 2.4. Recognition ccuracy was 85% at a ratio of resolution of scene, calibrating traffic sign and traffic sign in scene as 5:2:1, maximum viewing angle – 15°, the distance from the traffic sign – 50 m.ru_RU
dc.language.isoruru_RU
dc.publisherУстанова адукацыі "Віцебскі дзяржаўны ўніверсітэт імя П.М. Машэрава"ru_RU
dc.subjectмашинное зрениеru_RU
dc.subjectцифровая обработка изображенийru_RU
dc.subjectраспознавание образовru_RU
dc.subjectcar sightru_RU
dc.subjectdigital processing of imagesru_RU
dc.subjectdetection of imagesru_RU
dc.titleРаспознавание дорожных знаков на изображениях методом Speeded Up Robust Features (SURF)ru_RU
dc.title.alternativeRecognition of Traffic Signs in Images Using Speeded Up Robust Features (SURF)ru_RU
Располагается в коллекциях:2013, №3 (75)

Файлы этого ресурса:
Файл Описание РазмерФормат 
18-23.pdf379.41 kBAdobe PDFЭскиз
Просмотреть/Открыть



Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.

Ранжирование:
OpenAIRE
Индексирование:
OpenAIRE OpenDOAR base search roar worldcat core road road
Ресурсы наших партнёров:
Репозиторий Белорусского национального технического университета
Электронная библиотека Белорусского государственного университета
Электронная библиотека Гомельского государственного технического университета имени П.О.Сухого
Электронный архив библиотеки МГУ имени А.А. Кулешова
Репозиторий Полесского государственного университета
Электронная библиотека Полоцкого государственного университета
Научный репозиторий Могилевского института МВД Республики Беларусь
Собственные ресурсы:
Научная библиотека учреждения образования «ВГУ имени П. М. Машерова»
Электронный каталог НБ «ВГУ имени П. М. Машерова»