Заключение. Таким образом, большей магниточувствительностью обладают женщины – больные БА, меньшей – здоровые женщины. У здоровых и больных БА мужчин наблюдали близкий уровень магниточувствительности.

Список литературы

- 1. Григорьев, Ю.Г. Избранные вопросы биологического действия электромагнитных полей / Ю.Г. Григорьев, К.А. Трухнов, А.Л. Васин; под общ.ред. проф. Ю.Г. Григорьева // Электромагнитные поля и здоровье человека. М.: Изд-во РУДН, 2002. С. 124–140.
- 2. Демецкий, А.М. Учебное пособие по применению магнитной энергии в практике здравоохранения / А.М. Демецкий, А.В. Цецохо. Минск, 1990. С. 51–55.
- 3. Деряпа, Н.Р. Человек и гелиогеофизическая среда: проблемы магнитореактивности организма / Н.Р. Деряпа, А.В. Трофимов // Проблемы космической биологии. Л.: Наука, 1989. С. 3–15.
- 4. Доценко, Э.А. Биоклиматология и экология бронхиальной астмы: абиотические факторы / Э.А. Доценко, И.М. Прищепа. Витебск: Изд-во ВГУ им. П.М. Машерова, 2001. 353 с.
- 5. Кулаков, Ю.В. Метеогеофизический стресс и пути его преодоления / Ю.В. Кулаков, Ю.В. Каминский; науч. ред. О.Г. Полушин. Владивосток: Медицина, 2003. 199 с.
- 6. Мазурин, А.В. Метеопатология у детей / А.В. Мазурин, К.И. Гриорьев. Москва: Медицина, 1990. 142 с.
- 7. Петряева, М.В. Содержание компьютерного фонда знаний о клиническом течении пневмоний / М.В. Петряева, Ю.В. Кулаков, А.С. Клещев, М.Ю. Черняховская. Владивосток: ИАПУ ДВО РАН, 1999. 44 с.

ОПРЕДЕЛЕНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В РАСТИТЕЛЬНЫХ ОБЪЕКТАХ, ЯВЛЯЮЩИХСЯ БИОФАРМАЦЕВТИЧЕСКИМ СЫРЬЕМ

А.А. Палащенко Витебск, ВГУ имени П.М. Машерова

Растения способны синтезировать и накапливать вторичные метаболиты — фенольные соединения (ФС) и биофлавоноиды (БФ). К ним относятся десятки тысяч индивидуальных соединений, часть из которых выполняют структурную, защитную функции (повышают устойчивость растений к грибковым заболеваниям, обладают антиоксидантным и противовирусным действием) [1]. БФ эффективно защищают растения от возбудителей различных инфекционных болезней, предохраняют от стрессовых воздействий окружающей среды, в результате которых образуются свободные радикалы, нарушающие процессы жизнедеятельности клеток. БФ участвуют в предотвращении повреждения мембраны растительных клеток при окислительном стрессе, и эти же молекулы могут влиять на регуляторную функцию ряда молекул, возникающих при окислительном стрессе. БФ ослабляют поток УФ-В-лучей более чем на 90%. Кроме этого, биофлавоноиды являются регуляторами транспорта ауксинов-растительных гормонов, которые контролируют рост и развитие растений. В растениях эти соединения находятся в комплексе с другими биологически активными веществами [2].

Материал и методы. В качестве объектов исследования использовали готовое сырьё надземной и подземной (сабельник) части пяти видов лекарственных

растений: череда (Satureja hortensis L.), зверобой (Hypericum perforatum L.), пустырник (Leonorus cardiaca L.), сабельник (Camarum palustris L.), чистотел (Chelidonium majus L.), выпускаемых ЗАО фирма "Эвалар" (Россия) и ООО фирма "Падис'с" (Республика Беларусь), приобретённых в аптечной сети г.Витебска.

Количество суммы ФС и суммы флавоноидов определяли в спиртовых экстрактах спектрофотометрическим методом [3]. Расчёт суммы фенолов и суммы флавоноидов проводили с учётом удельных показателей поглощения (для фенолов галловой кислоты в комплексе с реактивом Фолина-Чиокальтеу при длине волны 720 нм, для фоавоноидов гликозидов кверцетина в комплексе с хлоридом алюминия в этаноле при длине волны 410 нм) и выражали в процентах.

Результаты и обсуждение. Результаты проведенных исследований приводятся в таблице.

Содержание суммы фенольных соединений и биофлавоноидов в растениях, являющихся биофармацевтическим сырьём.

Исследуемое расти-	Сумма фенольных	Стандартное	Сумма флавонои-	Стандартное
тельное сырьё	соединений, (%)	отклонение	дов, (%)	отклонение
Зверобой (Нурегісит		4		
perforatum L.)	$8,9 \pm 0,1069$	0,2828	1,94±0,0615	0,1627
Череда (Satureja hor-				
tensis L.)	$6,8 \pm 0,2490$	0,666	$0,87\pm0,0785$	0,207
Сабельник (Сатагит				
palustre L.)	$8,1 \pm 0,0899$	0,238	$0,492\pm0,0276$	0,0731
Чистотел (Chelidoni-	5,5 ±0,377	0,998	$0,635 \pm 0,107$	0,2838
um majus L.)				

Заключение. Полученные результаты показали, что наибольшее содержание фенольных соединений и флавоноидов наблюдается у зверобоя продырявленного и сабельника болотного.

Список литературы

- 1. Биорадикалы и биоантиоксиданты: Монография. В.А. Костюк, А.И. Потапович. Мн.: БГУ, 2004. –174 с.
- 2. Физиология растений: учебник для студентов биологических специальностей. В.В.Кузнецов, Г.А.Дмитриева. М.: Высшая школа, 2005. 206 с.
- 3. Химический анализ лекарственных растений; Учеб. пособие для фармацевтических вузов /Ладыгина Е.Я. [и др.] под ред. Гринкевич Н.И., Сафронич Л.Н., М.: Высшая школа, 1983. 176 с.

ВЛИЯНИЕ ИММОБИЛИЗАЦИИ НА ИЗМЕНЕНИЕ ЭНДОТЕЛИЙЗАВИСИМОЙ ДИЛАТАЦИИ И АДРЕНОРЕАКТИВНОСТИ АОРТЫ КРЫС, ВЫЗВАННОЕ ИНГИБИРОВАНИЕМ ИНДУЦИРУЕМОЙ NO-CUHTA3Ы

А.П. Солодков, Н.М. Яцковская Витебск, ВГУ имени П.М. Машерова

Для понимания молекулярных основ и особенностей действия окиси азота на различные органы и ткани, необходимо иметь в виду наличие двух главных изоформ NO-синтазы: конститутивной - eNOS и nNOS, т.е. содержащейся постоянно в качестве составной части биологических ресурсов клетки, и индуцибельной – iNOS [5, 8, 10, 12, 14].