О РЕШЕТОЧНЫХ ОБЪЕДИНЕНИЯХ КЛАССОВ ФИТТИНГА, ОПРЕДЕЛЯЕМЫХ ОПЕРАТОРАМИ ЛОКЕТТА

В.В. Шпаков Витебск, ВГУ имени П.М. Машерова

Напомним, что класс групп X называется классом Фиттинга [1], если он замкнут относительно нормальных подгрупп и их произведений. При этом ключевым определяющим объектом в исследовании классов Фиттинга является понятие радикала. Если F – класс Фиттинга, то для любой группы G существует наибольшая нормальная подгруппа G_F группы G, подгруппу G_F называют F-радикалом [1] соответственно. Значимость и эффективность применения радикалов по мере развития структурной теории классов была подтверждена рядом содержательных результатов по изучению строения и классификации классов.

В терминах радикалов были определены и исследовались два обширных семейства классов Фиттинга: нормальные классы Фиттинга и классы Локетта. Напомним, что если для класса Фиттинга F и любой группы G ее F-радикал содержит ее коммутант, то F называют нормальным [1]. В 1974 году Локетт определил новое семейство классов Фиттинга посредством свойств прямых произведений радикалов групп. Для любого непустого класса Фиттинга F класс Фиттинга F^* [2], определяется как наименьший содержащий F такой, что для всех групп G и H справедливо равенство ($G \times H$)_{F*}= $G_{F*} \times H_{F*}$, и F_* — пересечение всех таких классов Фиттинга X, для которых $X^*=F^*$. В дальнейшем класс Фиттинга F стали называть классом Локетта [2], если $F=F^*$. При этом F^* называют наибольшим элементом секции Локетта для класса Фиттинга F, а F_* наименьшим элементом секции Локетта для класса Фиттинга F. Решеточным объединением классов Фиттинга F и H [2] называют наименьший класс Фиттинга порожденный объединением классов Фиттинга F \cup H.

Материал и методы. В работе используются методы абстрактной теории групп, а также методы теории классов групп, в частности, методы теории классов Фиттинга

Результаты и их обсуждение. Основными результатами исследований является описание структуры решеточных объединений классов Фиттинга определяемых операторами Локетта, а также описание классов Фиттинга не являющихся нормальными посредством свойств решеточного объединения.

Следующая теорема описывает структуру наибольшего элемента секции Локетта для решеточного объединения классов Фиттинга F и H.

Теорема 1. Пусть F и H – классы Фиттинга, класс Фиттинга $(F \lor H)^* = \{G \mid G = G_F * G_H *\}$ тогда и только тогда, когда $char(F) \cap char(H) = \varnothing$, $F * \subset H * E_\pi$ и $H * \subset F * E_\pi$.

Следующая теорема описывает структуру наименьшего элемента секции Локетта для решеточного объединения классов Фиттинга F и H.

Теорема 2. Пусть F u H - классы Фиттинга, класс Фиттинга $(F \lor H)_* = \{G \mid G = G_{F_*}G_{H_*}\}$ тогда и только тогда, когда $F_* \subseteq H_* E_\pi$ u $H_* \subseteq F_* E_{\pi'}$.

Установлено, что решеточное объединение классов Фиттинга не являющихся нормальными будет классом Фиттинга не являющимся нормальным.

Теорема 3. Пусть F и H – классы Фиттинга каждый из которых не является нормальным, тогда класс Фитинга $F \lor H$ не является нормальным.

Посредством решеточных объединений описано достаточное условие, при котором класс Фиттинга не является нормальным.

Теорема 4. Пусть $F - \kappa$ ласс Фиттинга, который не является нормальным, тогда любой класс Фиттинга H для которого справедливо равенство $H \lor (S_* \lor F) = S$ не является нормальным.

Заключение. Получено описание структуры решеточных объединений классов Фиттинга, определяемых операторами Локетта.

Список литературы

- 1. Doerk, K. Finite soluble Groups / K. Doerk, T. Hawkes. Berlin New-York: Walter de Gruyter, 1992. 891 p.
- Lockett, P. Fitting class F* / P. Lockett // Math.Z. 1974. Bd.137, N 2.– S.131-136.

МОДЕЛИРОВАНИЕ СВОЙСТВ КРОВИ С ИСПОЛЬЗОВАНИЕМ СОЛИТОНОВ, ВОЗНИКАЮЩИХ В ГЕМОДИНАМИКЕ

А.А. Яхновец, Ю.Я. Родионов*, О.А. Горбукова Витебск, ВГУ имени П.М. Машерова *Витебск, ВГМУ

Анализируя кардиодинамику сердечного выброса и характеристики упругоэластичных свойств кровеносных сосудов, можно предположить, что одним из видов структуризации кровотока является «солитон» или «солитоноподобный объект», формирующийся сердцем. К этому выводу нас подводит наличие у сердца правовинтовой динамики кровотока, нигде потом не компенсируемой вплоть до капилляров.

Материал и методы. Исходя из данных метода разведения индикаторов [4], можно представить концентрацию эритроцитов в единице объема потока крови как:

$$C(X,T) = C_0 \cdot \arctan[\exp[\beta(X - V \cdot T)]]$$
(1)

 $_{
m \Gamma Дe}$ C_0 — равновесная концентрация эритроцитов.

$$X = \frac{\omega_0 \cdot S}{v_0} \,, \tag{2}$$

$$T = \omega_0 t, \tag{3}$$

В формулах (2) и (3) $\omega_0=2\pi \nu$, ν – частота пульса; ν_0 – скорость звука в крови; S – длина кровеносного сосуда вдоль осевой линии. С помощью (2) вводится безразмерная координата в формуле (1), а благодаря (3) – безразмерное время. Параметр β равен:

$$\beta = \frac{1}{\sqrt{1 - V^2}} \,. \tag{4}$$

Величина V, входящая в (1) и (4), — безразмерная скорость. Она равна $V=\frac{v_n}{v_0}$, где v_n — средняя поступательная скорость движения солитона по кровеносному руслу.