дисфункция эндотелия при венозном тромбозе

Сушков С.А.,* Небылицин Ю.С.,* Козловский В.И.,* Самсонова И.В.,* Маркауцан П.В.**
*Витебский государственный ордена Дружбы народов медицинский университет,
г. Витебск

Введение. Тромбоз глубоких вен (ТГВ) и связанная с ним тромбоэмболия легочной артерии представляют серьезную проблему современного здравоохранения, являясь одной из основных причин летальности в большинстве развитых стран, а также нередко тяжелой инвалидизации пациентов [1, 2]. Поэтому все исследования направленные на изучение вопросов этиологии, патогенеза, ранней диагностики и лечения данной патологии представляются актуальными.

Цель. Изучить в динамике структурно-функциональные изменения эндотелия кровеносных сосудов при экспериментальном венозном тромбозе.

Материалы и методы исследований. Эксперимент выполнен на 125 беспородных крысах-самцах массой 300-350 грамм. Контрольную группу составили 63 здоровые крысы. Тромбоз в эксперименте воспроизводили путем введения 0,3 мл подогретого до 37-37,5°C раствора тромбина ($40 \, \text{ЕД/кг}$).

Забор материала для гистологических исследований осуществляли на 1-е, 5-е, 15-е сутки. Ультратонкие срезы изучали и фотографировали в электронном микроскопе JEM 100B и JEM 100CX (JEOL, Япония, увеличение х4800-29000) при ускоряющем напряжении 75 кВ.

Кровь для биохимических и цитологических исследований у экспериментальных животных получали из орбитальной вены на 1-е, 5-е и 15-е сутки после операции. Для определения в венозной крови количества циркулирующих эндотелиальных клеток (ЦЭК) использовали метод J. Hladovec et al. [3]. Содержание стабильных продуктов деградации монооксида азота (нитраты/нитриты — NO₂/NO₃) в плазме крови определяли по методу Грисса [4], диеновых конъюгатов (ДК) — по методу В.Б. Гаврилова и соавт. [5]. Деформируемость эритроцитов (ДЭ) исследовали с помощью устройств для определения деформируемости [6].

Цифровой материал обрабатывали статистически с использованием стандартных пакетов прикладных программ Statistica – 6.0 для биологических исследований. Статистически значимыми различия считались при p<0,05.

Результаты и их обсуждение. Через 24 часа после моделирования острого тромбоза эндотелиальная выстилка определялась практически на всей люминальной поверхности. Эндотелиоциты были набухшими, отмечалось нарушение целостности плазмолеммы и уменьшение объема цитоплазматической части. Кроме этого, в этих клетках регистрировалось увеличение электронной плотности цитозоля и образование цитоплазматиче-

^{**}Белорусский государственный медицинский университет, г. Минск

ских выростов, а также изменение формы митохондрий. Ядра эндотелиоцитов имели продолговатую форму; кариолемма образовывала небольшие выпячивания, направленные вглубь субэндотелиального слоя.

5-е сутки после экспериментально вызванного венозного тромбоза характеризовались изменением всех слоев сосудистой стенки и развитием процессов организации тромба в месте его прикрепления к стенке вены. В большинстве участков внутренней оболочки вены эндотелий не определялся. Сохранившиеся его фрагменты были деформированы, с множеством мелких везикул, иногда крупными полостными образованиями; имело место нарушение целостности кариолеммы.

15-е сутки после экспериментально вызванного острого тромбоза характеризовались завершением процессов организации тромба. При этом в последнем определялись сформированные анилинофильные коллагеновые волокна, между которыми обнаруживались фибробласты, фиброциты и единичные макрофаги. В толще тромба наряду с широкой сетью капилляров выявлялись выстланные вновь образованным эндотелием щели, что свидетельствовало о начале реканализации.

Наиболее значительное увеличение содержания ЦЭК на 35,1% определялось в первые сутки после экспериментального моделирования тромбоза (p<0,05). Через 5 суток содержание ЦЭК было на 17,9% выше (p<0,05), чем в контроле, но ниже, чем в первые сутки после моделирования венозного тромбоза на 12,3% (p<0,05). На 15-е сутки количество ЦЭК возвращалось к значениям в контрольной группе (p>0,05).

В первые сутки экспериментального тромбоза концентрация ДК возрастала в 2,5 раза (p<0,001) по сравнению с контролем и оставалась на высоком уровне на 5-е сутки. При этом статистической значимости различий концентраций ДК на 1-е и 5-е сутки после моделирования венозного тромбоза выявлено не было (p>0,05). На 15-е сутки после моделирования венозного тромбоза концентрация ДК снижалась, но была выше на 83,8% по сравнению со значениями контрольной группы (p<0,05).

Содержание NO_2/NO_3 в плазме в первые сутки и через 5 суток от начала эксперимента достоверно не отличалось от показателей контрольной группы (p>0,05). На 15-е сутки наблюдения содержание NO_2/NO_3 в плазме животных оказалось выше на 20,4% и 14,1%, чем в контроле (p<0,05) и на 5-е сутки соответственно.

При исследовании реологических свойств венозной крови крыс в первые сутки после моделирования экспериментального венозного тромбоза определялось наиболее значительное снижение ДЭ на 56,7% (p<0,001). На 5-е сутки ДЭ была ниже на 36,7%, чем в контроле (p<0,001), но выше, чем в первые сутки после моделирования тромбоза на 23,9%. На 15-е сутки ДЭ статистически не отличалась от показателей по сравнению с контролем и составляла 42; 38–48 сек (p>0,05).

Выводы

- 1. Структурные изменения при венозном тромбозе развиваются во всех слоях сосудистой стенки, однако наиболее выраженными были со стороны эндотелиального монослоя и характеризовались нарушением целостности цитоплазматической мембраны, деструкцией плазмолеммы и кариолеммы эндотелиоцитов.
- 2. Увеличение числа циркулирующих эндотелиоцитов в крови на фоне развивающегося окислительного стресса и повышения содержания в плазме крови нитратов/нитритов свидетельствует о развитии существенно выраженной дисфункции эндотелия при ТГВ, что наряду со снижением деформируемости эритроцитов при тромбозе венозных сосудов определяет нарушение микроциркуляции.
- 3. Выраженная активация процессов перекисного окисления липидов, повышение количества ЦЭК и содержания в плазме крови нитратов/нитритов, снижение деформируемости эритроцитов при остром ТГВ, надо полагать, играют существенную роль в патогенезе заболевания.

Литература

- 1. Plebology / A. –A. Ramelet [et al.]. Elsevier Masson SAS All rights reserved, 2008. 570 p.
- 2. Заболевания вен / под ред. X. C. Фронек; пер. с англ. под ред. И.А. Золотухина. M.: ГЭОТАР-Медиа, 2010. 208 с.
- 3. Hladovec, J. Circulating endothelial cells as a sign of vessels wall lesions / J. Hladovec // Phisiologia bohemoslovaca. 1978. Vol. 27. P. 140–144.
- 4. Модифицированный метод определения NO_3 и NO_2 с помощью цинковой пыли в присутствии аммиачного комплекса сульфата меди / И.С. Веремей [и др.] // Дисфункция эндотелия: экспериментальные и клинические исследования: сб. тр. республиканской научно-практической конференции / Витебск. гос. мед. ун-т. Витебск, 2000. С. 112–115.
- 5. Гаврилов, В.Б. Измерение диеновых конъюгатов в плазме по ультрафиолетовому поглощению гептановых и изопропиловых экстрактов / В.Б. Гаврилов, А.Р. Гаврилова, Н.Ф. Хмара // Лабораторное дело. − 1998. − № 2. − С. 60–64.
- 6. Козловский, В.И. Фильтрационные методы исследования деформируемости эритроцитов / В.И. Козловский, Е.С. Атрощенко, И.В. Петухов. Витебск, 1996. 15 с.

ДИСФУНКЦИЯ ЭНДОТЕЛИЯ ПРИ ОСТРОМ ПАНКРЕАТИТЕ

Овсяник Д.М.

Витебский государственный ордена Дружбы народов медицинский университет, г. Витебск

Введение. Острый панкреатит (ОП) характеризуется развитием отёка поджелудочной железы (отёчный панкреатит) или первичноасептического панкреонекроза (деструктивный панкреатит) с последующей воспалительной реакцией.В основе клинической симптоматики ОП лежит целый ряд патофизиологических изменений, среди которых важную роль играет повреждение сосудистого эндотелия.