3.С. Гаврильчик

Получение компоста из экскрементов китайского дубового шелкопряда

Уже много лет в Республике Беларусь изучаются вопросы, связанные с разведением китайского дубового шелкопряда (Antheraea pernyi). Основными кормовыми растениями гусениц являются береза повислая (Betula pendula) и ива серая (Salix cinerea). При этом, гусеницы могут утилизировать листья с ветвей, остающихся при санитарных рубках. Однако, невостребованными оставались экскременты гусениц шелкопряда, которые было предложено использовать для получения компоста. Рациональное использование отходов шелководства в виде экскрементов позволит включить их в систему естественного круговорота веществ в природе. Таким образом, можно говорить о замкнутом, безотходном производстве при получении коконов дубового шелкопряда в республике [1]. Материалы публикуются впервые.

Материалом для получения компоста явились экскременты гусениц дубового шелкопряда породы «Полесский тассар». Для сбора экскрементов под стеллажами подстилали пленку, чтобы затем весь опад собрать и просеять экскременты, отделив их от листьев и мелких веточек. Основная масса экскрементов собиралась в конце выкормки, лосле чистки стеллажей, а затем экскременты с остатками листьев засыпались в компостную яму размером 3x3x0,75 м³. Предварительно дно ямы устилалось сухими ветками. Экскременты в яме слегка утрамбовывались, сверху закрывались сухими ветками и присыпались землей. Изучался компост разных сроков хранения: 6, 12, 18 месяцев. Если заложить такой компост в конце октября, то уже в апреле-мае получается удобрение темно-коричневого цвета. мелкозернистой структуры, которое обладает хорошей сыпучестью и высокой влагоёмкостью. Выполнен химический анализ по изучению экскрементов и компоста разных сроков хранения на содержание азота -- по Къельдалю, фосфора – калориметрическим анализом с молибденовым реактивом, калия - на пламенном фотометре, золы - методом сжигания. Все данные получены при натуральной влажности и в абсолютно сухом веществе. Кислотность определялась методом хлористой вытяжки [2].

Для определения суммарного количества выделенных экскрементов экспериментальным путем установлен их объем, выделенный одной гусеницей каждого возраста при разных температурах и произведен перерасчет на килограмм грены. Для сравнения разных типов органических удобрений использовались литературные данные [3]. Изучение энергетики пипроводилось ПО методике. гусениц предложенной Ю.Н.Баранчиковым [4]. Гусеницы в количестве 25 экземпляров в четырех повторностях на каждый терморежим содержались в термостатах при температурах 17, 20, 23, 26, 29 °C и относительной влажности воздуха 80%. В ходе эксперимента определялась масса корма, экскрементов, гусениц. В основу расчетов положено балансовое равенство: C = P + R + F, где С – энергия, поступающая с пищей, Р – энергия прироста. Г – энергия экскрементов, R – метаболические затраты. Калорийность экскрементов определялась методом мокрого сжигания [5]. Результаты экспериментов обработаны статистически [6].

Традиционными органическими удобрениями, применяемыми в сельском хозяйстве, являются навоз крупного рогатого скота (КРС) и торф. Анализ литературных данных показывает, что каждое из указанных удобрений имеет определенные недостатки [7]. Так содержание фосфора, азота в торфе довольно низкое (табл.1), что требует введения дополнительных веществ для повышения степени разложения. Что касается навоза крупного рогатого скота, то для ускорения процесса его разложения, улучшения качества удобрения, а также снижения потерь питательной ценности, необходимо подстилка — в основном из соломы, тогда как для предлагаемого компоста из экскрементов дубового шелкопряда она не обязательна.

Из табл. 1 видно, что по калию и фосфору компост из экскрементов дубового шелкопряда уступает общеизвестным видам органических удобрений, кроме торфа, а по содержанию общего азота превышает даже навоз крупного рогатого скота. Высокое содержание золы в компосте из экскрементов шелкопряда также указывает на ценность данного удобрения. Для сравнения с предлагаемым компостом в табл. 1 приведены данные по химическому составу торфа и навоза [3].

Таблица 1 **Химический состав некоторых органических удобрений**

No	Вид удобрения	Влаж- ность,	Содержание при натуральной влажности, %			
n/n		%	азот -N	фосфор- Р ₂ О ₅	ка лий - · К₂⊙	зола
1	Компост из экскре- ментов шелкопряда	57	0,66	0,16	0,24	17,3
2	Свежий навоз	7 2	0,52	0,31	0,60	35
3	Полуперепревший навоз КРС	75	0,60	0,38	0,64	5
4	Перепревший навоз КРС	74	0, 6 0	0,43 🐊	0, 7 2	. 8
5	Торф верховой	60	0,35	0,03	0,03	8 .

Установлено также, что по мере разложения экскрементов происходит изменение химического состава компоста (табл. 2). Так, содержание азота и фосфора варьирует в зависимости от сроков созревания компоста. Оптимальный срок хранения составляет шесть месяцев.

Из табл. 2 следует, что при хранении компоста в течение шести месяцев наблюдается снижение содержания калия на 0,22 % и увеличение содержания общего азота на 0,49%, фосфора — на 0,28%. Происходит, вероятно, консервация экскрементов в зимний период и частичное перегнивание весной. При последующем созревании компоста в течение 12 и 18 месяцев происходит снижение содержания азота и фосфора почти в 2 раза, причина этого не установлена. Отличительной особенностью компоста из экскрементов шелкопряда является то, что он имеет среду более близкую к нейтральной, что важно для развития почвенных микроорганизмов и растений. Для выявления преимуществ нового вида компоста проведен сравнительный химический анализ в пересчете на абсолютно сухое вещество двух видов органических удобрений: компоста из экскрементов шелкопряда (ЭШ) и навоза из экскрементов крупного рогатого скота (табл. 3).

Таблица 2 Химический состав компоста из экскрементов дубового шелкопряда при разных сроках хранения

Наименование	Срок хра- нения,	Содеря	pН		
	мес.	A30T -	фосфор - Р ₂ О ₅	калий - К₂О	
Экскре ме нты	-	2,02	0,54	1,84	6,7
Компост	6	2,51	0,79	1,62	6,7
Компост	12	1,81	0,42	0,96	6,7
Компост	18	1,54	0,37	0,56	6,7

Таблица 3 Химический состав двух видов органических удобрений.

Вид удобрения	Органи че - ское в-во, %	Содержание, % от абсолютно сухого вещества		pН	
		аз от - N	ф о сфор - P ₂ O ₅	кал ий - К₂О	
Навоз КРС	24,5	0,29	0,17	0,10	8,0
Компост ЭШ_	86,6	2,54	0,79	1,62	6,7

Из табл. 3 следует, что предлагаемый компост из экскрементов дубового шелкопряда при пересчете на абсолютно сухое вещество содержит больше органического вещества в 3,5 раза, общего азота в 2,2 раза, фосфора в 0,62 раза, калия в 1,5 раза. При этом его среда ближе к нейтральной, чем навоза КРС. Все это дает основание предположить, что ценность нового компоста выше, чем навоза КРС, поскольку в компосте содержатся все элементы питания, необходимые для роста и развития растений.

Для уточнения объемов полученного компоста с одного инсектария на 1 кг грены, проведен анализ потребления и утилизации березового листа гусеницами разных возрастов при постоянных температурах (табл.4). Установлено, что одна гусеница за весь период развития выделяет от 16 до 20 граммов экскрементов. Причем, максимальное — при температурах 20-23 °C и относительной влажности воздуха 75-80%. Основное количество экскрементов получено в последнем лятом возрасте — 90 % от общего количества. В пересчете на 1 кг грены при урожае коконов 200 кг с одного инсектария получается до 1200 кг экскрементов, пригодных для компостирования.

Калорийность экскрементов китайского дубового шелкопряда (кДж/г сухого вещества)

Возрасты гусениц						
1	2	3	4	5		
18,65±0,85	18,84±1,05	18,74±1,58	17,52±1,40	15,76±1,08		

Анализ энергетики питания гусениц показал, что экскременты, выделяемые при питании листьями березы имеют тенденцию к снижению калорийности по мере развития гусениц (табл. 5). Иначе говоря, максимальное количество энергии гусеница усваивает и минимальное выделяет в старших возрастах — четвертом и пятом. Так, если энергоемкость экскрементов в первом возрасте при 23°С составила 18, 56 кДж/г, то в пятом на 15% ниже. В среднем разница между калорийностью экскрементов в первом и пятом возрастах составляет 15,5%. Вместе с тем, если анализировать процесс в пересчете не на грамм массы, а на одну гусеницу, то картина несколько иная (табл. 5).

При изучении количества энергии, выделяемой одной гусеницей с экскрементами, установлено, что максимальное ее количество, в среднем за весь период развития, выделяется при 20 - 23°C — 314 кДж/экз, а минимальное — на крайних точках экскремента — при 17 и 29°C. В среднем температуры 17- 29°C снижают интенсивность обменных процессов, ухудшая процесс дефекации. Максимальное количество экскрементов в пределах каждого возраста выделяется при температурах, близких к оптимуму. По мере развития гусениц в пределах каждого терморежима возрастает количество энергии, выделяемое гусеницей с экскрементами. Так, при 23°C гусеница пятого возраста выделяет с экскрементами в 6 раз больше энергии, чем четвертого.

Таблица 5
Количество и энергетическая ценность экскрементов китайского дубового шелкопряда при разных температурах (в пересчете на одну гусеницу)

T, ºC	Возрасты	Всего	
	1	5	200.0
	Энергетическая це	енность, кДж/экз	
17	0,515	226;3	269,2
20	0,514	269,4	315,1
23	0,536	259,6	314.4
26	0,654	236,0	288,5
29	0,452	203,6	266,9
	Количество экскр	рементов, г/экз	·
17	0,028±0,006	13,9±1,1	16,44±0,28
20	0,028±0,003	17,6±0,8	20,35±0,18
23	0,029±0,005	16,5±0,6	19,63±0,16
26	0,034±0,013	15,0±0,2	17,93±0,08
29	0,024±0,001	12,8±0,5	16,10±0,10

Детальных исследований о влиянии предлагаемого компоста из экскрементов гусениц дубового шелкопряда на растения пока нет, но, учитывая качественный состав, его можно рекомендовать для использования в качестве органического удобрения при выращивании овощных, ягодных и других культур в открытом и закрытом грунтах.

ЛИТЕРАТУРА

- 1. *Гаврильчик 3.С., Зотова В.Ф., Литвенков А.А.* Способ получения компоста. А.С. 1068 от 25.05.1995.
- Земленухин А.А. Практикум по биохимии. Изд-во Воронежского ун-та. 1975. С. 22.
- 3. Ягодин Б.А., Смирнов П.М. Агрохимия. M-BO, 1989. C. 371.
- 4. *Баранчиков Ю.Н.* Изучение питания и роста двух видов чешуекрылых-консументов березы. // Эволюционная биохимия и физиология. 1986, т.22, вып.6. С. 584.
- Остапеня А.П. Методы определения продукции водных животных. Мн., 1963.
 С. 245.
- 6. Рокицкий П.Ф. Биологическая статистика. Мн., 1977.
- 7. Смирнов П.М., Муравин Э.А. Агрохимия. M-BO, 1988.

SUMMARY

The paper deal with the information on the new organic manure – compost from excretion Chinese oak silkworm. It is recommended to use as a effective organic fertilizer at growing of agricultural cultures in opened and closed ground.

УДК 581.9(476)

И.И. Шимко

Долины малых рек Белорусского Поозерья как места концентрации редких видов растений

Флора Белорусского Поозерья, как и Беларуси в целом, имеет гибридогенный характер, что обусловлено географическими особенностями ее территории, историческими закономерностями развития флоры [1].

Большая видовая насыщенность и концентрация многих редких видов свойственна территориям, расположенным в долинах рек. Это обусловлено рядом причин.

Историческое формирование флоры, взаимопроникновение различных флор шло по долинам рек. Многие виды не распространялись затем на равнины, а оставались в долинах, так как нашли здесь наиболее благоприятные условия для своего существования [2, 3].

Долины рек характеризуются разнообразием физико-географических условий. Это даёт возможность совместному произрастанию видов трех флористических комплексов (таежных, неморальных, лугово-степных) различного географического происхождения, требовательных к своим, определенным экологическим условиям [3].