УДК 512.542

Н.Т. Воробьев

О фраттиниевой двойственности в теории классов Фиттинга

Основополагающим результатом в теории формаций конечных групп явилась следующая известная характеризация локальных формаций, полученная Гашюцом, Любезедер и Шмидом [1,2]: формация \S локальна в том и только в том случае, когда \S насыщена, то есть из того, что G/Φ (G) $\in \S$ всегда следует, что группа G из \S . Как вытекает из [3], аналогичная характеризация локальных классов Фиттинга с использованием подгруппы $\psi_0(G)$, двойственной подгруппе Фраттини $\Phi(G)$ группы G, невозможна. Напомним, что подгруппа $\psi_0(G)$ была введена и изучалась Гашюцом [4] как подгруппа из G, порожденная всеми минимальными подгруппами группы G. Дёрком и Хауком [5] (см. также [6]) было предложено использовать для характеризации классов Фиттинга фраттиниеву двойственность в следующем смысле. Пусть τ — оператор замыкания и $\psi_{\tau}(G)$ — наименьшая нормальная подгруппа группы G такая, что $\tau(\psi_{\tau}(G)\cap M) \supseteq \tau(M)$ для всех $M \triangleleft \triangleleft G$. Класс Фиттинга \S называют τ -насыщенным или $E^{\psi\tau}$ -замкнутым, если из того, что $\psi_{\tau}(G) \in \S$, всегда следует, что $G \in \S$.

Естественнен, как и для формаций, поиск характеризаций т-насыщенных классов Фиттинга. Дёрк и Хоукс сформулировали следующую общую проблему характеризации т-насыщенных классов Фиттинга.

Проблема [7, с. 829]. Для данного оператора замыкания τ ($S_n \le \tau$) какие классы Фиттинга в $\mathfrak S$ являются τ -насыщенными ?

В настоящей работе найдено счетное множество примеров семейств классов Фиттинга, для которых возможна такая характеризация.

Группу G называют комонолитической, если она имеет единственную максимальную нормальную подгруппу. Рассматриваются только конечные разрешимые группы.

Мы неоднократно будем использовать следующие известные свойства комонолитических групп [8], которые сформулируем в виде следующей леммы.

Лемма 1. Справедливы следующие утверждения:

- если N нормальная подгруппа группы G, G/N комонолитическая группа и S – минимальное субнормальное добавление к N в G, то S – комонолитическая группа;
- 2) если N_1 , N_2 такие нормальные подгруппы группы G, что $N_1N_2\subset G$, $N_1\cap N_2=1$ и G/N_i комонолитическая группа (i=1, 2), и S минимальное субнормальное добавление κ N_1N_2 в G, то S такая комонолитическая группа, что $S/S\cap N_i\cong G/N_i$ для i= 1, 2. Кроме того, если G/N_1N_2 является p-группой, то $S/(S\cap N_1)$ ($S\cap N_2$) нетривиальная циклическая p-группа;

- - а) S имеет такие нормальные подгруппы S_1 и S_2 , что $S_1 \cap S_2 = 1$, $S/S_1 S_2 -$ циклическая нетривиальная p-группа и $S/S_1 \cong G_1$ для i = 1,2;
 - b) S_{\S} максимальная нормальная подгруппа из S индекса p.

Непосредственной проверкой легко установить, что справедлива

Лемма 2. Для каждого локального класса Фиттинга \S и любой комонолитической группы $G \in \S$ с максимальной нормальной подгруппой индекса р регулярное сплетение $GwrC_p \in \S$.

Пусть $m \in \mathbb{N}$ и τ_m – оператор, сопоставляющий каждому классу групп \mathfrak{X} пересечение $\tau_m\mathfrak{X}$ всех тех m-кратно локальных классов Фиттинга [9], являющихся формациями, которые содержат \mathfrak{X} . Легко видеть, что $\mathfrak{X} \subseteq \tau_m\mathfrak{X} = \tau_m(\tau_m\mathfrak{X})$, и из того, что \mathfrak{X} является подклассом класса групп \mathfrak{D} , следует $\tau_m\mathfrak{X} \subseteq \tau_m\mathfrak{D}$, то есть τ_m – оператор замыкания. Кроме того, очевидно $S_n \leq \tau_m$, где S_n – оператор нормальной наследственности. В случае, когда $\mathfrak{X} = \{G\}$, мы будем обозначать $\tau_m\{G\}$ через τ_mG .

Следующая теорема дает ответ на указанный во введении вопрос для счетного множества примеров семейств классов Фиттинга и классифицирует локальные классы Фиттинга, являющиеся формациями.

Теорема. Пусть \Re — m-кратно локальный класс Фиттинга (m \geq 1). Тогда и только тогда \Re является формацией, когда \Re τ_m -насыщен.

Д о к а з а т е л ь с т в о. Пусть \S – m-кратно локальный класс Фиттинга, который является формацией. Покажем, что класс \S является τ_m -насыщенным. Предположим, что это не так. Пусть G – группа наименьшего порядка, такая что $\Psi_m(G) \in \S$ и $G \in \S$. Пусть M – любая максимальная нормальная подгруппа группы G. Вначале установим, что $\psi_{\tau_m}(M) \subseteq \psi_{\tau_m}(G)$. Пусть K – любая субнормальная подгруппа группы G. Тогда, очевидно, G0. Так же субнормальна в G0 и поэтому

$$\tau_m \mathsf{K} = \tau_m(\mathsf{K} \cap \ \psi_{\tau_m} \ (\mathsf{G})) = \tau_m(\mathsf{K} \cap (\mathsf{M} \cap \ \psi_{\tau_m} \ (\mathsf{G}))).$$

Следовательно, $\psi_{\tau_m}(M) \subseteq M \cap \psi_{\tau_m}(G) \subseteq \psi_{\tau_m}(G)$. Отсюда $\psi_{\tau_m}(M) \in \mathfrak{F}$ и по индукции $M \in \mathfrak{F}$. Значит, $M = G_\mathfrak{F}$ и G – одноглавая группа.

Так как $G \in \tau_m G$ и $G_{\mathfrak{F}}$ – нормальная подгруппа из G, то $G_{\mathfrak{F}} \in \tau_m G$. Следовательно,

$$\tau_m G_{\mathfrak{F}} \subseteq \tau_m G$$
.

Если $\tau_m G_{\S} = \tau_m G$, то $G \in \tau_m G_{\S}$. Но $\tau_m G_{\S} \subseteq \tau_m \ \S := \ \S$ и поэтому $G \in \ \S$. Получили противоречие. Таким образом, $\tau_m G_{\S} \subset \tau_m G$ и поэтому $G = \psi_{\tau_m} (G) \in \ \S$, что невозможно.

Докажем обратное утверждение. Пусть \mathfrak{F} τ_{m} -насыщенный класс Фиттинга. Покажем, что в этом случае \mathfrak{F} является формацией. Выделим два этапа при доказательстве этого утверждения.

1. Докажем, что \S – радикальный гомоморф.

Предположим, что \S не является радикальным гомоморфом. Выберем группу G минимального порядка такую, что $G \in \S$ и $G/K \in \S$ для некоторой нормальной подгруппы K группы G. Тогда в группе G/K существует такая суб-

нормальная подгруппа $H/K \in \mathcal{F}$, все собственные нормальные подгруппы которой являются \mathfrak{F} -группами. Пусть $L/K - \mathfrak{F}$ -радикал группы H/K. Согласно выбору группы G, мы можем положить L = G. Следовательно, G/K -группа с единственной максимальной нормальной подгруппой $(G/K)_{\mathfrak{F}}$. Но тогда индекс $|G/K: (G/K)_{\mathfrak{F}}| = p$, где p — некоторое простое число. Пусть S — минимальное субнормальное добавление к группе G. Так как $G \in \mathfrak{F}$, то $G \in \mathfrak{F}$ и по утверждению 1 леммы 1. $G \in \mathfrak{F}$ — комонолитическая группа. Кроме того, $G/K \cong S/S \cap K \in \mathfrak{F}$. Но тогда, согласно выбору группы G, мы можем положить $G \in G$ и группа $G \in G$ является комонолитической группой из $G \in G$. Так как $G \in G$ и класс $G \in G$ — радикальный гомоморф, то $G/K \in G$ — Следовательно, имеет место включение

$$\tau_{m}(G/K) \subseteq \tau_{m}G. \tag{1}$$

Так как G — комонолитическая группа, то G имеет единственную минимальную нормальную подгруппу М. Отсюда мы получаем, что $\tau_m M \subseteq \tau_m G$. Предположим теперь, что справедливо равенство

$$\tau_{m}M = \tau_{m}G. \tag{2}$$

Пусть \overline{G} = G/K. Так как \overline{G} — комонолитическая группа с максимальной нормальной подгруппой $\overline{G}_{\$}$ и $|\overline{G}:\overline{G}_{\$}|$ = p, и G — комонолитическая не p-совершенная группа из \$, то, по утверждению 3 леммы 1, существует комонолитическая группа R со следующими свойствами:

- (а) R имеет такие нормальные подгруппы R_1 и R_2 , что $R_1 \cap R_2 = 1$, R/R_1R_2 циклическая нетривиальная р-группа, $R/R_1 \cong G$, $R/R_2 \cong \overline{G}$ и $R_{\overline{x}}/R_1 \cong M$, $R_{\overline{x}}/R_2 \cong \overline{G}_{\overline{x}}$.
 - (б) R₃ максимальная нормальная подгруппа индекса р в группе R.

Но тогда $R/R_1 \in \tau_m G$ и, ввиду (1), $R/R_2 \in \tau_m G$. Следовательно, ввиду того, что группа R/R_1R_2 нильпотентна и по лемме 5 из [10] $\tau_m G$ — класс Локетта, по обобщенной квази- R_0 -лемме [7, X.2.1] вытекает, что $R \in \tau_m G$, и поэтому справедливо включение

$$\tau_m R \subseteq \tau_m G$$
.

С другой стороны, ввиду (а), группа G является гомоморфным образом группы R, и поэтому $G \in Q(\tau_m R) = \tau_m R$. Следовательно, $\tau_m G \subseteq \tau_m R$ и мы доказали равенство $\tau_m R = \tau_m G$. Аналогично, из того, что $M \in QR_{\mathfrak{F}} \subseteq Q(\tau_m R_{\mathfrak{F}}) = \tau_m R_{\mathfrak{F}}$, следует $\tau_m M \subseteq \tau_m R_{\mathfrak{F}}$.

Таким образом, ввиду предположения (2), мы получили, что

$$\tau_m G = \tau_m M \subseteq \tau_m R_{\pi} \subseteq \tau_m R = \tau_m G$$
.

Значит, $\tau_m R_\S = \tau_m R$. Это означает, что $\psi_{\tau_m}(R) \subseteq R_{\S t}$ и поэтому $\psi_{\tau_m}(R) \in \S$. Но по условию класс \S τ_m -насыщенный, и поэтому $R \in \S$, что противоречит условию (б). Следовательно, предположение (2) невозможно. Остается принять случай, когда имеет место включение

$$\tau_{\rm m} M \subset \tau_{\rm m} G.$$
 (3)

Рассмотрим регулярное сплетение Γ = Gwr C_p , где C_p – циклическая группа порядка р. Пусть $M^*=Mx\dots xM$ — подгруппа базисной группы G^* сплетения Γ

(напомним, что в данном случае $M = G_{\tau_m M}$ — максимальная нормальная подгруппа индекса р в G). Так как Г/М* \cong (G/M) wr C_p , то Г/М* \cong C_p wr C_p . Но, по свойству сплетений [7, A.18.11], сплетение C_p wr C_p имеет циклическую подгруппу C порядка p^2 такую, что пересечение базисной группы из C_p wr C_p с C

является группой порядка р. Обозначим через \overline{C} полный прообраз группы C в Γ . Так как Γ/M^* нильпотентная группа, то \overline{C} — субнормальная подгруппа группы Γ . Более того, из изоморфизма $\Gamma/M^* \cong C_p$ wr C_p следует, что $\overline{C}/M^* \cong C$ является циклической группой порядка p^2 и $\overline{C} \cap G^*/M^*$ — подгруппа порядка р группы \overline{C}/M^* . Так как G — группа из локального радикального класса $\tau_m G$, то, по лемме 2, $\Gamma \in \tau_m G$. Но тогда из того, что $\overline{C} \triangleleft \triangleleft \Gamma$, следует, что $\overline{C} \in \tau_m G$. Следовательно, $\tau_m \overline{C} \subset \tau_m G$.

С другой стороны, по лемме 5 из [10] класс Фиттинга $\tau_m \, \overline{C}$ является классом Локетта. Поэтому из того, что $\overline{C} \not\subseteq G^*$, по лемме X.2.1 а) [7] следует, что $\Gamma \in \tau_m \, \overline{C}$. Но тогда и группа $G \in \tau_m \, \overline{C}$. Следовательно, $\tau_m G \subseteq \tau_m \, \overline{C}$ и поэтому справедливо равенство

$$\tau_m \overline{C} = \tau_m G$$
.

Ho, ввиду леммы 2, $\Gamma \in \tau_m G$ и поэтому $\tau_m \Gamma \subseteq \tau_m G$. С другой стороны, так как $\overline{C} \triangleleft \triangleleft \Gamma$, то $\tau_m \overline{C} \subseteq \tau_m \Gamma$.

Таким образом, учитывая доказанное выше равенство, мы показали справедливость следующих равенств:

$$\tau_{\rm m} \, \overline{\rm C} = \tau_{\rm m} {\rm G} = \tau_{\rm m} {\rm \Gamma}. \tag{4}$$

Пусть теперь F — минимальное субнормальное добавление κ подгруппе M^* в группе \overline{C} . Тогда, очевидно, $\tau_m F \subseteq \tau_m \overline{C}$. Если бы $F \subseteq G^*$, то и $\overline{C} \subseteq G^*$, что невозможно. Поэтому $F \not\subseteq G^*$ и из того, что $\tau_m F$, по лемме 5 из [10] — класс Локетта, вытекает, по лемме X.2.1 а) [7], что $\Gamma \in \tau_m F$. Следовательно, ввиду равенства (4), $\tau_m \overline{C} = \tau_m \Gamma \subseteq \tau_m F$ и поэтому имеет место равенство

$$\tau_{m}F = \tau_{m}\overline{C} = \tau_{m}G. \tag{5}$$

Так как \overline{C} /М* — комонолитическая группа, то, по утверждению 1 леммы 1, добавление F к M^* является также комонолитической группой. Кроме того, ввиду изоморфизма $F/F \cap M^* \cong \overline{C}$ /М*, группа $F/F \cap M^*$ — циклическая порядка p^2 и $F \cap G^*$ — ее максимальная нормальная подгруппа. Покажем теперь справедливость равенства

$$\tau_m F = \tau_m (F \cap G^*). \tag{6}$$

Если $\overline{C}_{\tau_m(F\cap G^*)} \not\subseteq G^*$, то, ввиду того, что, по лемме 5 из [10], класс Фиттинга $\tau_m(F\cap G^*)$ является классом Локетта, по лемме X.2.1 а) [7],следует $\Gamma\in\tau_m(F\cap G^*)$. Но, вспоминая, что $\overline{C} \vartriangleleft \neg$ Γ , имеем $\overline{C} \in \tau_m(F\cap G^*)$, и поэтому из субнормальности Γ в \overline{C} следует $\Gamma \in \tau_m(F\cap G^*)$. Значит, τ_m $\Gamma \subseteq \tau_m(F\cap G^*)$. Обратное включение очевидно.

Предположим теперь, что $\overline{C}_{\tau_m(F\cap G^*)}\subseteq G^*$. Если $\overline{C}_{\tau_m(F\cap G^*)}=G^*$, то это противоречит тому, что $G^*\not\subset\overline{C}$.

Остается рассмотреть случай:

$$\overline{C}_{\tau_m(F\cap G^{\bullet})}{\subseteq} \left(G^{\bullet}\right)_{\tau_mM} = M^{\bullet}{\subset} G^{\bullet}.$$

Заметим, что к этому случаю приводят те соображения, что по лемме 5 из [10], радикалы прямых произведений групп для локальных классов Фиттинга совпадают с прямыми произведениями радикалов этих групп для этих клас-

сов, и поэтому между радикалами групп G и G* существует взаимнооднозначное соответствие.

Но подгруппа $F \cap G^* \not\subset M^*$, и поэтому случай $\overline{C}_{\tau_m(F \cap G^*)} \subseteq M^*$ невозможен. Итак, остается признать, что $\overline{C}_{\tau_m(F \cap G^*)} \subseteq G^*$ и тем самым равенство (6) доказано.

Но тогда из равенства (5) следует, что $\psi_{\tau_m}(F) \subseteq F \cap G^* \in \Re$. Следовательно, из того, что класс Фиттинга $\Re \tau_m$ -насыщенный, имеем $F \in \Re$. Теперь, ввиду (5), в равенстве (1) заменим $\tau_m G$ на $\tau_m F$, равенство (2) — на равенство (6) и, проведя для групп G и G мы построим, применяя утверждениям, указанным выше для групп G и G, мы построим, применяя утверждение G леммы 1, такую комонолитическую группу G, которая не принадлежит G. Но $\psi_{\tau_m}(G) \in G$ и ввиду τ_m -насыщенности G следует, что G G G Полученное противоречие завершает доказательство того, что класс G — радикальный гомоморф.

2. Докажем, что \S – класс Фиттинга, замкнутый относительно подпрямых произведений.

Это утверждение установим также индукцией по порядку группы G. Пусть G — контрпример минимального порядка. Тогда в группе G найдутся такие нормальные подгруппы K_1 и K_2 , что $G/K_i \in \S$ и $G \in \S$ (i = 1,2), причем $K_1 \cap K_2 = 1$.

Покажем вначале, что если $K_1K_2 \subset G$, то G — одноглавая группа с максимальной нормальной подгруппой G_\S индекса p, для некоторого простого числа p. Предположим, что L/K_1 — максимальный нормальный делитель группы G/K_1 . Тогда $L/K_1 \in \S$. Кроме того, ввиду изоморфизма $L/L \cap K_2 \cong LK_2/K_2$, группа $L/L \cap K_2 \cong LK_2/K_2$, группа $L/L \cap K_2 \in \S$. Но тогда, применяя индукцию, мы можем считать, что $L \in \S$. Если в G/K_1 существует другой максимальный нормальный делитель L_1/K_1 , то аналогично $L_1 \in \S$. Но тогда $G = L_1L_2 \in \S$ и получаем противоречие с выбором G. Следовательно, G/K_1 — комонолитическая группа. Аналогично легко видеть, что и G/K_2 — комонолитическая группа.

Предположим, что H — минимальное субнормальное дополнение к группе K_1K_2 в G. Тогда, ввиду того, что G/K_1 (i=1,2) — одноглавая группа, по утверждению 2 леммы 1 следует, что H такая комонолитическая группа, что $H/H \bigcap K_i \cong G/K_i$. Так как $|K_1K_2| < |G|$ и $K_1K_2/K_i \in \mathfrak{F}$ (i=1,2), то $K_1K_2 \in \mathfrak{F}$. Но тогда из того, что $G \in \mathfrak{F}$, вытекает, что $H \in \mathfrak{F}$. Ввиду указанного выше изоморфизма $H/H \bigcap K_i \in \mathfrak{F}$. Тогда, учитывая минимальность выбора группы G, получаем G0 и G1 комонолитическая группа с максимальной нормальной подгруппой G3 индекса G3.

Применим теперь утверждение 3 леммы 1 для комонолитических групп G/K_1 и G/K_2 . Согласно этому утверждению существует такая комонолитическая группа M, которая содержит две максимальные нормальные подгруппы M_1 и M_2 со следующими свойствами: M_1 \bigcap M_2 = 1, M/M_1M_2 — нетривиальная циклическая р-группа и $M/M_i \cong G/K_i$ для i = 1,2. Так как $G/K_i \in \S$, то по квази- R_0 -лемме [7, IX.1.13] следует, что $M \in \S$. Так как по лемме 5 из [9] класс Фиттинга $\tau_m M$ является классом Локетта, то при данных условиях мы можем применить усиленный вариант квази- R_0 -леммы [7, X.1.24], согласно которому $G/K_i \cong M/M_i \in \tau_m M$ для i = 1,2. Следовательно, $G \in \tau_m M$ и имеет место включение

$$\tau_{\mathsf{m}}\mathsf{G}\subseteq\tau_{\mathsf{m}}\mathsf{M}.\tag{7}$$

Таким образом, мы показали, что G — комонолитическая группа с минимальной нормальной подгруппой G_{\S} индекса р и M — комонолитическая группа из \S .

Теперь, следуя случаю 1, путем очевидных изменений и замен (1) на (7) и групп \overline{G} на G, а G на M, мы придем к противоречию с τ_m -насыщенностью класса \mathfrak{F} .

Для завершения доказательства теоремы осталось выяснить R_0 -зам-кнутость класса \S в случае, когда $G=K_1K_2$. В данном случае имеют место изоморфизмы $K_2\cong G/K_1$ и $K_1=G/K_2$ и, следовательно, $G\in \S$. Получили противоречие.

Теорема доказана.

Если m=1, то τ_m -насыщенный класс Фиттинга естественно называть насыщенным.

Следствие. Тогда и только тогда локальный класс Фиттинга является формацией, когда он насыщенный.

ЛИТЕРАТУРА

- 1. Gaschütz W., Lubeseder U. Kennzeichnung gessätigter Formationen // Math.Z., 1963, bd.82, N 2. S. 198-199.
- 2. Schmid P. Every saturated is a local formation // J.Algebra, 1978, vol.51,N1. P.144-148.
- 3. Hartley B. On Fischer's dualization of formation theory // Proc. London Math., 1969, vol.3, N 2. P. 193-207.
- 4. Gaschütz W. Über das Frattinidual // Arch. Math., 1965, bd.16, N 1. S. 1-2.
- 5. **Doerk K., Hauck P.** Über Frattiniduale in endlichen Gruppen // Arch. Math., 1980, bd.35, N 3. S. 218-227.
- Doerk K., Hauck P. Frattiniduale und Fittingklassen endlicher auflösbarer Gruppen // J.Algebra, 1981, vol.69, N 4. P.402-415.
- 7. **Doerk K., Hawkes T.O.** Finite Soluble Groups // De Gruyter Exp. in Math., vol.4. Berlin-New York, 1992. 891 p.
- 8. **Doerk K.** Über dan Rand einer Fittingklasses auflosbarer Gruppen // J.Algebra, 1978, vol.51, N 4. P. 619-630.
- 9. **Воробьев Н.Т.** О предположении Хоукса для радикальных классов // Сиб. матем. Ж., 1996, т. 37, № 5. С. 1296-1302.
- 10. **Воробьев Н.Т.** О радикальных классах конечных групп с условием Локетта // Матем. заметки, 1988, т. 43, вып. 2. С.161-168.

SUMMARY

It is proved that if \mathscr{F} is a m-multiply local Fitting class, then \mathscr{F} is a formation if and only if $\psi_{\tau_m}(G) \in \mathscr{F}$, where $\psi_{\tau_m}(G)$ is a minimal normal subgroup of the group G such that $\tau_m(\psi_{\tau_m}(G) \cap M) \supseteq \tau_m M$ for every subnormal subgroup M of G and $\tau_m: \mathscr{X} \to \bigcap \{\mathfrak{D}/\mathfrak{D}\}$ is a m-multiply local Fitting class and formation, containing \mathscr{X} .