В.Г. Сементовский

О строении инъекторов конечных π-разрешимых групп

Во всякой разрешимой группе G для любых классов Фиттинга \mathfrak{X} и \mathfrak{Y} , а также для их произведения $\mathfrak{X}\mathfrak{Y}$ всегда существуют единственные классы сопряженных инъекторов. Отсюда возникает следующая задача — выразить $\mathfrak{X}\mathfrak{Y}$ -инъектор группы G через \mathfrak{X} -инъекторы и \mathfrak{Y} -инъекторы некоторых подгрупп группы G, а также подгрупп ее факторгруппы. Такая задача была полностью решена Локкетом [1].

Данная работа посвящена перенесению результатов работы [1] о строении $\mathfrak{X}\mathfrak{P}$ -инъекторов разрешимых групп на π -разрешимые группы.

В работе рассматриваются только конечные π -разрешимые группы для произвольного фиксированного множества простых π . Терминология работы общепринята.

Приведем некоторые необходимые в дальнейшем факты.

Определение 1 [2]. Пусть \Re — класс Фиттинга, V — \Re -подгруппа π -разрешимой группы G, и I = $G_k \subset G_{k-1} \subset ... \subset G_0 = G$ — нормальный ряд группы G. Если для любого i = 1,2,...,k подгруппа V \bigcap G $_i$ \Re -максимальна в G_i , то будем говорить, что V \Re -инъектирует заданный ряд. Если подгруппа \Re -инъектирует хотя бы один нормальный ряд группы G, факторы которого π -разложимы, то назовем ее \Re -инъектирующей подгруппой группы G.

Определение 2 [2]. Класс Фиттинга \S удовлетворяет условию (*), если во всякой π -разрешимой группе G вида G = WG $_{\pi'}$, где W — нормальная в G \S -подгруппа, всякие две \S -максимальные подгруппы группы G, содержащие W, сопряжены.

Теорема 1 [2]. Пусть \S — класс Фиттинга. Тогда следующие условия равносильны:

- 1) класс 🖁 удовлетворяет условию (*);
- 2) во всякой π -разрешимой группе G множество всех \Re -инъектирующих подгрупп группы G образует единственный класс сопряженных \Re -инъекторов группы G.

Теорема 2 [2]. Если $\mathfrak X$ и $\mathfrak Y$ — классы Фиттинга, удовлетворяющие условию (*), и либо $\mathfrak Y\subseteq \mathfrak S_\pi$, либо $\mathfrak S_{\pi'}\subseteq \mathfrak Y$, то класс Фиттинга $\mathfrak X\mathfrak Y$ тоже удовлетворяет условию (*).

Пусть \mathfrak{S}^{π} – класс всех конечных π -разрешимых групп. Если множество простых чисел ρ такое, что либо $\rho \subseteq \pi$, либо $\pi' \subseteq \rho$, то по теореме Чунихина—Холла во всякой группе G из \mathfrak{S}^{π} существуют единственные классы сопряженных ρ -холловских и ρ' -холловских подгрупп. Тогда, следуя Локкету, можно на множестве \mathfrak{S}^{π} ввести класс групп $L_{\rho}(\ \mathfrak{F}\) = \{\ G \in \mathfrak{S}^{\pi} \mid G = FG_{\rho'}\ ,$ где $F = \mathfrak{F}$ -инъектор группы $G\}$.

Лемма 3. Если класс Фиттинга \S удовлетворяет условию (*) и, либо $\rho \subseteq \pi$, либо $\pi' \subseteq \rho$, то:

- L_p(ℜ) будет классом Фиттинга;
- 2) $\mathfrak{F} \cup \mathfrak{S}_{\rho}^{,\pi} \subseteq \mathfrak{F} \mathfrak{S}_{\rho}^{,\pi} \subseteq \mathsf{L}_{\rho}(\mathfrak{F}) \mathfrak{S}_{\rho}^{,\pi} = \mathsf{L}_{\rho}(\mathfrak{F}).$

Д о к а з а т е л ь с т в о. Обозначим $\mathfrak{L} = \mathsf{L}_{\rho}(\,\,\mathfrak{F}\,\,)$. Пусть $\mathsf{G} \in \mathfrak{L}$ и $\mathsf{V} - \mathfrak{F}$ -инъектор группы G. Тогда существует ρ -холловская подгруппа G_{ρ} групы G, содержащаяся в V. Если N — нормальная подгруппа группы G, то $\mathsf{V} \cap \mathsf{N}$ будет \mathfrak{F} -инъектором подгруппы N, и $\mathfrak{S}_{\rho} \cap \mathsf{N} = \mathsf{N}_{\rho} \subseteq \mathsf{V} \cap \mathsf{N}$. Итак, класс $\mathfrak{L} \mathsf{S}_{\mathsf{n}}$ -замкнут.

Пусть теперь G=NK, где N и K — нормальные подгруппы группы G. Тогда $V\cap N$ содержит ρ -холловскую подгруппу N_{ρ} из N, а $V\cap K=\rho$ -холловскую подгруппу K_{ρ} из K. Так как G=NK, то N_{ρ} $K_{\rho}=G_{\rho}$. Из $G_{\rho}\subseteq V$ следует n_0 -замкнутость класса \mathfrak{L} , и 1) доказано.

Очевидно $\mathfrak{F}\subseteq\mathfrak{L}$ и $\mathfrak{S}_{\rho}{}^{,\pi}\subseteq\mathfrak{L}$. Тогда $\mathfrak{F}\cup\mathfrak{S}_{\rho}{}^{,\pi}\subseteq\mathfrak{F}$ $\mathfrak{S}_{\rho}{}^{,\pi}\subseteq\mathfrak{L}$ $\mathfrak{S}_{\rho}{}^{,\pi}$. Остается доказать \mathfrak{L} $\mathfrak{S}_{\rho}{}^{,\pi}=\mathfrak{L}$. Пусть $G\in\mathfrak{L}$ $\mathfrak{S}_{\rho}{}^{,\pi}$. Тогда из $G/G_{\kappa}\in\mathfrak{S}_{\rho}{}^{,\pi}$ следует $G=G_{\kappa}$ $G_{\rho'}$. Пусть $V-\mathfrak{F}_{\rho'}$ -инъектор группы G. Обозначим $K=G_{\kappa}$ и $V^*=V\cap K$. Тогда $K=V^*$ $K_{\rho'}$ и G=K $G_{\rho'}=V^*$ $G_{\rho'}$. Отсюда G=V $G_{\rho'}$ и, следовательно, $G\in\mathfrak{L}$. Лемма доказана.

Теорема 4. Пусть π – множество простых чисел и \Re – класс Фиттинга, удовлетворяющий условию (*). Тогда для любого множества простых чисел ρ из π классы L_{ρ} (\Re) и L_{ρ} (\Re) тоже удовлетворяют условию (*).

Д о к а з а т е л ь с т в о. Так как для множества ρ из π всякая π -разрешимая группа будет ρ -разрешимой, то задача сводится к доказательству выполнимости условия (*) для классов Фиттинга L_{π} (\S) и $L_{\pi'}$ (\S).

- 1) Докажем выполнимость условия (*) для класса L_π (§). Обозначим $\mathfrak{L}=L_\pi$ (§). Пусть $G=WG_{\pi'}$, где W нормальная \mathfrak{L} —подгруппа группы G. Тогда $W=VW_{\pi'}$, где $V-\mathfrak{F}$ -инъектор подгруппы W, и отсюда $G=VG_{\pi'}$. Пусть $S-\mathfrak{F}$ -максимальная подгруппа группы G, содержащая V. Так как $G=WG_{\pi'}$, то подгруппа S \mathfrak{F} -инъектирует любой нормальный ряд группы G, проходящий через W. Поэтому S будет \mathfrak{F} -инъектирующей подгруппой группы G, и так как \mathfrak{F} удовлетворяет условию (*), то по теореме 1 подгруппа S будет \mathfrak{F} -инъектором группы G. Теперь из $G=VG_{\pi'}$ и $V\subseteq S$ следует $G=SG_{\pi'}\in \mathfrak{L}$, и класс Фиттинга удовлетворяет условию (*).
- $\overline{\mathfrak{L}}=\mathsf{L}_{\pi'}$ (§). Пусть $\mathsf{G}=\mathsf{WG}_{\pi'}$, где W нормальная $\overline{\mathfrak{L}}$ -подгруппа группы G . Тогда $\mathsf{W}=\mathsf{W}_{\pi}\mathsf{V}$, где V некоторый \mathfrak{F} -инъектор из W . Пусть S максимальная среди всех $\overline{\mathfrak{L}}$ -подгрупп группы G , содержащих W . Из $\mathsf{S}\in\overline{\mathfrak{L}}$ следует $\mathsf{S}=\mathsf{W}_{\pi}$ $\mathsf{R}=\mathsf{WR}$, где $\mathsf{R}-\mathfrak{F}$ -инъектор подгруппы S , причем R содержит \mathfrak{F} -инъектор из W . Из $\overline{\mathfrak{L}}$ -максимальности подгруппы S в G следует , что подгруппа R должна быть максимальной B G среди всех \mathfrak{F} -подгрупп, содержащих \mathfrak{F} -инъектор из W . Так как $\mathsf{G}=\mathsf{WG}_{\pi'}$, то R будет \mathfrak{F} -инъектирующей подгруппой группы G , и, по теореме 1, \mathfrak{F} -инъектором группы G . Итак, всякая $\overline{\mathfrak{L}}$ -максимальная подгруппа S группы G , содержащая W , имеет вид $\mathsf{S}=\mathsf{WR}$, где $\mathsf{R}-\mathfrak{F}$ -инъектора группы G . Так как класс \mathfrak{F} удовлетворяет условию (*) , то всякие два \mathfrak{F} -инъектора группы G сопряжены. Тогда сопряженными будут всякие две максимальные $\overline{\mathfrak{L}}$ -подгруппы группы G , содержащие W . Итак класс $\overline{\mathfrak{L}}$ удовлетворяет условию (*). Теорема доказана.

На множестве конечных разрешимых групп $\mathfrak S$ для множества простых чисел π и класса Фиттинга $\mathfrak F$ в [$\mathfrak S$] определен класс Фиттинга $\mathsf K_\pi(\mathfrak F)$ следующим образом: $\mathsf K_\pi(\mathfrak F)=\{\mathsf G\in\mathfrak S\mid\pi$ -холловская подгруппа группы $\mathsf G$ принадлежит $\mathfrak F$ $\}$. По аналогии введем такой класс на множестве конечных π -разрешимых

групп. Пусть ρ – множество простых чисел такое, что либо $\rho \subseteq \pi$, либо $\pi' \subseteq \rho$ и \mathfrak{F} – класс Фиттинга. Пусть $\mathsf{K}_{\rho}(\mathfrak{F}) = \{\mathsf{G} \in \mathfrak{S}^{\pi} \mid \pi$ -холловская подгруппа группы G принадлежит \mathfrak{F} $\}$.

Покажем, что $K_{\rho}(\S)$ будет классом Фиттинга. Пусть N – нормальная подгруппа группы $G \in \mathfrak{S}^{\pi}$ и $G \in K_{\rho}(\S)$. Тогда ρ -холповская подгруппа G_{ρ} группы G принадлежит \S . Отсюда $G_{\rho} \cap N = N_{\rho} \in \S$. Итак, класс $K_{\rho}(\S)$ S_n - замкнут.

Пусть теперь G=KN, где K и N- нормальные $K_{\rho}(\S)$ -подгруппы группы G. Пусть K_{ρ} и $N_{\rho}-\rho$ -холловские подгруппы соответственно из K и N. Тогда $K_{\rho}\in \S$ и $N_{\rho}\in \S$. Так как K_{ρ} и N_{ρ} \S -подгруппы, нормальные в G_{ρ} , то $G_{\rho}=K_{\rho}$ $N_{\rho}\in \S$. Итак, класс $K_{\rho}(\S)-n_0$ -замкнут. Таким образом, для любого класса Фиттинга \S класс $K_{\rho}(\S)$ тоже будет классом Фиттинга.

Лемма 5. Если класс Фиттинга \S удовлетворяет условию (*), то $\mathsf{K}_{\mathfrak{o}}(\S) = \mathsf{L}_{\mathfrak{o}}(\S_{\mathfrak{o}}).$

Доказательство. Если $G \in K_{\rho}(\S)$, то $G_{\rho} \in \S$. Тогда из того, что \S_{ρ} -инъектор F группы G содержится в G_{ρ} , следует $F = G_{\rho}$. Итак, $G \in L_{\rho}(\S_{\rho})$.

Обратно, если $G \in L_{\rho}\left(\S_{\rho}\right)$, то \S_{ρ} -инъектор F группы G содержит G_{ρ} . Так как F содержится в ρ -холловской подгруппе группы G, то $F = G_{\rho}$. Отсюда $G_{\rho} \in \S$ и $G \in K_{\rho}\left(\S\right)$. Итак, $K_{\rho}\left(\S\right) = L_{\rho}\left(\S_{\rho}\right)$.

Лемма доказана.

Теперь, так как классы Фиттинга \mathfrak{F} и \mathfrak{E}_{ρ} удовлетворяют условию (*), то по теореме 3 из [2] класс $\mathfrak{F}_{\rho} = \mathfrak{F} \cap \mathfrak{E}_{\rho}$ – тоже. По теореме 4 L_{ρ} (\mathfrak{F}_{ρ}) = K_{ρ} (\mathfrak{F}_{ρ}) удовлетворяет условию (*).

Таким образом получено следующее утверждение.

Теорема 6. Пусть $\rho \subsetneq \pi$ и \S – класс Фиттинга, удовлетворяющий условию (*). Тогда классы Фиттинга K_{ρ} (\S) и $K_{\rho'}$ (\S) тоже удовлетворяет условию (*).

Теорема 7. Пусть \S — класс Фиттинга, удовлетворяющий условию (*), и либо $\rho \subseteq \pi$, либо $\pi' \subseteq \rho$. Тогда:

- 1) $L_{\rho}(L_{\rho}(\mathfrak{F})) = L_{\rho}(\mathfrak{F});$
- 2) всякие два следующие свойства эквивалентны:
- $\mathbf{a}) \, \mathfrak{F} = \mathsf{L}_{\rho}(\, \mathfrak{F}) \; ;$
- b) ε = ε Θ_ρ,^π;
- c) для любой группы $G \in \mathfrak{S}^n$ \S -инъектор группы G будет иметь ρ -индекс e G.
- $\mathbf{d}) \, \mathsf{L}_{\mathfrak{o}'}(\, \mathfrak{F}) = \mathfrak{S}^n \, .$

Д о к а з а т е л ь с т в о. Обозначим $\mathfrak{L} = \mathsf{L}_\rho(\mathfrak{F})$. Утверждение 1) докажем индукцией по порядку группы G. Предположим, что $\mathfrak{L} \neq \mathsf{L}_\rho(\mathfrak{L})$. Так как по лемме 3. 2) $\mathfrak{L} \subseteq \mathsf{L}_\rho(\mathfrak{L})$, то существует группа, содержащаяся в $\mathsf{L}_\rho(\mathfrak{L})$ и не содержащаяся в \mathfrak{L} . Пусть $\mathsf{G} = \mathsf{r}$ группа наименьшего порядка среди всех таких групп и $\mathsf{M} = \mathsf{M}$ максимальная нормальная подгруппа группы G. Так как $\mathsf{M} \in \mathsf{L}_\rho(\mathfrak{L})$, то по индукции $\mathsf{M} \in \mathfrak{L}$. Для заданного множества ρ группа G будет ρ -отделимой. Поэтому G/M будет либо ρ -группой, либо ρ' -группой. По теореме 4 в G существует \mathfrak{L} -инъектор L. Очевидно $\mathsf{M} \subseteq \mathsf{L}$. Пусть $\mathsf{G}/\mathsf{M} = \rho$ -группа. Тогда $\mathsf{I} \mathsf{G} : \mathsf{L} = \rho$ -число. С другой стороны, так как $\mathsf{G} \in \mathsf{L}_\rho(\mathfrak{L})$, то L содержит некоторую ρ -холловскую подгруппу G_ρ . Тогда $\mathsf{I} \mathsf{G} : \mathsf{L} = \rho'$ -число. Из того, что $\mathsf{I} \mathsf{G} : \mathsf{L} = \mathsf{I}$ одновременно ρ -число следует $\mathsf{G} = \mathsf{L} \in \mathfrak{L}$

Итак, G/M — ρ' -группа. Так как M = G_{ϵ} , то $G \in \mathfrak{L} \mathfrak{S}_{\rho}^{\pi}$. По лемме 3. 2) $L \in \mathfrak{L}$. В обоих случаях утверждение 1) доказано.

Докажем 2). Если выполняется условие а), то по 1) справедливо в). Индукцией по |G| докажем, что из в) следует с). Пусть M – максимальная нормальная подгруппа группы $G \in \mathfrak{S}^\pi$ и $V - \mathfrak{F}$ -инъектор группы G. По индукции

 $|M: (V \cap M)|$ будет ρ -числом. Если G = VM, то $|G: V| = |M: (V \cap M)|$ и тоже будет ρ -числом . Итак $V \subseteq M$. Ввиду пронормальности подгруппы $V \subseteq M$. Ввиду пронормальности подгруппы $V \subseteq M$. Отсюда $V \subseteq M$ содержит ρ -холловскую подгруппу $V \subseteq M$ будет ρ -числом. Отсюда $V \subseteq M$ и ввиду $V \subseteq M$ -максимальности подгруппы $V \subseteq M$ от $V \subseteq M$ и $V \subseteq M$ от $V \subseteq M$ от

Остается показать, что из d) следует a). Пусть $L_{\rho}(\ \S) = \mathfrak{S}^n$ и $G \in L_{\rho}(\ \S)$). Так как $G \in L_{\rho}(\ \S)$, то $|G:V| - \rho$ -число, a из $G \in L_{\rho}(\ \S)$ следует, что $|G:V| - \rho$ -число. Отсюда G = V и $G \in \S$. Итак $\S = L_{\rho}(\S)$, и a) доказано.

Теорема доказана.

По 1) предыдущей теоремы для класса $L_{\rho}(\mathfrak{F})$ выполняется условие a) , a из a) следует c). Поэтому справедливо утверждение.

Следствие. Если класс Фиттинга \S удовлетворяет условию (*), то $\mathsf{L}_{\mathsf{o}}(\S)$ -инъектор группы $\mathsf{G} \in \mathfrak{S}^\pi$ содержит ρ' -холловскую подгруппу группы G .

Лемма 8. Пусть классы $\mathfrak X$ и $\mathfrak Y$ удовлетворяют условию (*), σ ($\mathfrak Y$) = ρ и либо $\rho \subseteq \pi$, либо $\pi' \subseteq \rho$. Тогда во всякой π -разрешимой группе $G \in \mathsf L_\rho(\mathfrak X)$ множества $\mathfrak X$ -инъекторов и $\mathfrak X \mathfrak Y$ -инъекторов группы G равны.

Доказательство. Сначала докажем, что \mathfrak{X} -инъектор X π -разрешимой группы G из $L_{\rho}(\mathfrak{X})$ будет $\mathfrak{X}\mathfrak{Y}$ -максимальным g G. Предположим, что $X \subseteq H \subseteq G$ и $H \in \mathfrak{X}\mathfrak{Y}$. Тогда $H/H_{\mathfrak{X}} \in \mathfrak{S}^{\pi} \cap \mathfrak{Y} \subseteq \mathfrak{S}_{\rho}^{\pi}$. Так как X является \mathfrak{X} -инъектором подгруппы H, то $|H:X| - \rho$ -число. С другой стороны |G:X| делится на |H:X| и так как $|G:X| - \rho'$ -число, то $|H:X| - \tau$ оже. Теперь |H:X| одновременно ρ -число и ρ' -число. Отсюда H=X, и $X-\mathfrak{X}\mathfrak{Y}$ -максимальна g G. Пусть G0 субнормальная подгруппа группы G1. Тогда G1. По доказанному выше G2. По G3. Чаксимальна G4. Итак G4. G4. По доказанному выше G5. По теореме 2 класс G6. Удовлетворяет условию (*), а по теореме 1 всякие два G6. По теореме 2 класс G7. Удовлетворяет условию (*), а по теореме 1 всякие два G7. Нъекторов группы G7. Совпадают, и лемма доказана.

Лемма 9. Пусть класс Фиттинга \S удовлетворяет условию (*) и G = LN, где $L \in \S$ и N — нормальная подгруппа группы G. Тогда, если $L \cap N = \S$ -инъектор подгруппы N, то L — \S -инъектор группы G.

Доказательство. Покажем, что L — \S -максимальна в G. Предположим L \subseteq S \in \S . Тогда S = S \cap LN = L(S \cap N) и L \cap N \subseteq S \cap N \in \S . Ввиду \S -максимальности L \cap N в N получим L \cap N = S \cap N, а отсюда S = L. Пусть L \supset L₁ \supset ... \supset L_K = L \cap N = цепочка нормальных в L подгрупп, факторы которой π -разложимы. Тогда факторы цепочки G = LN \supset L₁N \supset ... \supset L_KN = N тоже π -разложимы. Дополним эту цепочку до нормального ряда группы G с π -разложимыми факторами G = LN \supset L₁N \supset ... \supset N \supset N₁ \supset ... \supset N_S = 1. Так как для любого i = 1,2,..., k подгруппа L \S -максимальна в L_i N , то L \S -инъектирует данный ряд. Тогда по теореме 1 L будет \S -инъектором группы G. Лемма доказана.

Теорема 10. Пусть $\mathfrak X$ и $\mathfrak Y$ – классы Фиттинга, удовлетворяющие условию (*), $\rho = \sigma(\mathfrak Y)$, $\mathfrak X = \mathsf L_\rho(\mathfrak X)$ и либо $\mathfrak Y \subseteq \mathfrak S_\rho$, либо $\mathfrak S_\pi' \subseteq \mathfrak Y$. Пусть $\mathsf G - \pi$ -разрешимая группа, $\mathsf X - \mathfrak X$ -инъектор подгруппы $\mathsf G_{\mathfrak X}$, $\mathsf G_\rho - \rho$ -холловская подгруппа группы $\mathsf G_\rho$ нормализующая $\mathsf X$, и $\mathsf U/\mathsf X - \mathfrak Y$ -инъектор подгруппы $\mathsf G_\rho$ $\mathsf X/\mathsf X$. Тогда:

- а) $U = \mathfrak{X}\mathfrak{I}$ -инъектор подгруппы G;
- b) UG₂ / G₂ Չ)-инъектор группы G/ G₂ ;
- с) $X G_o \mathfrak{X} \mathfrak{C}_o$ -инъектор группы G.

Д о к а з а т е л ь с т в о. По лемме 8 X будет $\mathfrak{X}\mathfrak{Y}$ -инъектором подгруппы $G_{\mathfrak{L}}$. Обозначим $R=G_{\mathfrak{L}}$. Пусть $\mathfrak{H}=\mathfrak{R}_{\pi}$ х $\mathfrak{E}_{\pi'}$ – класс конечных π -разложимых групп и $T/R=(G/R)_{\mathfrak{H}}$. По лемме 3 b) $O_{\mathfrak{G}'}(G/R)=1$. Тогда, если $\mathfrak{Y}\subseteq\mathfrak{S}_{\mathfrak{D}}$, то $T/R\in\mathfrak{R}_{\mathfrak{G}}$, ес-

Докажем, что $XT_{\rho} \in \mathfrak{X}\mathfrak{Y}$, то есть что $T_{\rho} X/X \in \mathfrak{Y}$. Ввиду изоморфизма $(T_{\rho} \cap R)X/X \cong T_{\rho} \cap R \ /T_{\rho} \cap X \ \text{получим, что} \ |(T_{\rho} \cap R) \ X : X| = |(T_{\rho} \cap R) : (T_{\rho} \cap X)|$ будет р-числом, которое является делителем р'-числа |R:X|. Отсюда $T_a \cap R = T_a$ \cap X. Теперь из изоморфизма T_ρ X/X \cong $T_\rho/T_\rho \cap$ X = $T_\rho/T_\rho \cap$ R \cong T_ρ R/R = T/R, ввиду $T/R \in \mathfrak{Y}$, получим $XT_{\rho} \in \mathfrak{X}\mathfrak{Y}$, и так как $T = RT_{\rho}$, то по лемме 9 XT_{ρ} будет £9-инъектором подгруппы Т. По теореме 2 всякие два £9-инъекторы подгруппы группы G сопряжены. Поэтому найдется такой £9-инъектор F группы G, для которого $F \cap T = XT_o$. По лемме 10 из [4] C_G (T/R) ⊆ Т. Тогда по лемме 1.20 из [3] X = F_x . Так как $F/X - \rho$ -подгруппа, то F/X содержится в некоторой ρ -холловской подгруппе из $N_G(X)/X$. Так как $N_G(X)$ содержит ρ -холловскую подгруппу G, группы G, то можно считать F/X ⊆ G, X/X. Докажем, что F/X будет \mathfrak{Y} -инъектором группы $G_{\mathfrak{o}}X/X$. Для этого достаточно доказать, что F/X \mathfrak{D} -инъектирует нормальный ряд 1 \subseteq T_{ρ} X/X = $\mathsf{H}_{1}/\mathsf{X} \subseteq \ldots \subseteq \mathsf{H}_{n}/\mathsf{X} = \mathsf{G}_{\rho}$ X/X, факторы которого π -разложимы. Из $XT_{\rho} \subseteq F$ следует, что $F/X \cap H_1/X = T_{\rho}$ X/X будет \mathfrak{P} -максимальной в H_1/X . Пусть для любого фиксированного i=2,3,...,n S/X – \mathfrak{Y} -подгруппа из H/X , содержащая $\mathsf{F} \cap \mathsf{H}/\mathsf{X}$. Тогда $\mathsf{XT}_{\wp} \subseteq \mathsf{S} \cap \mathsf{T} \subseteq \mathsf{X}$ $\mathsf{G}_{\wp} \cap \mathsf{T} \cong \mathsf{M}$ $X(G_{\rho} \cap T) = XT_{\rho}$. Отсюда $(S \cap T)_{x} = X$, и по лемме 1.20 из [3] $S_{x} = X$. Тогда $S \in \mathfrak{X}\mathfrak{Y}$. Так как $F \cap H_i = \mathfrak{X}\mathfrak{Y}$ -максимальна в H_i , то $F \cap H_i = S$. Тогда $F \cap H_i/X = S$ 9-максимальна в H_i /X для любого і. По теореме 1 F/X – 9-инъектор группы G_o X/X , и а) доказано.

- b) Так как $G_{\rho} \cap R = N_{\rho} \cap R = N_{\rho} \cap X$, то $G_{\rho} X \cap R = (G_{\rho} \cap R) X = X$. Тогда G_{ρ} R/R = G_{ρ} XR/R \cong G_{ρ} X/ G_{ρ} X \cap R = G_{ρ} X/X. При изоморфизме G_{ρ} X/X \cong \cong G_{ρ} R/R образом \mathfrak{Y} -инъектора UX/X из G_{ρ} X/X будет \mathfrak{Y} -инъектор UR/R из G_{ρ} R/R. При этом, ввиду сопряженности \mathfrak{Y} -инъекторов группы G/R, UR/R будет \mathfrak{Y} -инъектором подгруппы G_{ρ} R/R тогда и только тогда , когда UR/R $-\mathfrak{Y}$ -инъектор группы G/R. Итак , b) доказано.
 - с) При $\mathfrak{Y} = \mathfrak{E}_{\rho}$ из а) следует, что XG_{ρ} будет $\mathfrak{X}\mathfrak{E}_{\rho}$ -инъектором группы G. Теорема доказана.

ЛИТЕРАТУРА

- Lockett P. On the theory of Fitting classes of finite soluble groups. // Math. Z. 131, 1973. P. 103-115.
- 2. **Сементоеский В.Г.** Инъекторы конечных π-разрешимых групп для произведений и пересечений классов Фиттинга // Веснік ВДУ, 2002, № 1(23). С. 79-84.
- Doerk K., Hawkes T. Finite soluble groups. Berlin-New-York, 1992. P. 564-574.
- Сементовский В.Г. Д-нильпотентные инъекторы конечных групп // Вопросы алгебры 1. Мн., 1985. С. 72-86.

SUMMARY

In this paper a well-known Lockett's result about injector of soluble groups structure for Fitting classes products is transferred to n-soluble groups.

Поступила в редакцию 20.02.2003