УДК 378.147

РЕКОМЕНДАЦИИ МЕЖДУНАРОДНОГО СОЮЗА ТЕОРЕТИЧЕСКОЙ И ПРИКЛАДНОЙ ХИМИИ

А.С. Тихонов

Минск, Белорусский государственный университет

Развитие химической науки состоит как в разработке новых теорий, проведении экспериментов, синтезе новых веществ, так и, что особенно важно при изложении химии, в нахождении четких определений, терминов, единых символов и способов их правильного употребления. Известно, что много дискуссий как в научной, так и в педагогической среде возникает из-за незнания или несовершенства терминологии, касающейся обсуждаемой проблемы. Следовательно, химическая терминология нуждается в постоянном уточнении и обновлении.

Проблема правильного использования химической терминологии и символики в учебной литературе по химии для средней и высшей школы стала еще более актуальной после внедрения в химию в последней трети 20-го века новых физических величин — химическое количества вещества, молярная масса и молярный объем вещества, количественная концентрация вещества в растворе и др. Необходимую помощь в решении этой проблемы оказывают периодически издаваемые Международным союзом теоретической и прикладной химии (IUPAC) справочные руководства (более известные под названием «Зелёная книга»).

Автором доклада представлена систематизация по группам однородных величин, которые опубликованы в 3-м издании данного руководства 2008 года.

Предложена для обсуждения и возможного использования в перспективных учебниках русскоязычная химическая терминология и символика, соответствующая рекомендациям IUPAC.

Таблица 1 — Основные и производные величины, рекомендованные IUPAC к использованию в курсе общей химии [1] *

Наименование	Символ	Определение	Единица СИ
1. Масса атома	$m_{\rm a}, m$		кг
2. Масса молекулы	m, m_{f}		кг
3. Постоянная атомной массы	$m_{ m u}$	$m_{\rm u} = m_{\rm a} (^{12}{\rm C}) / 12$	кг
4. Относительная атомная масса	$A_{\mathbf{r}}$	$A_{\rm r}=m_{\rm a}/m_{\rm u}$	1
5. Относительная молекулярная масса	$M_{ m r}$	$M_{\rm r} = m_{\rm f}/m_{\rm u}$	1
6. Число элементарных объектов	N		1
7. Постоянная Авогадро	N_{Λ}		моль ⁻¹
8. Количество вещества (химическое количество)	n	$n_{\rm B} = N_{\rm B}/N_{\rm A}$	Моль
9. Молярная масса	M	$M_{\rm B} = m_{\rm B}/n_{\rm B}$	кг моль ⁻¹
10. Молярный объём	V_{m}	$V_{\rm m,B} = V_i / n_{\rm B}$	м ³ моль ⁻¹
11. Количественная концентрация	c _B ,[B]	$c_{\rm B} = n_{\rm B}/V$	моль м ⁻³
12. Массовая концентрация	γ, ρ	$\gamma_{\rm B} = m_{\rm B}/V$	кг м ⁻³
13. Числовая концентрация	C, n	$C_{\rm B} = N_{\rm B} / V$	M ⁵
14. Поверхностная концентрация	I'	$I_{\rm B}^* = n_{\rm B} / A$	моль м ⁻²
15. Растворимость	S	$s_{\rm B}$ $c_{\rm B}$ (насыщ. p- p)	моль м ⁻³
16. Моляльность	b	$b - n_{\rm B} / m$ (растворителя)	моль кг ⁻¹
17. Массовая доля	w	$w_{\rm B} = m_{\rm B} / \sum_i m_i$	1
18. Объёмная доля	φ	$\varphi_{\mathrm{B}} = V_{\mathrm{B}} / \sum_{i} V_{i}$	1
19. Мольная доля	<i>x</i> , <i>y</i>	$x_{\rm B} = n_{\rm B} / \sum_i n_i$	1
20. Давление	<i>p</i> , <i>P</i>		Па
21. Парциальное давление	P_{B}	$P_{\mathrm{B}}=Y_{\mathrm{B}}P$	Па
22. Стехиометрический коэффициент	v		1
23. Extent of reaction, advancement	šζ	$\xi = (n_{\rm B} - n_{\rm B,0}) / v_{\rm B}$	МОЛЬ
24. Degree of reaction	α	$\alpha = \xi / \xi_{\text{max}}$	1

^{*}Жирным шрифтом выделены величины, единицы, символы, которые используют в школьном курсе химии.

¹⁻я группа (№№ 1-5) — величины, характеризующие инерционные и гравитационные свойства атомов, молекул, формульных единиц.

При рассмотрении относительных атомных масс химических элементов и относительных молекулярных масс веществ вместо атомной единицы массы (а.е.м.) в настоящее время используют постоянную атомной массы $m_{\rm u}$. С физической точки зрения данные величины, строго говоря, массой не являются, они показывают, во сколько раз масса атома или молекулы больше постоянной атомной массы.

2-я группа (№№6-8) — величины, количественно характеризующие макропорции веществ.

Для атомов, молекул, формульных единиц, составляющих порции веществ, предложен термин «элементарные объекты» (англ. entity). В последующих изданиях учебников для школ определение количества вещества (химического количества) желательно дать на согласно формуле $n_{\rm B}$ $N_{\rm B}/N_{\rm A}$. Данную величину не называют «числом молей». При её употреблении указывают, из каких конкретно элементарных объектов состоит данное вещество, например, химическое количество формульных единиц хлорида натрия и т.п. Химическое количество вещества пропорционально числу элементарных объектов, его составляющих. В этом и состоит физический смысл данной величины.

3-я группа (№№9-10) — величины, отражающие взаимосвязи между массой, объёмом порций твёрдых, жидких и газообразных веществ и химическим количеством этих веществ

При определении молярной массы вещества желательно отказаться от формулировки « молярная масса — это масса порции вещества химическим количеством 1 моль» в пользу « молярная масса — величина, равная отношению массы порции вещества к химическому количеству вещества», т.е. $M_{\rm B} = m_{\rm B}/n_{\rm B}$. Аналогичное замечание относится и к молярному объёму газов $V_{\rm m,B} = V/n_{\rm B}$.

4-я группа (№№11-19) — величины, выражающие количественный состав растворов

В химии используют 4 вида концентрации веществ в растворах – количественную, массовую, числовую, поверхностную. Для растворов, сплавов, смесей применяют также доли – массовую, объёмную, мольную, а также моляльность. Доли веществ и моляльность к концентрациям не относят. Давно не рекомендована к употреблению в химии молярная концентрация эквивалентов вещества, как и само понятие эквивалент.

5-я группа (№№20-24) – прочие величины.

C 1982 года стандартными считают условия: давление $10^5~\Pi$ а, температура 273,15 К

Особое внимание в докладе уделено использованию рекомендованных IUPAC величин в важнейшем разделе химии «Стехиометрия»

Список литературы

1. Cohen, E.R. Quantities, Units and Symbols in Physical Chemistry // E.R. Cohen, T. Cvitas, J.G. Frey, B. Holmstrom, K. Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stocner, H.L. Strauss, M. Takami, and A.J. Thor. – IUPAC Green Book, 3rd Edition, 2nd Printing, IUPAC & RSC Publishing, Cambridge. – 2008.