В.Л. Федотов

Биогеохимия кальция в ландшафте, сформированном на моренных суглинках Белорусского Поозерья

Кальций стоит в ряду химических элементов, играющих важную биологическую роль, — он необходим человеку, животным и растительным организмам.

В природе встречаются ландшафты, компоненты которых (почвы, воды, растения) могут характеризоваться как высоким, так и низким содержанием кальция, а это небезразлично для роста и развития растений, продуктивности животных и здоровья человека. Поэтому углубленное изучение биогеохимии кальция представляет значительный научный и прикладной интерес.

Особенно важно биогеохимическое изучение кальция в условиях ландшафтов лесной зоны. Господствующие здесь условия промывного водного режима, кислой реакции среды предрасполагают активную миграцию кальция в ландшафте, делают его дефицитным. Велико влияние кальция на геохимическую ситуацию в ландшафтах — его углекислые соли и основания воздействуют на реакцию почвенного раствора на подвижность многих химических элементов в почве, на направленность почвообразовательных процессов.

Поведение кальция в природе во многом зависит от состава и свойств исходной горной породы, на которой сформирован ландшафт, его почвы.

Исследования имели целью – изучить закономерности содержания, миграции и аккумуляции кальция в компонентах (породы, почвы, растения, воды) ландшафта, сформированного на моренносуглинистых отложениях Белорусского Поозерья.

Моренные суглинки последнего (валдайского) оледенения распространены в основном в северной и западной частях Беларуси. Площадь почв, развивающихся на них, составляет 1,5 млн. га

Вопросы биогеохимии кальция в условиях моренносуглинистого литогенеза Белорусского Поозерья изучены еще слабо, особенно, если говорить об углубленном комплексном подходе с изучением различных форм содержания кальция, с использованием приемов геохимического сопряжения. Отдельные отрывочные сведения по содержанию кальция в природных объектах приведены в [1-4].

Для исследования был выбран наиболее крупный и типичный для севера республики массив моренных суглинков в Сенненском районе, вблизи озера Сарро, д. Павловичи. В указанном месте были проложены геоморфологические профили, охватывающие элювиальные (водораздел), транзитные (склоны), супераквальные (понижения) и аквальные (водные) элементарные [5] ландшафты, сопряжение которых и составляло геохимический ландшафт на моренносуглинистых отложениях. В каждом элементарном ландшафте для химических анализов были взяты пробы фитомассы, почв. природных вод, порода.

Взятие проб перечисленных объектов исследований, подготовка их к химическим анализам, выполнение самих анализов проводились с учетом общеприня-

тых методических требований [5, 6]. Для определения кальция в различных вытяжках (NH₄Cl, H₂O) применяли объемный трилонометрический метод.

Ниже приведены результаты собственных исследований биогеохимии кальция в объектах изученного ландшафта.

Моренные суглинки Моренносуглинистые отложения севера республики обязаны своим происхождением последнему (валдайскому) оледенению. Будучи сравнительно молодыми геологическими образованиями моренные суглинки Поозерья по сравнению с аналогичными отложениями остальной части территории Беларуси менее промыты, менее выщелочены, с меньшей проявленностью процессов гипергенеза, т.е. логично предположить и их геохимическое своеобразие.

Проведенное нами изучение гранулометрического состава показало, что моренные суглинки представляют собой закономерное сочетание обломочных частиц различного размера: от тонкодисперсных частиц до крупных валунов. На глубине около 2-х метров моренные суглинки по механическому составу являют собой среднесуглинистые образования, содержащие 31,2—33,7% частиц < 0.01 мм, в т.ч. 13,8—15,1% ила (< 0,001 мм). Среди других механических фракций повышенными количествами выделяется фракция мелкого песка — 30,0—36,2%; меньше — крупной пыли — 13,3—18,4%. Вариации состава связаны с различными фациальными особенностями формирования морен, а также с различной степенью их гипергенного преобразования.

В пределах исследованного нами региона моренные суглинки (на глубине ~ 2 м) карбонатны, обильно вскипают от соляной кислоты; рН солевой вытяжки 7,5-7.6.

Данные наших анализов показали, что валовое содержание кальция (Ca⁺⁺) в моренных суглинках Белорусского Поозерья изменяется от 7,50 до 10,65% (табл. 1). Главными носителями этого щелочноземельного элемента являются карбонаты. В небольших количествах кальций фиксируется в роговых обманках, эпидотах, пироксенах и в других минералах.

Содержание СаО в моренных отложениях различных районов Беларуси колеблется по [3] от 0.21 до 19,27%, т.е. наши данные входят в указанный предел колебаний кальция в породах.

Наряду с общим содержанием кальция, мы определяли также обменный (вытяжка I н NH₄CI) и воднорастворимый кальций; эти показатели дают информацию о формах содержания кальция в породах, о его геохимической подвижности.

Обменный кальций — это кальций поглощающего комплекса глинистых минералов. Его, по нашим данным, содержится в моренных суглинках 0,62—0,72% (или это составляет 7—11% от общего содержания кальция в породе).

Очень мало экстрагируется кальция из моренных суглинков дистиллированной водой — от 0,005 до 1,015%: по-видимому, эта форма кальция обязана в основном бикарбонату и хлориду кальция. Нами отмечены высокие количества воднорастворимого кальция в суглинках супераквальных ландшафтов

Таким образом, соотношение валового, обменного и воднорастворимого кальция в исследованных моренных суглинках Белорусского Поозерья выглядит в среднем как соотношение 100 : 10 : 0,5.

Природные воды. Исследовалась вода озера Сарро, а также вода со дна почвенных разрезов дерновых глееватых и глеевых, а также торфяноглеевых почв и колодцев (д Павловичи).

Как показали наши исследования, природные воды в условиях моренносуглинистых отложений имеют слабощелочную реакцию (рН 7,1—8.0); сухой остаток солей составляет в воде почвенных разрезов 408 — 718 мг/л; в озере Сарро — 185 мг/л. Отношение прокаленного остатка солей к сухому (51—67%) говорит о значительном содержании в ней органики, по-видимому, в форме гуминовых кислот.

Содержание Са⁺⁺ в воде оказалось различным: в озере Сарро 37 мг/л, в колодцах — 102—132 мг/л, со дна почвенных разрезов — 73—92 мг/л. Данные свидетельствуют о высоких количествах этого катиона в природных водах, дренирующих моренные суглинки Белорусского Поозерья Рассчитанные нами коэффициенты водной миграции (они в зависимости от источника воды изменялись от 2 до 4) свидетельствуют о сильной миграции кальция в исследуемом ландшафте [7].

Почвы. В биогеохимической цепи миграции и аккумуляции химических элементов важным звеном являются почвы.

Геоморфологические профили, проложенные нами, охватывали все типы почв, которые закономерно сменяли друг друга, начиная с водораздела и кончая понижением. На плакорных участках были дерново-подзолистые, на склонах — дерново-подзолистые смытые почвы; супераквальный элементарный ландшафт представлен дерновыми почвами различной степени заболоченности, а также торфяно-болотными почвами.

Содержание гумуса в перегнойном горизонте дерново-подзолистых почв элювиального ландшафта составляет 1,36—2.18%, с резким падением показателей в нижерасположенных генетических горизонтах. Реакция этих почв чаще среднекислая, хотя показатели рН колеблются в широком диапазоне — от 4,1 до 6,2. Емкость обменного поглощения катионов описываемых почв чаще 7—9 мг-экв./100 г, а степень насыщенности основаниями (для A₁) меньше 74%.

Ниже по геоморфологическому профилю расположены почвы транзитного ландшафта. Это – почвы склонов со смытым пахотным горизонтом; распахивается иллювиальный горизонт, поэтому пахотный слой содержит мало гумуса и имеет серовато-бурый цвет. Профиль этих почв маломощный — практически с метровой глубины уже идет карбонатный моренный суглинок — материнская порода.

Почвы исследованного нами элементарного супераквального ландшаф-та – это дерновые заболоченные и торфяно-болотные.

Дерновые заболоченные почвы отличаются повышенной гумусированностью перегнойного горизонта (5,17%), слабокислой реакцией (рН 5,8), значительной емкостью обменного поглощения катионов (до 30,2 мг-экв/100 г) и высокой степенью насыщенности их основаниями (> 85%).

Как составляющую супераквального ландшафта мы изучали и торфяноболотные почвы. Слой торфа в указанных почвах небольшой, как правило, меньше метра, среднеразложившийся. чаще гипново-осоковый, слабокислый, низинный.

Теперь о содержании кальция в почвах. Как показали результаты наших анализов, валовые количества этого щелочно-земельного элемента в различных генетических горизонтах ($A_{1,...}A_{nax}$, A_{2} , B_{1} , T) изменяются от 0,45 до 4,0% (табл.1). Перегнойные горизонты почв элювиального ландшафта содержат кальция 0,60–0,81%; в подзолистых горизонтах отмечается уменьшение показателей, а в иллювиальных — их увеличение до 1,0–1,65%, т.е. содержание кальция довольно четко дифференцировано по вертикальному почвенному профилю как результат проявления биогеохимических процессов, вызывающих миграцию кальция из верхней части почвы и накопление его в иллювиальных горизонтах.

Нами выявлено, что почвы супераквального ландшафта в своих перегнойных горизонтах накапливают примерно в 2–3 раза больше кальция по сравнению с почвами водоразделов. Это связано с расположением гидроморфных почв в де-

прессиях рельефа и проявлением процессов геохимического сопряжения состава почв. с аккумулирующей ролью естественной растительности.

Отношение содержания кальция в перегнойных горизонтах (элювиальных и супераквальных ландшафтов) к содержанию его в материнской породе составляет 0.1–0.3, то есть накопление кальция в верхней части почв за счет биогенного фактора значительно уступает потери этого элемента за счет выщелачивания.

Содержание обменнопоглощенного кальция в почвах колеблется в довольно широких пределах — от 0,015 до 2.48% и достаточно четко дифференцировано по элементарным ландшафтам и генетическим горизонтам (табл. 1, 2).

Таблица 1

Содержание кальция в почвах различных элементарных ландшафтов

		Глубина	Кальций (Ca ^{**}), %				
№ почвенно- го разреза	Горизонт	взятия образца см	валовой	і обменн ый	водно- растворимый		
		а) элюв	иальный				
	A1	7–20	0,60	0.018	0,0006		
0	A_2	30-40	0,45	0,007	0,0002		
II.	В	70–80	1,65	0.145	0,0092		
	B_c	120-130	8,30	0.56	0.0100		
11	С	190-200	11,25	0.57	0.0090		
II	Anax	5–15	0.81	0.043	0.0044		
н	A ₂	23-28	0.60	0.031	0.0026		
P*	В	47-57	0,99	0.037	0.0078		
P	Bc	90-100	10,95	0,56	0,0110		
u	С	190-200	7.65	_	-		
		б) тран	нзитный				
12	Anax	3-13	0.81	0.063	0.0052		
n	В	37-17	1.20	0.137	0.0066		
н	C	160-170	9.00	0 619	0,0155		
		в) супера	аквальный				
5	A.	6-20	1,74	0.35	0.0076		
11	A₁B	25-35	1.50	0,21	0.0042		
rı .	B∢	45-55	1,40	0.09	0,0038		
н	B ₂ g	85-98	1,20	0.163	0.0050		
U	C	180-190	7,50	0.71	0.0056		
14	A.	8-18	2.25	0.43	0,0252		
	B₁g	40-50	1.35	0,21	0.0070		
61	B ₂ g	90–100	10.35	0,75	0,0136		
tt.	C	180-190	10.65	0,72	0.0148		
7	T ₁	20-30	3,20	2,48	0,1860		
n.	T ₂	70–80	4,00	2,48	0,0560		
11	Ğ	100-110	9,00	0.22	0,0120		

Минимум обменного кальция обнаруживают подзолистые горизонты: отмечается обогащение им иллювиальных горизонтов, максимум же — в карбонатных суглинках.

Как видно из таблицы 2, почвы супераквального ландшафта в 4–5 раз больше содержат обменного кальция по сравнению с почвами элювиального и транзитного ландшафтов. Особенно много экстрагируется кальция (до 2,48%) в вытяжку хлористого аммония из торфов.

Биометрическая характеристика содержания различных форм кальция в перегнойных горизонтах почв, %

HEIM		Обменнопог	лощенн	ый Са	Воднорастворимый Са			
	Число проб	M lim	± m	Y	M lim	±m	Υ	
Элюви- альный	14	<u>0,053</u> 0,018–0,105	0,004	75	0,002 0,0006–0,0044	0,0002	80	
Тран- зитный	10	0,04 <u>3</u> 0,015–0,073	0,003	82	0,002 0,0004–0.0052	0, 0 006	110	
Супер- аква- льный	19	<u>0,267</u> 0,025–1,1 9 5	0,08	160	0,007 0,0012-0,252	0,0009	140	

Показатели содержания воднорастворимого кальция в почвах невелики и составляют в среднем для почв элювиального и транзитного ландшафтов 0,002%. А для почв супераквального ландшафта 0,007% (табл. 2). Отмечается широкое колебание показателей (от 0,0004 до 0,025%). Об этом свидетельствуют и сравнительно высокие коэффициенты варьирования – 80–140%.

Закономерности распределения воднорастворимого кальция по генетическим горизонтам почв в общем аналогичны дифференциации обменного кальция.

Соотношение содержания валового, обменного и воднорастворимого кальция в перегнойных горизонтах почв элювиального ландшафта выглядит как отношение 100:7:0,3; в супераквальных ландшафтах оно несколько уже – 100:12:0,4, что связано с активной миграцией наиболее подвижных форм кальция с водораздельных участков, со склонов

Растительность. Содержание кальция мы изучали в естественной (древесной и травянистой) растительности различных элементарных ландшафтов

В условиях элювиального ландшафта нами были взяты и исследованы пробы растительной массы листьев и ветвей ольхи черной, ассоциаций: злаковой, злаково-бобовой, злаково-разнотравной и др. Как видно из таблицы 3, среднее содержание кальция в пробах фитомассы этого ландшафта составляет 0,15% при колебании показателей от 0,37 до 1,04; обнаружено относительно высокое накопление кальция листьями ольхи — до 1,04%. Средняя зольность растений водоразделительных участков невысокая — 5,2%.

В условиях супераквальных участков исследовались как пробы различных ассоциаций (злаково-осоковая, осоково-вейниковая, разнотравно-осоковая и др.), так и отдельные виды (гипнум. осока острая, листья и ветви ивы пурпурной, ольхи серой).

Установлено, что растительность супераквального ландшафта по сравнению с растениями водоразделов отличается большей зольностью (7,0%) и более высоким содержанием кальция — в среднем 0,68%. Различия статистически достоверны. Среди растений супераквального ландшафта сравнительно повышенным накоплением кальция (> 1,0%) выделяется хвощ болотный, гипнум, погремок.

Следует указать на невысокий коэффициент варьирования показателей накопления кальция в растениях супераквального ландшафта — 41%.

Нами исследовались также растения аквального ландшафта на примере макрофитов озера Сарро. Были взяты пробы фитомассы шелковника жестко-

листного, элодеи канадской, рдеста пронзеннолистного, камыша озерного, тростника обыкновенного, харовых водорослей.

Прежде всего следует отметить повышенную зольность макрофитов – в среднем 16,1% (табл. 3).

Таблица 3 Содержание кальция (Ca⁺⁺) в растениях, % на абсолютно сухое вещество

Элементарный ландшафт	Средняя К-во золь- ность.%			lim	М	± m	Y,%
Элювиальный	5.2	9		0,37-1,04	0,51	0,02	52
Супераквальный	7,0	23	1	0,26-1,57	0,68	0.06	41
Аквальный	16.1	8		0,15-7,95	3,2	0.18	135

Различные виды водных растений существенно отличаются по содержанию кальция — мало этого элемента накапливается в тростнике обыкновенном (0,16%); относительно богаты кальцием рдест пронзеннолистный, элодея канадская, но больше всего кальция в харовых водорослях — 9,5%.

Таким образом, растения различных элементарных ландшафтов в условиях моренносуглинистых отложений севера Беларуси существенно отличаются по накоплению кальция. Это следует рассматривать, во-первых, как результат действия экологического фактора С другой стороны, различия химического состава растений отдельного элементарного ландшафта связаны в большей мере с видовой принадлежностью растения.

Высчитанные коэффициенты биологического поглощения по [7] изменяются от 5 до 15, то есть в условиях геохимического ландшафта, формирующегося на моренносуглинистых отложениях Белорусского Поозерья, кальций — сильно накопляемый элемент, а значит и велика роль растительности в биогеохимии кальция: макрофиты по существу являются своеобразным барьером на пути миграции кальция в ландшафте.

Таким образом, выполненные исследования по определению содержания кальция в природных объектах ландшафта, сформированного на моренносуглинистых отложениях севера Беларуси, выявили его биогеохимическое своеобразие. Почвообразующая порода являет собой средние пылевато-песчанистые суглинки, карбонатные, с высоким (до 10,65%) содержанием кальция; на долю подвижных форм кальция приходится около 10% от его валовых количеств.

Обогащенность природных вод, дренирующих почвы и моренные суглинки, кальцием следует рассматривать как результат высокой подвижности его в исследованном ландшафте: этот фактор может оказывать блокирующее влияние на поступление в растения таких химических элементов, с которыми кальций антагонистичен — калий, марганец, железо, бор. А использование жестких вод человеком может вызвать развитие мочекаменной болезни.

Содержание кальция (валового и подвижного) в почвах довольно четко дифференцировано как по генетическим горизонтам, так и по элементарным ландшафтам, отражая проявление элювиально-иллювиальных почвообразовательных процессов и процессов геохимического сопряжения состава объектов Накопление кальция в гумусовых горизонтах почв за счет биогенного фактора значительно уступает потери этого элемента за счет выщелачивания.

Отдельные участки почв элювиального элементарного ландшафта содержат обменного кальция ниже критического порога обеспеченности кальцием (~ 20-30 мг/100 г), т.е. явно нуждаются в химической мелиорации — известковании. В целом растительность исследованного ландшафта характеризуется повышенным накоплением кальция особенно растения супераквального и аквального элементарного ландшафта; в условиях гомогенности среды произрастания решающее влияние на химический состав оказывает видовая принадлежность растения. Растения депрессионных форм рельефа могут квалифицироваться в качестве своеобразного барьера на пути миграции кальция в ландшафте.

ЛИТЕРАТУРА

- 1. Беус А.А. и др. Геохимия окружающей среды. М. 1976. С. 248.
- 2. Ильин В.Б. Элементный химический состав растений. М., 1985. С. 129.
- 3. *Лукашов К.И.* Геохимические провинции покровных отложений БССР. Мн., 1969. С. 430.
- 4. **Почвы Белорусской ССР** / Под ред. **Т.Н. Кулаковской, П.П. Рогового, Н.И. Смеяна.** Мн., 1974. С. 312.
- 5. *Глазовская М.А.* Геохимические основы типологии исследований природных ландшафтов. М., 1964. С. 230.
- 6. Аринушкина Е.В. Руководство по химическому анализу почв. М., 1970. С. 487.
- 7. **Перельман А.И.** Геохимия ландшафтов М., 1975. С. 341.

SUMMARY

This article deals with the quantative features of calcium content and its migration across the landscape formed in the ice loams.