И.Ю. Трубников

Обратимость функциональных операторов в пространстве L_p -сечений

Расслоением называется тройка вида $\xi = (E, M, p)$, где E и M — топологические пространства, а $p: E \to M$ — непрерывное отображение. Пространство E называется томальным пространством расслоения ξ , пространство M — его базой, а отображение p — проекцией. Прообраз $p^{-1}(x)$ точки $x \in M$ называется слоем $\xi(x)$ расслоения ξ над точкой x.

Подрасслоением расслоения $\xi=(E,M,p)$ называется подпространство $E_1 \subset E$, которое само является расслоением над M с проекцией p. Если слой $\xi(x)=p^{-1}(x)$ над каждой точкой $x\in M$ снабжен структурой конечномерного векторного пространства, то расслоение называется векторным. Размерностью векторного расслоения называется размерность слоя $\xi(x)$. В дальнейшем будут рассматриваться только векторные расслоения со слоем $\xi(x)=C^n$, т.е. комплексные векторные расслоения.

Подмножество K расслоения ξ называется векториальным, если для любого x множество $K_x := K \cap \xi(x)$ является векторным подпространством в слое $\xi(x)$. Векториальное множество, у которого подпространства K_x непрерывно зависят от точки x, является подрасслоением.

Говорят, что расслоение $\xi=(E,M,p)$ разлагается в *прямую сумму* (сумму Уитни) подрасслоений ξ_1 и ξ_2 (обозначается $\xi=\xi_1\oplus\xi_2$), если каждый вектор y из слоя $\xi(x)$ разлагается единственным образом в сумму $y=y_1+y_2$, где $y_1\in\xi_1(x),y_2\in\xi_2(x)$.

Пример 1. Примером векторного расслоения является расслоениепроизведение $\xi = M \times C^n$ с естественной проекцией p(x,y) = x.

Сечением расслоения $\xi=(E,M,p)$ называется такое непрерывное отображение $s:M\to E$, что $p\circ s=id_M$. Непрерывные сечения расслоения ξ образуют векторное пространство $\Gamma(\xi)$. Если в каждом слое $\xi(x)$ задана норма, то на $\Gamma(\xi)$ возникает естественная норма $\|u\|=\sup\|u(x)\|_x$, определенная на ограниченных сечениях.

Гомоморфизмом из $\xi_1=(E_1,M,p_1)$ в $\xi_2=(E_2,M,p_2)$ называется непрерывное отображение $\varphi:E_1\to E_2$ такое, что $p_1=p_2\circ\varphi$, т.е. слой

 $\xi_1(x)$ переходит в слой $\xi_2(x)$ и порожденное отображение слоев $\varphi_x:\xi_1(x)\to \xi_2(x)$ линейно. Совокупность всех гомоморфизмов $\varphi:\xi\to \xi$ образует алгебру, обозначаемую $\mathrm{HOM}\xi$.

Если через $\mathrm{Hom}\xi$ обозначить n^2 -мерное расслоение над M, слоем которого является пространство $\mathrm{Hom}\xi(x)$ линейных отображений векторного пространства $\xi(x)$ в себя, то алгебра $\mathrm{HOM}\xi$ изоморфна алгебре $\Gamma(\mathrm{Hom}\xi)$ непрерывных сечений расслоения $\mathrm{Hom}\xi$.

Гомоморфизм φ называется *изоморфизмом*, если для него существует обратный гомоморфизм. Изоморфизм $\varphi: \xi \to \xi$ называется автоморфизмом. Расслоение, изоморфное расслоению-произведению, называется *тривиальным*.

Пусть F — топологическое пространство. Расслоение $\xi = (E, M, p)$ называется локально тривиальным со слоем F, если для любой точки $x \in M$ существует такая окрестность U, что расслоение ξ над U тривиально. Это значит, что существует гомеоморфизм $\phi : \xi(U) \to U \times F$, коммутирующий с проектором p.

Пусть $\{U_j\}$ — такое открытое покрытие M , что ограничения расслоения ξ на U_j являются тривиальными, и пусть ϕ_j — соответствующие гомеоморфизмы. Тогда определены отображения $\phi_{j,i}=\phi_j\circ\phi_i^{-1},\phi_{j,i}(x,\xi)=(x,g_x(\xi)),\xi\in F,$ где g_x — гомеоморфизмы слоя F. Такой набор функций склейки (перехода) определяет векторное (и не только векторное) расслоение ξ с точностью до изоморфизма ([1]).

Обычно полагают, что гомеоморфизмы g_x не произвольны, а принадлежат некоторой топологической подгруппе G группы $\mathrm{Homeo}(F)$ всех гомеоморфизмов пространства F . Группа G называется $\mathit{структурной аруппой расслоения}$.

Рассмотрим локально тривиальное векторное расслоение ξ со слоем C^n и базой (M,α,μ) , где M — некоторое компактное пространство, на котором группа целых чисел Z действует с помощью гомеоморфизма $\alpha:M\to M,\mu$ — мера на M, квазиинвариантная относительно α , причем $\mathrm{supp}\,\mu=M$. Квазиинвариантность меры μ означает, что существует производная Радона—Никодима $\gamma(x)=\frac{d\,\mu_\alpha}{d\,\mu}$ меры μ_α по мере μ , где мера μ_α определяется следующим образом: $\mu_\alpha(E):=\mu(\alpha^{-1}(E)), E\subset M$. Действие группы Z на M предполагается mолологически свободным, т.е. множество

Непрерывное отображение $\beta: \xi \to \xi$ называется линейным расширением

непериодических точек гомеоморфизма lpha всюду плотно в пространстве M.

отображения $\alpha: M \to M$, если при отображении β слой $\xi(x)$ линейно отображается в слой $\xi(\alpha(x))$.

Пусть в каждом слое $\xi(x)$ задана норма, непрерывно зависящая от точки x. Пространство $L_p(\xi)$ определим как пополнение пространства $\Gamma(\xi)$ непрерывных сечений по норме

$$|u| = \left(\int_{M} ||u(x)||_{x}^{p} d\mu\right)^{\frac{1}{p}}, p \ge 1.$$

Пусть $A=\mathrm{HOM}\,\xi$ — алгебра гомоморфизмов расслоения ξ . Каждому элементу a алгебры A ставится в соответствие ограниченный оператор $a:L_p(\xi)\to L_p(\xi)$, являющийся умножением на a, т.е. переводящий сечение u(x) в сечение a(x)u(x), причем $\parallel a\parallel = \max_{x\in \mathcal{X}} \parallel a(x)\parallel_x$.

Будем считать, что задано некоторое линейное расширение $\theta: \xi \to \xi$ отображения α , переводящее слой $\xi(x)$ в слой $\xi(\alpha(x))$ по правилу:

$$\theta: (x, y) \to (\alpha(x), \theta(x)y), \quad x \in M, \quad y \in \xi(x) = \mathbb{C}^n.$$
 (1)

Оператор T представления группы Z в пространстве $L_p(\xi)$ задается на непрерывных сечениях формулой:

$$(Tu)(x) = \left(\frac{d\mu_{\alpha}}{d\mu}\right)^{\frac{1}{p}} \theta \circ u(\alpha^{-1}(x)). \tag{2}$$

Операторы, представленные с помощью конечных сумм вида $\sum a_k T^k, a_k \in A$, обычно называются функциональными операторами. Множество таких конечных сумм обозначим через B^0 .

Если расслоение ξ тривиально, то действие на ξ можно задать формулой $\theta(x,y) = (\alpha(x),y), \quad x \in M, y \in \mathbb{C}^n$, и тогда оператор T есть оператор взвешенного сдвига в пространстве векторнозначных функций.

Нетрудно заметить, что для оператора T выполнено свойство $TaT^{-1}=\theta\circ a\circ \theta^{-1}\in A\ \forall a\in A,$ т.е. отображение $TaT^{-1}=TaT^{-1}$ есть автоморфизм алгебры A.

Линейное расширение eta называется $\emph{гиперболическим}$, если существуют инвариантные относительно eta непрерывные подрасслоения ξ^s, ξ^u и постоянные $c_s, c_u > 0$ и $0 < \gamma_s, \gamma_u < 1$, такие, что $\xi = \xi^s \oplus \xi^u$ и

$$\|\beta^{m}(y)\| \le c_{s}\gamma_{s}^{m}\|y\|, y \in \xi^{s}, m = 1, 2, ...,$$
 (3)

$$\|\beta^{m}(y)\| \ge c_{n}\gamma_{n}^{-m}\|y\|, y \in \xi^{u}, m = 1, 2, ...$$
 (4)

 ξ^s называют *сжимающимся*, ξ^u – *растягивающимся* подрасслоением.

Теорема 1. Пусть $A=\mathrm{HOM}\xi$ — алгебра гомоморфизмов векторного расслоения ξ , группа Z действует на компактном пространстве M топологически свободно, а элемент $a_0\in A$ обратим. Оператор $b=a_0+a_1T\colon \ L_p(\xi)\to L_p(\xi)$ обратим тогда и только тогда, когда ассоциированное с ним линейное расширение

 $eta(x,y)=(lpha(x),a_0^{-1}(x)a_1(x) heta(x,y)), x\in M, y\in \xi(x),$ является гиперболическим.

Замечание. Случай, когда вместо пространства $L_p(\xi)$ рассматривается пространство $\Gamma(\xi)$ непрерывных или $L_\infty(\xi)$ ограниченных сечений, носит классический характер и исследован в [2, 3]. Рассмотрен также случай, когда в качестве пространства сечений берется $L_2(\xi)$, но его доказательство опирается на существенные результаты теории C^* -алгебр, в частности, на теорему об изоморфизме [4, 5]. Главная трудность заключается в том, что при $p \neq 2$ алгебра операторов в $L_p(\xi)$ не является C^* -алгеброй, и к ней нельзя применить стандартные конструкции этой теории.

Доказательство. Достаточность. Оператор b можно представить в виде $b=a_0(I+D)$, где $D=a_0^{-1}a_1T$, поэтому достаточно установить обратимость оператора I+D. Пусть ξ^s и ξ^u — сжимающееся и растягивающееся подрасслоения расслоения ξ , а p_s — гомоморфизм ξ , действующий на слое $\xi(x)$ как проектор на $\xi^s(x)$ параллельно $\xi^u(x)$. Инвариантность подрасслоений относительно β означает, что $p_s\circ\beta=\beta\circ p_s$.

Оператор $P_s: L_p(\xi) \to L_p(\xi), (P_s u)(x) = p_s(u(x))$ является проектором и осуществляет разложение $L_p(\xi)$ в прямую сумму подпространств $L_p^s = L_p(\xi^s)$ и $L_p^u = L_p(\xi^u)$. Из равенства $p_s \circ \beta = \beta \circ p_s$ следует, что $P_s D = D P_s$ и D при разложении $L_p(\xi) = L_p^s \oplus L_p^u$ разлагается в прямую сумму операторов D_s и $D_u: D = D_s \oplus D_u$. Из условия (3) следует, что $\|D_s^m\| \le c_s \gamma_s^m, m=1,2,...$, откуда спектральный радиус $r(D_s) < 1$ и оператор $I+D_s$ обратим. Аналогично $r(D_u^{-1}) < 1$ и $I+D_u$ обратим. Значит, обратимы операторы I+D и $b=a_0(I+D)$.

Heoбxoдимость. Из обратимости оператора $b=a_0+a_1T$ следует обратимость оператора I+D.

Лемма 1. ([6]). Пусть λ принадлежит спектру $\sigma(D)$ оператора D, а $|\zeta|=1$. Тогда $\zeta\lambda\in\sigma(D)$, т.е. спектр оператора D инвариантен относительно вращений вокруг точки 0.

Из леммы 1 следует, что определен оператор

$$P = \frac{1}{\pi i} \int_{|\mathcal{U}| - 1} (\lambda I - D)^{-1} d\lambda, \tag{5}$$

являющийся проектором и осуществляющий разложение Рисса оператора D в прямую сумму операторов D_s и D_u таких, что спектр $\sigma(D_s)$ лежит внутри окружности $|\lambda|=1$, а спектр $\sigma(D_u)$ вне этой окружности.

Лемма 2. Если $u \in L^h_p(\xi)$ и $\rho \in L_\infty(M,\mu)$, то $\rho u \in L^h_p(\xi), h = s, u$.

Доказательство. Если $u\in L_p^s(\xi)$, то $\|D^mu\|\to 0$ при $m\to\infty$. Если $u\in L_p^u(\xi)$, $u\neq 0$, то $\|D^mu\|\to\infty$ при $m\to\infty$. Поэтому $L_p^s(\xi)=\{u\in L_p(\xi): D^mu\to\infty\}$. Если $\rho\in L_\infty(M,\mu)$, то $\|D^m\rho u\|=\|\hat{T}(\rho)D^mu\|\le \|\rho\|\cdot\|D^mu\|\to 0$, т.е. $\rho u\in L_p^s(\xi)$. Аналогично доказывается второе утверждение леммы. \square

Будем считать, что пространство $L_p(\xi)$ севарабельно, т.е. существует счетное, всюду плотное множество сечений $\{v_j\}_{j=1}^\infty$. В этом случае векториальные множества ξ^s и ξ^u определяются так:

$$\xi^{s}(x) = \overline{\{v_{j}^{s}(x), 1 \leq j \leq \infty\}}, \qquad \xi^{u}(x) = \overline{\{v_{j}^{u}(x), 1 \leq j \leq \infty\}}.$$

Лемма 3. $L_p(\xi^s) = L_p^s(\xi), L_p(\xi^u) = L_p^u(\xi)$.

Доказательство. Докажем включения: " \supset ". Пусть $u \in L_p^s(\xi)$. Существует последовательность $v_{j_m}: \mid \mid u-v_{j_m}\mid\mid_{L_p} \to 0$. Из этой последовательности можно выделить подпоследовательность $v_{j_{m_k}}$, сходящуюся к u для почти всех $x \in M$. Значит, $u(x) \in \xi^s(x)$ для почти всех x, т.е. $u \in L_p(\xi^s)$.

" \subset ". Пусть $u\in L_p(\xi^s)$. Существует последовательность v_{i_m} , почти всюду сходящаяся к u(x). Покажем, что $\|u-v_{i_m}\|_{L_p} \to 0$. По свойству абсолютной непрерывности интеграла Лебега выберем $\delta>0$ так, чтобы выполнялось неравенство $\int\limits_E \|u(x)-v_{i_m}(x)\|^p \ d\mu < \frac{\varepsilon^p}{2},$ если $\mu(E)<\delta$. Воспользуемся теоремой Егорова: по $\delta>0$ найдем множество $M_\delta\subset M$ такое, что $\mu(M\setminus M_\delta)<\delta$ и на M_δ последовательность v_{i_m} сходится равномерно. Выберем номер m_ε так, чтобы для $m>m_\varepsilon$ выполнялось

 $\sup_{x\in M_\delta} \|u(x)-v_{i_m}(x)\|_x < \frac{\varepsilon}{2\mu(M)}. \ \text{Тогда для} \ m > m_\varepsilon \ \text{имеем}$

$$\left(\int_{M} \|u(x)-v_{i_{m}}(x)\|^{p} d\mu\right)^{\frac{1}{p}} \leq \varepsilon. \qquad \Box$$

Лемма 4. Векторное расслоение ξ разлагается в прямую сумму $\xi = \xi^s \oplus \xi^u$ в том смысле, что $\xi(x) = \xi^s(x) \oplus \xi^u(x)$ для почти всех $x \in M$. Векториальные множества ξ^s и ξ^u инвариантны относительно линейного расширения β .

Доказательство. Подпространства $\xi^s(x)$ и $\xi^u(x)$ порождают $\xi(x)$ для почти всех $x\in M$. Покажем, что $\xi^s\cap \xi^u=\{0\}$. Предположим, что это не так. Тогда существует сечение $u\neq 0$ такое, что $u\in L_p(\xi^s)$ и $u\in L_p(\xi^u)$. Но по лемме 3 $u\in L_p^s(\xi)$ и $u\in L_p^u(\xi)$. Так как $L_p^s(\xi)\cap L_p^u(\xi)=\{0\}$, то u(x)=0 почти всюду. Противоречие.

Инвариантность ξ^s и ξ^u относительно β следует из инвариантности $L^s_p(\xi)$ и $L^u_p(\xi)$ относительно оператора D. \square

Из того, что спектральный радиус $r(D_s) < 1$ следует, что существует норма $\|\cdot\|_0$ в $L_p(\xi)$, эквивалентная исходной, причем $\|D_s\|_0 < 1$. Тогда $\|D^m v^s\| = \|D_s^m v^s\| \le \|D_s^m\| \|v^s\| \le c_s \|D_s^m\|_0 \|v^s\| \le c_s \|D_s\|_0^m \|v^s\| = c_s \gamma_s^m \|v^s\|,$ где $\gamma_s = \|D_s\|_0 < 1$. Аналогично, $\|D^m v^u\| \ge c_u \gamma_u^{-m} \|v^u\|, 0 < \gamma_u < 1$.

Эти неравенства означают, в частности, выполнение условий (3) и (4) гиперболичности линейного расширения β .

Предположим, что подрасслоения ξ^s и ξ^u не являются непрерывными.

Пемма 5. Пусть векториальное множество ξ^s разрывно в точке $x_0 \in M$. Существуют такие $K_s > 0, K_u > 0$, что для любой окрестности U_{x_0} найдется сечение $v \in L_p(\xi), v \neq 0, suppv \subset U_{x_0}$, для которого справедливы следующие неравенства: $\parallel v^s \parallel < K_s \parallel v^u \parallel, \parallel v^u \parallel > K_u \parallel v \parallel$.

 \mathcal{L} о к а з а т е л ь с т в о. Разрывность ξ^s в точке x_0 означает, что существует число d>0 , что для любого $\varepsilon>0$ в любой окрестности U_{x_0} можно выделить два подмножества положительной меры V_1 и V_2 , такие, что $\exists y_0 \in \xi^s(x_0): \forall x \in V_2 \quad \exists y_x \in \xi(x),$ что $\parallel y_0 \parallel = \parallel y_x \parallel = 1$ и

$$||y_0 - y_r||_r \le \varepsilon, \quad ||y_r - h||_r \ge d, \forall h \in \xi^s(x). \tag{6}$$

Если в качестве h взять y_x^s , то получим $\|y_x^u\|_x > d$. Определим сечение

v(x) следующим образом: $v(x) = \begin{cases} y_x, & x \in V_2, \\ 0, & x \notin V_2. \end{cases}$ Имеем:

$$\|v\| = \left(\int\limits_{V_2} \|v(x)\|^p d\mu\right)^{\frac{1}{p}} = \left[\mu(V_2)\right]^{\frac{1}{p}}$$
 where $\|v\| = \left[\mu(V_2)\right]^{\frac{1}{p}}$ is

 $||v^{u}|| > d[\mu(V_{2})]^{\frac{1}{p}} = d||v|| \ge d||v^{s}|| - ||v^{u}|| \ge d(||v^{s}|| - ||v^{u}||),$

откуда $\|v^s\| < \frac{d+1}{d}\|v^u\|$. Таким образом, $K_s = \frac{d+1}{d}, K_u = d$. Лемма доказана. \square

Продолжим доказательство теоремы. Итак, пусть ξ^s разрывно в точке $x_0 \in M$. Пусть $u(x) = \begin{cases} y_0, & x \in \{x_0\} \cup V_2 \\ 0, & x \not\in \{x_0\} \cup V \end{cases}$, а v(x) — сечение из леммы 5. Фиксируем $\varepsilon \geq 0$ и достаточно большое $m \in \mathbb{N}$, чтобы $||\beta^m(y_0)||_{\alpha^m(x)} \leq \varepsilon$.

Окрестность U_{x_0} можно выбрать настолько малой ($U_{x_0} = U_{x_0}(\varepsilon, m)$), что $\| [\gamma(\alpha^m(x)) \cdot ... \cdot \gamma(\alpha(x))]^{-\frac{1}{p}} D^m \nu(\alpha^m(x)) - [\gamma(\alpha^m(x)) \cdot ... \cdot \gamma(\alpha(x))]^{-\frac{1}{p}} D^m u(\alpha^m(x)) \|_{\alpha^m(x)} \le \varepsilon$

$$\| [\gamma(\alpha^m(x)) \cdot ... \cdot \gamma(\alpha(x))]^{-\frac{1}{p}} D^m u(\alpha^m(x)) - \beta^m(y_0) \|_{\alpha^m(x)} \leq \varepsilon.$$

Тогда

$$\begin{aligned} \||\gamma(\alpha^{m}(x)) \cdot ... \cdot \gamma(\alpha(x))|^{\frac{1}{p}} D^{m} v(\alpha^{m}(x)) \|_{\alpha^{m}(x)} \leq \|[\gamma(\alpha^{m}(x)) \cdot ... \cdot \gamma(\alpha(x))]^{\frac{1}{p}} D^{m} u(\alpha^{m}(x)) \|_{\alpha^{m}(x)} + \varepsilon \leq \\ \leq &\|\beta^{m}(y_{0})\|_{\alpha^{m}(x)} + 2\varepsilon \leq 3\varepsilon. \end{aligned}$$

Проинтегрируем полученное неравенство по V_2 . Имеем

$$||D^{m}v|| = \left(\int_{V_{2}} ||[\gamma(\alpha^{m}(x)) \cdot ... \cdot \gamma(\alpha(x))]^{\frac{1}{p}} D^{m}v(\alpha^{m}(x))||^{p} d\mu\right)^{\frac{1}{p}} \leq 3\varepsilon [\mu(V_{2})]^{\frac{1}{p}} = 3\varepsilon ||v||,$$

откуда

$$||D'''v|| \le 3\varepsilon ||v||. \tag{7}$$

Используя неравенства $||D^m v^s|| \le c_s \gamma_s^m ||v^s||, ||D^m v^u|| \ge c_u \gamma_u^{-m} ||v^u||$ и лемму 5, получаем

$$||D^{m}v|| \ge ||D^{m}v^{u}|| - ||D^{m}v^{s}|| \ge c_{u}\gamma_{u}^{m} ||v^{u}|| - c_{s}\gamma_{s}^{m} ||v^{s}|| >$$

$$> \left(c_{u}\gamma_{u}^{-m} - c_{s}\gamma_{s}^{m} \frac{d+1}{d}\right) ||v^{u}|| > \left(c_{u}d\gamma_{u}^{-m} - c_{s}(d+1)\gamma_{s}^{m}\right) ||v||.$$
 (8)

Сравним неравенства (7) и (8):

$$c_{u}d\gamma_{u}^{-m} - c_{s}(d+1)\gamma_{s}^{m} < 3\varepsilon.$$
(9)

(10)

В последнем неравенстве константы c_s , c_u и d не зависят ни от ε , ни от m, поэтому при достаточно большом m и малом ε возникнет противоречие. Значит, векториальные множества ξ^s и ξ^u непрерывны и являются подрасслоениями. Теорема доказана. \square

До сих пор в качестве функционального оператора b рассматривался только двучленный оператор $b=a_0+a_1T$. Покажем, что обратимость любого элемента $b=\sum a_kT^k$ из множества B^0 эквивалентна обратимости некоторого двучленного элемента из аналогичным образом устроенной алгебры \overline{B} , в которой соответствующее векторное расслоение имеет большую размерность.

Зафиксируем натуральное число $m\geq 2$. Будем считать, что алгебра B реализована как алгебра операторов в пространстве $L_p(\xi)$. Пусть $\overline{L_p(\xi)}$ — прямая сумма m экземпляров пространства $L_p(\xi)$. Оператору $b=\sum a_k T^k$ из B^0 поставим в соответствие оператор \tilde{b} из $L(\overline{L_p(\xi)})$ вида $\tilde{b}=\sum d_l S^l$, где оператор S действует на вектор $v=(v_0,v_1,...,v_{m-1})$ из $\overline{L_p(\xi)}$ по правилу $Sv=(T^mv_0,T^mv_1,...,T^mv_{m-1})$, а оператор d_l задан матрицей из операторов

Теорема 2. Пусть \overline{B} — алгебра операторов в $\overline{L_p(\xi)}$, порожденная операторами вида $\tilde{b}=\sum d_l S^l$. Элемент b обратим тогда и только тогда, когда обратим элемент \tilde{b} .

 $[d_l]_{ij} = T^{j}(a_{lm+j-i}), i, j = 0,...,m-1.$

Замечание. В случае p=2 алгебры B и \overline{B} являются C^* -алгебрами и в [4, 5, 7] с помощью теоремы об изоморфизме доказано, что алгебры B и \overline{B} изоморфны, откуда следует одновременная обратимость операторов b и \tilde{b} .

В случае произвольного p доказать изоморфность алгебр B и \overline{B} пока не представляется возможным, однако приведенное ниже доказательство одновременной обратимости операторов b и \tilde{b} является достаточным для целей настоящей работы.

Доказательство. Построим такое отображение ψ , при котором алгебра A переходит в изоморфную ей подалгебру \overline{A} в \overline{B} , состоящую из диагональных операторных матриц вида $\widetilde{a}=\mathrm{diag}\left\{a, Ta, ..., T^{m-1}a\right\}$. Элементу T ставится в соответствие оператор \widetilde{T} вида

$$\tilde{T} = \begin{bmatrix}
0 & 1 & 0 & \dots & 0 \\
0 & 0 & 1 & \dots & 0 \\
\vdots & \vdots & \ddots & \dots & \vdots \\
0 & 0 & 0 & \dots & 1 \\
0 & 0 & 0 & \dots & 0
\end{bmatrix} I + \begin{bmatrix}
0 & 0 & 0 & \dots & 0 \\
0 & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \ddots & \dots & \vdots \\
0 & 0 & 0 & \dots & 0 \\
1 & 0 & 0 & \dots & 0
\end{bmatrix} S.$$
(11)

Непосредственным подсчетом проверяем равенства $\psi(TaT^{-1}) = \tilde{T}\tilde{a}\tilde{I}^{-1}$, и в силу линейности отображения ψ получаем, что $\tilde{b} = \sum \tilde{a}_k \tilde{T}^k$.

Рассмотрим оператор U, действующий в пространстве $L_p(\overline{\xi})$ и заданный операторной матрицей

$$U = \begin{bmatrix} 0 & T^{-1} & 0 & \dots & 0 \\ 0 & 0 & T^{-1} & \dots & 0 \\ \vdots & \vdots & \ddots & \dots & \vdots \\ 0 & 0 & 0 & \dots & T^{-1} \\ T^{m-1} & 0 & 0 & \dots & 0 \end{bmatrix}.$$
 (12)

Таким образом, $U=(T^{-1}\cdot I)\tilde{T}=\tilde{T}(T^{-1}\cdot I)$, где $I:L_p(\overline{\xi})\to L_p(\overline{\xi})$ - единичный оператор.

Лемма 6. Оператор U задает представление конечной циклической группы Z_m в пространстве $L_p(\overline{\xi})$, причем оператор \tilde{b} перестановочен с оператором U.

Доказательство. Действительно, $U^m=I$, поэтому U есть представление группы Z_m . Нетрудно заметить, что $\tilde{a}\tilde{T}=T^{-1}\cdot \tilde{T}\tilde{a}\cdot T$, откуда следует, что $\tilde{a}\tilde{T}^{k+1}=\tilde{a}\tilde{T}\tilde{T}^k=T^{-1}\tilde{T}\tilde{a}T\tilde{T}^k$. В этом случае

$$\tilde{b}U = \left(\sum_{0 \le k \le m} \tilde{a}_k \tilde{T}^k\right) (T^{-1}\tilde{T}) = \sum_{0 \le k \le m} \left(\tilde{a}_k \tilde{T}^k \tilde{T} T^{-1}\right) = \sum_{0 \le k \le m} \left(T^{-1} \tilde{T} \tilde{a}_k T \tilde{T}^k T^{-1}\right) = \left(T^{-1} \tilde{T}\right) \sum_{0 \le k \le m} \left(\tilde{a}_k T \tilde{T}^k T^{-1}\right) = \left(T^{-1} \tilde{T}\right) \sum_{0 \le k \le m} \left(\tilde{a}_k \tilde{T}^k\right) = U \tilde{b}.$$

Конечная группа Z_m обладает конечным числом m неэквивалентных неприводимых представлений $R^j, j=1,...,m$. Каждое представление конечной группы Z_m разлагается в прямую сумму неприводимых представлений R^j . В частности, пространство $L_p(\widetilde{\xi})$ разлагается в прямую сумму m инвариантных относительно оператора U подпространств $L_p^j, j=1,...,m$, таких, что в L_p^j действует представление группы Z_m , кратное неприводимому представлению R^j . Подпространства L_p^j имеют следующий

вид
$$L_p^j = \left\{\lambda(u, e^{rac{2\pi i(j-1)}{m}}Tu, e^{rac{4\pi i(j-1)}{m}}T^2u, ..., e^{rac{2(m-1)\pi i(j-1)}{m}}T^{m-1}u), \lambda \in \mathbb{C}, u \in L_p(\xi)
ight\}.$$

При этом оператор \tilde{b}_j разлагается в прямую сумму операторов $b_j, j=1,...,m,$ действующих в подпространствах L_n^j соответственно.

Пусть F — отображение, переводящее оператор T в оператор $F(T) = \sum_{k=0}^{m-1} a_k T^k$. Оператор $S_1: (u, Tu, T^2u, ..., T^{m-1}u) \to u$ биективно отображает подпространство L_p^l , соответствующее единичному представлению группы Z_m , на пространство $L_p(\xi)$, и при этом изоморфизме оператор $b_1 = F(T)$ переходит в оператор b, т.е. эти операторы подобны. Оператор $S_j: (u, e^{\frac{2\pi i(j-1)}{m}} Tu, e^{\frac{4\pi i(j-1)}{m}} T^2 u, ..., e^{\frac{2(m-1)\pi i(j-1)}{m}} T^{m-1}u) \to u,$ действующий из L_p^l в $L_p(\xi)$, также является изоморфизмом, причем прообразом оператора b в подпространстве L_p^l является оператор $b_j = \sum_{l=0}^{m-1} a_k (e^{\frac{2\pi i(j-1)}{m}} T)^k = F(e^{\frac{2\pi ij}{m}} T).$

Из леммы 1 следует, что спектр оператора T совпадает со спектром оператора $e^{\frac{2\pi i(j-1)}{m}}T$. Доказательство того, что спектр $\sigma(F(T))$ оператора $F(T)=b_1$ совпадает со спектром $\sigma(F(e^{\frac{2\pi i(j-1)}{m}}T))$ оператора $F(e^{\frac{2\pi i(j-1)}{m}}T)=b_j$ практически полностью повторяет доказательство леммы 1. Поэтому операторы b_j либо одновременно обратимы, либо одновременно необратимы. Это, в свою очередь, означает, что оператор b обратим тогда и только тогда, когда обратим оператор b. Теорема доказана.

Пусть $\overline{\xi}=\xi\oplus\xi\oplus\dots\oplus\xi$ — ... $\oplus\xi$ — сумма m экземпляров векторного расслоения ξ , $\Gamma(\operatorname{Hom}\overline{\xi})$ — алгебра непрерывных сечений расслоения $\operatorname{Hom}\overline{\xi}$. Эта алгебра изоморфна алгебре матриц размерности $m\times m$ с элементами из A. Построенная выше алгебра \overline{B} является частью алгебры B_1 , порожденной всеми матрицами из $\Gamma(\operatorname{Hom}\overline{\xi})$ и оператором S. Алгебра B_1 устроена аналогично исходной алгебре B и является алгеброй тила $B(\operatorname{HOM}\overline{\xi},S)$. Если оператор b имеет вид $a_0+a_1T+...+a_pT^p$, то, выбрав m=p, получим, что $\tilde{b}=d_0+d_1S$. Оператор \tilde{b} более удобен для исследования, так как в нем оператор сдвига содержится только в первой степени. Заметим, что если

коэффициент a_0 у оператора b обратим, то обратим коэффициент d_0 у оператора \tilde{b} , так как операторная матрица d_0 треугольная и на ее диагонали стоят обратимые элементы $\tilde{T}^j a_0$. Аналогично, если обратим коэффициент a_p у оператора b, то обратим коэффициент d_1 у оператора \tilde{b} .

ЛИТЕРАТУРА

- 1. **Мищенко, А.С.** Векторные расслоения и их применения / А.С. Мищенко. М.: Наука, 1974. 208 с.
- 2. **Бронштейн, И.У.** Неавтономные динамические системы / И.У. Бронштейн. Кишинев: Издательство «Штиинца», 1984. 290 с.
- 3. **Нитецки, 3.** Введение в дифференциальную динамику / 3. Нитецки. М.: Мир, 1975. 304 с.
- 4. **Антоневич, А.Б.** Линейные функциональные уравнения. Операторный подход / А.Б. Антоневич. Мн.: Университетское, 1988. 232 с.
- Antonevich, A. Functional differential equations: I. C*-theory / A. Antonevich,
 A. Lebedev. Longman Scientific and Technical, Harlow, 1994.
- 6. **Abramovich, Y.A.** Banach C(K) modules and operators preserving disjointness / Y.A. Abramovich, E.L. Arenson, A.K. Kitover. England, Longman Scientific and Technical, 1992. 159 p.
- 7. **Антоневич, А.Б.** Нелокальные псевдодифференциальные операторы: индекс и числа Лефшеца / А.Б. Антоневич, А.В. Лебедев // Дифференциальные уравнения. 1997. Т. 33, № 6. С. 795–799.

SUMMARY

Let $\xi = (E, M, p)$ be a complex vector bundle over M and let $\alpha : M \to M$ be a continuous mapping. Some conditions which provide the invertibility of the operator $b = a_0 + a_1 T$ in the space of $L_p(\xi)$ -sections are obtained.

Поступила в редакцию 30.10.2006