Диагностика нагретых газовых смесей $CO_2:N_2$ с помощью перестраиваемого CO_2 -лазера

К.И. Аршинов*, М.К. Аршинов*, В.В. Невдах**

*Институт технической акустики НАН Беларуси **Белорусский национальный технический университет

Описана методика определения парциального давления углекислого газа и его температуры в колебательно-равновесной газовой смеси при давлении, обеспечивающем лоренцевский контур линий поглощения, по спектральному распределению ненасыщенного коэффициента поглощения на линиях генерации перестраиваемого CO_2 -лазера. Представлены результаты определения искомых параметров по измеренному спектральному распределению коэффициента поглощения в нагретой газовой смеси $CO_2:N_2=1:9$ (p=100 Top, T=500 K) на линиях поглощения P- и R-ветвей колебательного перехода 10^00-00^01 молекулы CO_2 . Установлено, что точность решения обратной задачи по определению парциального давления углекислого газа и температуры газовой смеси повышается, если в расчетах использовать измеренные температурные зависимости относительного коэффициента столкновительного уширения $b_{N2}(T)$ и коэффициента спонтанного излучения A(T).

Ключевые слова: перестраиваемый CO_2 -лазер, коэффициент поглощения, нагретая газовая смесь CO_2 : N_2

Diagnostics of the hot CO₂:N₂ gas mixture by the tunable CO₂ laser

K.I. Arshinov, M.K. Arshinov, V.V. Nevdakh

*NAC of Belarus Institute of Technical Acoustics
**Belarusian National Technical University,

The article describes the method of defining the partial pressure of carbon dioxide and its temperature in oscillate – balance gas mixture under the pressure which provides Lorenz contour of absorption lines, on spectral distribution of non-saturation quotient at generation lines of tunable CO_2 laser. Results of defining the searched parameters on the measured spectral distribution of saturation quotient in heated gas mixture CO_2 : N_2 =1:9 at pressure 100 Tor and temperature 500 K at absorption lines of P- and R-branches of oscillate transfer of 10^00-00^01 of CO_2 molecule are presented. It has been found out that the accuracy of solving a reverse problem on defining partial pressure of CO_2 and temperature of gas mixture increases if the estimations use measured temperature dependence of the collision widening $b_{N2}(T)$ quotient and irradiation A(T) quotient.

Key words: tunable CO2 laser, absorption quotient, heated CO2:N2 gas mixture

Ранее для исследований колебательно неравновесных молекул CO_2 в составе активных сред CO_2 -лазеров был разработан метод многочастотной диагностики с использованием перестраиваемого CO_2 -лазера (см., например, [1,2]). Естественно, что этот метод может быть использован и при исследовании колебательно-равновесных сред, содержащих CO_2 , какими являются продукты сгорания углеводородных топлив после их выброса в атмосферу [3]. В настоящей работе представлена экспериментальная проверка метода многочастотной лазерной диагностики нагретой, колебательно равновесной газовой смеси CO_2 : N_2 при давлении, обеспечивающем столкновительное уширение контуров линий поглощения, для определения парциального давления CO_2 и температуры газа.

Основная часть.

Метод многочастотного лазерного зондирования основан на измерении спектрального распределения ненасыщенного коэффициента поглощения (КП) в газовой смеси содержащей диоксид углерода на частотах генерации CO_2 -лазера, перестраиваемого по линиям основных лазерных переходов 00^01 - $[10^00,02^00]_{I,II}$. При использовании в качестве источника зондирующего излучения стабилизированного по максимуму контура усиления CO_2 -лазера низкого давления и давлениях исследуемых смесей до одной атмосферы можно с достаточно высокой точностью считать, что измерения КП осуществляются на центральных частотах линий поглощения v_{0J} . Выражение для КП в центре рассматриваемых линий может быть представлено в виде [4]:

$$a_{J}(v_{0J}) = \frac{hc^{3}A_{J}B_{00^{0}_{1}}}{4\pi v_{0J}^{2}(k_{B}T)^{2}}p_{co_{2}}gQ_{V}^{-1}\left\{\exp\left[-\frac{hc\omega_{10^{0}0,02^{0}_{0}} - hcB_{10^{0}0,02^{0}_{0}}J(J+1)}{k_{B}T}\right] - \frac{hc\omega_{10^{0}0,02^{0}_{0}} - hcB_{10^{0}0,02^{0}_{0}}J(J+1)}{k_{B}T}\right]$$

$$-\exp\left[-\frac{hc\,\omega_{00^{0_{1}}} - hcB_{00^{0_{1}}}C_{1}}{k_{n}T}\right]\}F(\nu_{0}),\tag{1}$$

где g=2J-1, $C_I=J(J-1)$ для линии P-ветви с вращательным квантовым числом нижнего уровня J, g=2J+3, $C_I=(J+1)(J+2)$ для линии R-ветви; p_{CO_2} - давление углекислого газа, c - скорость света; h - постоянная Планка; k_B - постоянная Больцмана; $\omega_{100}=1388.3$ см⁻¹, $\omega_{020}=1285.5$ см⁻¹, $\omega_{001}=2349.3$ см⁻¹, $B_{100}=0.39019$ см⁻¹, $B_{020}=0.39048$ см⁻¹, $B_{001}=0.38714$ см⁻¹ [5] - волновые числа и вращательные константы колебательных уровней 10^0 0, 02^0 0, 00^0 1 соответственно; λ_{0J} – длина волны на центральной частоте J-й линии [6]; A_J — коэффициент Эйнштейна [7]; $Q_V=[1-exp(-1997\text{K}/T)]^{-1}[1-exp(-960\text{K}/T)]^{-2}[1-exp(-3380\text{K}/T)]^{-1}$ - колебательная статистическая сумма молекулы CO_2 , $F(v_0)$ — форм-фактор в центре линии.

При давлении исследуемой смеси газов более 50 Top, как известно, преобладающим механизмом уширения линий поглощения CO_2 является механизм уширения давлением и форм-фактор описывается выражением

$$F_i(\nu_0) = 2/\pi \Delta \nu_{Li} \,, \tag{2}$$

где Δv_{Li} - полная ширина *i*-й столкновительно-уширенной линии на ее полувысоте. Для рассматриваемой газовой смеси CO_2 : $N_2 \Delta v_{Li}$ может быть представлена в виде [8]

$$\Delta v_{Li} = \gamma_{iCO_2} \cdot p_{total} \cdot \left[\xi_{CO_2} + b_{N_2} \cdot \xi_{N_2} \right] \cdot \sqrt{\frac{300}{T}}, \tag{3}$$

где γ_{iCO2} — столкновительная ширина i-й линии обусловленная столкновениями молекул CO_2 между собой при давлении 1 Тор и температуре 300 К или коэффициент столкновительного самоуширения для молекулы CO_2 [7], p_{total} — давление смеси газов, ξ_{CO2} , ξ_{N2} — доли молекул CO_2 и N_2 в смеси, b_{N2} — относительный коэффициент столкновительного уширения молекул CO_2 молекулами N_2 . При p_{CO2}/p_{total} <0.5 для расчета Δv_L с достаточно высокой точностью можно использовать более простое выражение

$$\Delta v_L \approx \gamma \cdot b_{N_2} \cdot p_{total} \cdot \sqrt{\frac{300}{T}} \,. \tag{4}$$

Таким образом, спектральному распределению коэффициентов поглощения соответствует система линейных относительно p_{CO2} и нелинейных относительно T уравнений вида (1). Связь между искомыми параметрами $\{p_{CO2}, T\}$ и результатами измерений коэффициентов поглощения определяется фундаментальной системой уравнений:

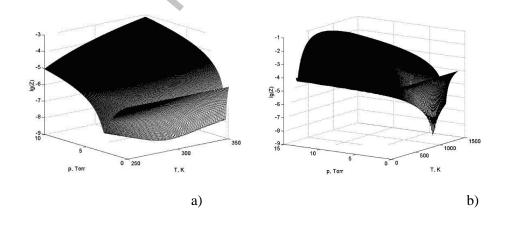
$$\widehat{\alpha}_i = \alpha_i(p_{CO_2}, T) \pm \Delta \alpha_i \,, \tag{5}$$

где \hat{a}_i - измеренный коэффициент поглощения на i-й длине волны λ_i ; $\Delta\alpha_i$ – абсолютная погрешность i-го измерения коэффициента поглощения. В системе уравнений (5) помимо $\{p_{CO2},T\}$ неизвестными остаются также погрешности $\Delta\alpha_i$ и, следовательно, система всегда не определена. При экспериментальных измерениях спектрального распределения коэффициентов поглощения мы получаем систему уравнений, в которой отсутствует информация о погрешностях измерений. Для корректного решения такой задачи необходимо проводить измерения коэффициентов поглощения на большом числе линий, получать избыточную систему уравнений подобную системе (5), но без $\Delta\alpha_i$, и решать ее статистически относительно искомых неизвестных параметров $\{p_{CO2},T\}$ так, чтобы минимизировать взвешенную совокупность квадратов отклонений

$$Z = \sum_{i=1}^{n} w_i [\hat{\alpha}_i - \alpha_i(p_{CO_2}; T)]^2,$$
 (6)

где w_i весовой коэффициент i-го измерения.

При заданной температуре из (5) и (6) нетрудно получить выражение для давления p_{CO2} , которое соответствует минимуму функционала Z


$$p_{CO_2} = \frac{\sum_{i} w_i \hat{\alpha}_i \varphi_i}{\sum_{i} w_i \varphi_i^2}, \tag{7}$$

где
$$\varphi_i = a_i(v_0)/p_{co_2}$$
.

Алгоритм расчета состоит в том, что осуществляется сканирование по температуре с соответствующим расчетом давления по (7) и минимизируется функционал Z (6). Таким образом, выбирается та совокупность параметров $\{p_{CO2}, T\}$, которой соответствует минимальное значение Z. При расчетах для первой итерации весовые коэффициенты принимались $w_i^{(1)}$ =1. Для (j+1)-й итерации весовые коэффициенты назначались в виде [9]

$$w_i^{(j+1)} = \frac{1}{\left[\hat{\alpha}_i - \alpha_i(p_{CO_2}^j, T^j)\right]^2}.$$
 (8)

На рисунке 1 представлена типичная зависимость $\lg(Z)$ от p_{CO2} и T при 10% погрешности в измерениях коэффициентов поглощения (среднее квадратичное отклонение коэффициентов поглощения равно σ_a =0.1 a_{min}). Видно, что $\lg(Z)$ всегда имеет минимум, соответствующий искомым параметрам $\{p_{CO2}, T\}$.

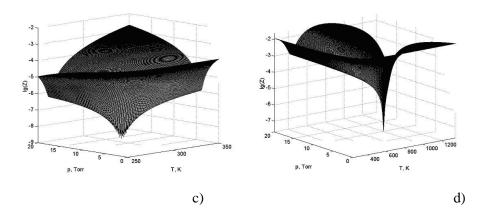


Рисунок 1. Зависимость $\lg(Z)$ от парциального давления диоксида углерода p_{CO2} , и температуры T при 10% погрешности измерения коэффициентов поглощения (среднее квадратичное отклонение коэффициентов поглощения равно σ_a =0.1 a_{min}): a) p_{CO2} =1 Top, T=293 K; b) p_{CO2} =1 Top, T=1000 K; c) p_{CO2} =10 Top, T=293 K; d) p_{CO2} =10 Top, T=1000 K.

На рисунке 2 представлено измеренное спектральное распределение ненасыщенных коэффициентов поглощения в газовой смеси $CO_2:N_2=1:9$ ($p_{total}=100$ Top, T=500 K) для колебательного перехода 10^00-00^01 молекулы $CO_2:$ а) P-ветвь, б) R-ветвь. Для P-ветви были исключены спектральные линии, которые перекрываются отдельными линиями вышележащих горячих переходов [10]. Используя представленные выше соотношения и константы, была решена обратная задача, которая дала следующие значения искомых параметров: T=473 K ($\delta_T=5.5\%$), $p_{CO2}=12.9$ Top ($\delta_p=29\%$). Видно, что погрешности определения искомых параметров достаточно велики. Анализ методики показал, что низкая точность полученных результатов может быть

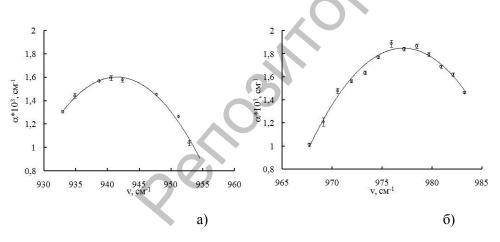


Рисунок 2. Спектральное распределение ненасыщенных коэффициентов поглощения в газовой смеси $CO_2:N_2=1:9$ ($p_{total}=100$ Top, T=500 K) для колебательного перехода 10^00-00^01 молекулы $CO_2:$ а) P-ветвь, б) R-ветвь.

обусловлена некорректным представлением отдельных спектроскопических констант, входящих в выражения (1)-(4) [11,12]. В частности, тот факт, что коэффициент $b_{\rm N2}$ входит в (3) как константа, по существу означает признание одинакового характера уширения спектральной линии при взаимодействии молекул ${\rm CO_2}$ с столкновительными партнерами, обладающими различными свойствами, что противоречит существующим представлениям о механизмах столкновительного уширения спектральных линий. В [11] были определены относительные коэффициенты столкновительного уширения линии поглощения R22 перехода 10^90-00^91 молекулы ${\rm CO_2}$ молекулами ${\rm N_2}$ $b_{\rm N2}$ в диапазоне температур $300-700{\rm K}$. Характер изменения коэффициента $b_{\rm N2}$ с изменением температуры иллюстрирует рисунок 3. Видно, что до температуры $\sim 550{\rm K}$ коэффициент $b_{\rm N2}$ практически не меняется, а далее наблюдается его явное увеличение. Учет полученной

закономерности при решении обратной задачи многочастотного зондирования позволил существенно повысить точность определения искомых параметров: T=491 К (δ_T =2%), p_{CO2} =11.6 Тор (δ_p =16%).

В работе [12] показано, что причиной различия между измеренной и рассчитанной зависимостями ненасыщенных КП в чистом CO_2 от температуры при давлении, когда уширение линии поглощения определяется эффектом Доплера (p_{CO2} =1 Top), может быть только зависимость вероятностей спонтанного излучения A от температуры. Если при решении обратной задачи учитывать полученную температурную зависимость вероятности спонтанного излучения A(T), то точность определения парциального давления CO_2 возрастает при практически неизменяющейся точности для температуры: T=487 K (δ_T =2.6%), p_{CO2} =9.85 Top (δ_p =1.5%).

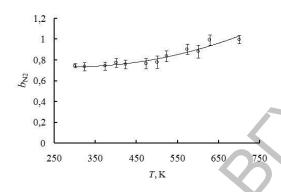


Рисунок 3. Температурная зависимость относительного коэффициента столкновительного уширения молекулами N_2 линии поглощения R22 колебательного перехода 10^00 - 00^01 молекулы CO_2 .

Заключение.

В работе описана методика определения парциального давления углекислого газа и его температуры в колебательно-равновесной газовой смеси при давлении, обеспечивающем лоренцевский контур линий поглощения, по спектральному распределению ненасыщенного коэффициента поглощения на линиях генерации перестраиваемого CO_2 -лазера. Представлены результаты определения искомых параметров по измеренному спектральному распределению коэффициента поглощения в нагретой газовой смеси CO_2 : N_2 =1:9 (p=100 Top, T=500 K) на линиях поглощения P- и R-ветвей колебательного перехода $10^0\mathrm{O}$ -00 $^0\mathrm{I}$ молекулы CO_2 . Установлено, что точность решения обратной задачи по определению парциального давления углекислого газа и температуры газовой смеси повышается, если в расчетах использовать измеренные температурные зависимости относительного коэффициента столкновительного уширения $b_{\mathrm{N}2}(T)$ и коэффициента спонтанного излучения A(T).

Литература

- 1. Ачасов, О.И. Диагностика неравновесных состояний в молекулярных лазерах / О.В. Ачасов [и др.].- Минск: Наука и техника, 1985.- 208 с.
- 2. Аршинов, К.И. Расчет населенностей лазерных уровней CO_2 и колебательных температур по спектральному распределению коэффициента усиления / К.И. Аршинов, Н.С. Лешенюк, В.В. Невдах // Квант. электр. − 1998. Том 25, № 8. С. 679.
- 3. Аршинов, К.И. Многочастотная диагностика колебательно равновесной CO₂-содержащей газовой смеси / К.И. Аршинов, Н.С. Лешенюк, В.В. Невдах // Журн. прикл. спектр. 2001. Том 68, № 6. С. 723.
- 4. Ельяшевич, М.А. Атомная и молекулярная спектроскопия / М.А. Ельяшевич. М.: ФМЛ, 1962.-892 с.
- 5. Bridges, T.J. Accurate rotational constants of $^{12}C^{16}O_2$ from measurements of CW beats in bulk GaAs between CO_2 vibrational-rotational laser lines / T.J. Bridges, T.Y. Chang // Phys. Rev. Lett. 1969. Vol.22. P. 811.
- 6. Виттеман, B. CO₂-лазер: пер. с англ. / В. Виттеман. М.: Мир, 1990. 360 с.

- 7. Невдах, В.В. Вероятности спонтанного излучения и столкновительные ширины линий лазерных переходов 00^01 – $[10^00,02^00]_{I,II}$ / В.В. Невдах // Квант. электр. 1984. Том 11, № 8. С. 1622.
- 8. Abrams, R.L. Broadening coefficients for the P(20) CO₂ laser transition / R.L. Abrams // Appl. Phys. Lett. 1974. V. 25, No. 10. P. 609.
- 9. Мудров, В.И. Методы обработки измерений / В.И. Мудров, В.Л. Кушко. М.: Радио и связь, 1983.-304 с.
- 10. Аршинов, К.И. Многочастотное лазерное зондирование нагретой газовой смеси CO_2 : N_2 влияние горячих переходов молекулы CO_2 / К.И. Аршинов, М.К. Аршинов // Вестник Витебского гос. университета. 2008. № 1(47). С. 141.
- 11. Аршинов, К.И. Температурная зависимость относительных коэффициентов ударного уширения линии R22 перехода $10^{0}0$ - $00^{0}1$ молекулы CO_{2} буферными газами N_{2} и He / К.И. Аршинов, М.К. Аршинов, В.В. Невдах // Вестник Витебского гос. университета. − 2010. − N2 (56). − C. 3.
- 12. Аршинов, К.И. Определение вероятностей спонтанного излучения и коэффициентов столкновительного уширения линий лазерных переходов молекулы CO_2 / К.И. Аршинов, М.К. Аршинов, В.В. Невдах // Лазерная и оптико-электронная техника: Сб.науч.статей, Вып.11 / Отв.ред. И.С. Манак. Мн.: Акад. упр. при Президенте Респ. Беларусь, 2008. 327 с. С. 113.