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Preface (in Russian) 

 

Дисциплина «Дискретная математика и математическая логика» направлена на 

формирование математической культуры студента, повышение уровня 

фундаментальной подготовки математика-программиста, овладение современным 

математическим аппаратом для дальнейшего использования в приложениях.  

Настоящее учебное издание охватывает основополагающие разделы 

дисциплины: «Математическая логика» и «Множества». Каждый раздел содержит 

теоретический материал (часть A) и практические задания (часть B). По каждой теме 

приведены необходимые определения и теоретические сведения, а также разобраны 

примеры решения задач. Издание содержит список литературы, необходимой для более 

глубокого и разностороннего изучения материала, а также для закрепления 

практических навыков самостоятельного решения конкретных задач, в качестве 

приложения приведен перечень определений и обозначений основных 

понятий. 

Методические рекомендации предназначены для студентов специальности 

«Прикладная информатика» (English-Medium) с обучением на английском языке, а 

также для организации самостоятельной работы студентов математического факультета 

специальностей «Прикладная информатика», «Прикладная математика», «Математика 

и информатика» дневной и заочной форм обучения. 
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Introduction 

 

Mathematical logic is a subfield of mathematics exploring the applications of formal logic to 

mathematics. Topically, mathematical logic bears close connections to metamathematics, the 

foundations of mathematics, and theoretical computer science. The unifying themes in 

mathematical logic include the study of the expressive power of formal systems and the 

deductive power of formal proof systems. 

 

It is important to be aware of the reasons that we study logic. There are three very significant 

reasons. First, the truth tables we studied tell us the exact meanings of the words such as 

―and,‖ ―or,‖ ―not‖ and so on. For instance, whenever we use or read the ―If ..., then‖ 

construction in a mathematical context, logic tells us exactly what is meant. Second, the rules 

of inference provide a system in which we can produce new information (statements) from 

known information. Finally, logical rules such as DeMorgan’s laws help us correctly change 

certain statements into (potentially more useful) statements with the same meaning. Thus 

logic helps us understand the meanings of statements and it also produces new meaningful 

statements. 

 

Logic is the glue that holds strings of statements together and pins down the exact meaning of 

certain key phrases such as the ―if ..., then‖ or ―for all‖ constructions. Logic is the common 

language that all mathematicians use, so we must have a firm grip on it in order to write and 

understand mathematics. But despite its fundamental role, logic’s place is in the background 

of what we do, not the forefront. From here on, the beautiful symbols ~, , , →, ↔,  and  

are rarely written. But we are aware of their meanings constantly. When reading or writing a 

sentence involving mathematics we parse it with these symbols, either mentally or on scratch 

paper, so as to understand the true and unambiguous meaning. 

 

We shall study a formal language called propositional logic. This language abstracts from 

ordinary language the properties of the propositional connectives. These are ―not‖, ―and‖, 

―or‖, ―if‖, and ―if and only if‖. Formal languages differ from natural languages such as 

English or Russian in that the syntax of a formal language is precisely given. This is not the 

case with English: authorities often disagree as to whether a given English sentence is 

grammatically correct. Mathematical logic may be defined as that branch of mathematics 

which studies formal languages. 
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I Logic  
 

A1 Logical Connectives 

 

Mathematics works according to the laws of logic, which specify how to make valid 

deductions. In order to apply the laws of logic to mathematical statements, you need to 

understand their logical forms. Proofs are composed of statements. A statement is a 

declarative sentence that can be either true or false. 

 

Remark 1. Many real proofs contain things which aren’t really statements — questions, 

descriptions, and so on. They’re there to help to explain things for the reader. When I say 

―Proofs are composed of statements‖, I’m referring to the actual mathematical content with 

the explanatory material removed. 

 

Example 1. ―Bob is a math major‖ is a statement. You’d need to know more about Bob and 

math majors to know whether the statement is true or false.  

―0 = 1‖ is a statement which is false (assuming that ―0‖ and ―1‖ refer to the real numbers 0 

and 1). 

―Do you have a pork barbecue sandwich?‖ is not a statement — it’s a question. Likewise, 

―Eat your vegetables!‖ is not a statement — it’s an imperative sentence, i.e. an order to do 

something. 

 

―1+1 = 2‖ is a statement. An easy way to tell is to read it and see if it’s a complete declarative 

sentence which is either true or false. This statement would read (in words):  ―One plus one 

equals two.‖ You can see that it’s a complete declarative sentence (and it happens to be a true 

statement about real numbers). 

On the other hand, ―1+1‖ is not a statement. It would be read ―One plus one‖, which is not a 

sentence since it doesn’t have a verb. (Things like ―1 + 1‖ are referred to as terms or 

expressions.) 

 

Since proofs are composed of statements, you should never have isolated phrases (like 1+1 or 

―a+3b‖) in your proofs. Be sure that every line of a proof is a statement. Read each line to 

yourself to be sure. 

In terms of logical form, statements are built from simpler statements using logical 

connectives. The basic connectives of sentential logic are: 

 

1 Negation  (“not”) denoted  ~ 

2 Conjunction  (“and”) denoted   

3 Disjunction  (“or”) denoted   

4 Conditional  (“if-then” or “implication”) denoted  → 

5 Biconditional (“if and only if” or “double implication”) denoted  ↔ 

 

Later I’ll discuss the quantifiers ―for all‖ (denoted ) and ―there exists‖ (denoted ). 

 

Remark 2. You may see different symbols used by other people. For example, some people 

use ¬ for negation. And => is sometimes used for the conditional, in which case <=> is used 

for the biconditional. 
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Example 2. Represent the following statements using logical connectives. 

 

 Statement  Logical translation 

1 P or not Q. P  ~ Q 

2 If P and R, then Q. (P  R) → Q  

3 P if and only if (Q and R). P ↔ (Q  R) 

4 Not P and not Q. ~ P  ~ Q 

5 It is not the case that if P, then Q. ~ (P → Q) 

6 If P and Q, then R or S. (P  Q) → (R  S) 

 

Other words or phrases may occur in statements. Here’s a list of some of them and how they 

are translated. 

 

 Phrase Logical translation 

1 P, but Q P  Q 

2 Either P or Q P  Q 

3 P or Q, but not both (P  Q)  ~ (P  Q) 

4 P if Q Q → P 

5 P is necessary for Q Q → P 

6 P is sufficient for Q P → Q 

7 P only if Q P → Q 

8 P is equivalent to Q P ↔ Q 

9 P whenever Q Q → P 

 

Consider the word ―but‖, for example. If I say ―Bob is here, but Sam is there‖, I mean that 

Bob is here and Sam is there. My intention is that both of the statements should be true. That 

is the same as what I mean when I say ―Bob is here and Sam is there‖. 

 

In practice, mathematicians tend to a small set of phrases over and over. It doesn’t make for 

exciting reading, but it allows the reader to concentrate on the meaning of what is written. For 

example, a mathematician will usually say ―if Q, then P‖, rather than the logically equivalent 

―P whenever Q‖. The second statement is less familiar, and therefore more apt to be 

misunderstood. 

 

This is a good time to discuss the way the word ―or‖ is used in mathematics. When you say 

―I’ll have dinner at MacDonald’s or at Pizza Hut‖, you probably mean ―or‖ in its exclusive 

sense: You’ll have dinner at MacDonald’s or you’ll have dinner at Pizza Hut, but not both. 

The ―but not both‖ is what makes this an exclusive or. 

 

Mathematicians use ―or‖ in the inclusive sense. When ―or‖ is used in this way, ―I’ll have 

dinner at MacDonald’s or at Pizza Hut‖ means you’ll have dinner at MacDonald’s or you’ll 

have dinner at Pizza Hut, or possibly both. Obviously, I’m not guaranteeing that both will 

occur; I’m just not ruling it out. 

 

Example 3. Translate the following statements into logical notation, using the following 

symbols: 

S = ―The stromboli is hot.‖ 

L = ―The lasagne is cold.‖ 

P = ―The pizza will be delivered.‖ 
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 Phrase Logical translation 

1 The stromboli is hot and the pizza will not be delivered S  ~ P 

2 If the lasagne is cold, then the pizza will be delivered L → P 

3 Either the lasagne is cold or the pizza won’t be 

delivered 
L  ~ P 

4 If the pizza won’t be delivered, then both the stromboli 

is hot and the lasagne is cold 
~ P → (S  L) 

5 The lasagne isn’t cold if and only if the stromboli isn’t 

hot 

~ L ↔ ~ S 

6 The pizza will be delivered only if the lasagne is cold P → L 

7 The stromboli is hot and the lasagne isn’t cold, but the 

pizza will be delivered 
S  ~ L  P 

 

The order of precedence of the logical connectives is: 

 

1. Negation 

2. Conjunction 

3. Disjunction 

4. Implication 

5. Double implication 

 

As usual, parentheses override the other precedence rules. In most cases, it’s best for the sake 

of clarity to use parentheses even if they aren’t required by the precedence rules. For 

example, it’s better to write 

(P  Q)  R    rather than    P  Q  R. 

 

Precedence would group P and Q anyway, but the first expression is clearer.  

It’s not common practice to use parentheses for grouping in ordinary sentences. Therefore, 

when you’re translating logical statements into words, you may need to use certain 

expressions to indicate grouping.  

1) The combination ―Either . . . or . . . ‖ is used to indicate that everything between the 

―either‖ and the ―or‖ is the first part of the ―or‖ statement. 

2) The combination ―Both . . . and . . . ‖ is used to indicate that everything between the 

―both‖ and the ―and‖ is the first part of the ―and‖ statement. 

In some cases, the only way to say something unambiguously is to be a bit wordy. 

Fortunately, mathematicians find ways to express themselves which are clear, yet avoid 

excessive linguistic complexity. 

 

Example 4. Suppose that 

 

C = ―The cheesesteak is good.‖ 

F = ―The french fries are greasy.‖ 

W = ―The wings are spicy.‖ 

 

Translate the following logical statements into words (with no logical symbols): 

 

 Statement Translation 

1 (~ C  F) → W ―If the cheesesteak isn’t good and the french fries are greasy, then 

the wings are spicy.‖ 
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2 ~ (C  W) If I say ―It’s not the case that the cheesesteak is good or the wings 

are spicy‖, it might not be clear whether the negation applies only to 

―the cheesesteak is good‖ or to the disjunction ―the cheesesteak is 

good or the wings are spicy‖. So it’s better to say ―It’s not the case 

that either the cheesesteak is good or the wings are spicy‖, since 

the ―either‖ implies that ―the cheesesteak is good‖ or ―the wings are 

spicy‖ are grouped together in the or-statement. 

In this case, the ―either‖ blocks the negation from applying to ―the 

cheesesteak is good‖, so the negation has to apply to the whole ―or‖ 

statement. 

3 ~ (~ W  C) ―It’s not the case that both the wings aren’t spicy and the 

cheesesteak is good.‖ As with the use of the word ―either‖ in (2), 

I’ve added the word ―both‖ to indicate that the initial negation 

applies to the conjunction ―the wings aren’t spicy and the 

cheesesteak is good‖. In this case, the ―both‖ blocks the negation 

from applying to ―the wings aren’t spicy‖, so the negation has to 

apply to the whole ―and‖ statement. 

4 ~ (~ F) The literal translation is ―It’s not the case that the french fries aren’t 

greasy‖. Or (more awkwardly) you could say ―It’s not the case that 

it’s not the case that the french fries are greasy‖. Of course, this is 

logically the same as saying ―The french fries are gresy‖. But the 

question did not ask you to simplify the original statement — only 

to translate it, which you should do verbatim. 

 

Example 5. Here are some examples of actual mathematical text. 

 

(a) Theorem. In the semi-simple ring R, let L = Re be a left ideal with generating 

idempotent e. Then L is a minimal left ideal if and only if eRe is a skew field. 

You could express this using logical connectives in the following way. Let 

A = ―R is a semi-simple ring‖. 

B = ―L = Re is a left ideal with generating idempotent e‖. 

C = ―L is a minimal left ideal‖. 

D = ―eRe is a skew field‖. 

 

The statement can be translated as (A  B) → (C ↔ D). 

 

Notice that to determine the logical form, you don’t have to know what the words mean! 

Mathematicians use the word ―let‖ to introduce hypotheses in the statement of a theorem. 

From the point of view of logical form, the statements that accompany ―let‖ form the 

antecedent — the first part — of a conditional, as statements A and B do here. 

 

(b)  Proposition. Let X and Y be CW-complexes. Then X × Y (with the compactly 

generated topology) is a CW complex, and X  Y is a subcomplex. 

Let 

P = ―X and Y are CW-complexes‖. 

Q = ―X × Y (with the compactly generated topology) is a CW complex‖. 

R = ―X  Y is a subcomplex‖. 

 

The proposition can then be written in logical notation as P → (Q  R). 
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Notice that you can often translate a statement in different ways. For example, I could have let 

A = ―X is a CW-complex‖. 

B = ―Y is a CW-complex‖. 

C = ―X × Y (with the compactly generated topology) is a CW complex‖. 

D = ―X  Y is a subcomplex‖. 

Now the proposition becomes (A  B) → (C  D). There is no difference in mathematical 

content, and no difference in terms of how you would prove it. 

 

As the last example shows, logical implications often arise in mathematical statements. Here’s 

some terminology. If P → Q is an implication, then: 

 

(a) P is the antecedent or hypothesis and Q is the consequent or conclusion. 

(b) The converse is the conditional Q → P. 

(c) The inverse is the conditional ~ P → ~ Q. 

(d) The contrapositive is the conditional ~ Q → ~ P. 

 

Example 6. Find the antecedent and the consequent of the following conditional statement: 

―If x > y, then y > Bob.‖ 

Construct the converse, the inverse, and the contrapositive. 

The antecedent is ―x > y‖ and the consequent is ―y > Bob‖. 

The converse is ―If y > Bob, then x > y‖. 

The inverse is ―If x   y, then y  Bob.‖ 

The contrapositive is ―If y  Bob, then x  y‖. 

Later on, I’ll show that a conditional statement and its contrapositive are logically equivalent. 

 

Example 7. Find the antecedent and the consequent of the following conditional statement: ―If 

Bob gets a hot dog, then Bob doesn’t get a soda.‖ 

Construct the converse, the inverse, and the contrapositive. 

The antecedent is ―Bob gets a hot dog‖ and the consequent is ―Bob doesn’t get a soda‖. 

The converse is ―If Bob doesn’t get a soda, then Bob gets a hot dog‖. 

The inverse is ―If Bob doesn’t get a hot dog, then Bob gets a soda‖. (Note that the literal 

negation of the consequent is ―It is not the case that Bob doesn’t get a soda‖. But the two 

negations cancel out — this is called double negation — so I get ―Bob gets a soda‖.) 

The contrapositive is ―If Bob gets a soda, then Bob doesn’t get a hot dog‖. 

 

B1 Problem Set 

 

Problem 1. Write the negation (in words) of each statement. 

 

(a) ―82 is an odd integer.‖ 

(b) ― 5  is a rational number.‖ 

(c) ―x is a positive real number.‖ 

(d) ―3.1 is an integer.‖ 

(e) ― is a real number.‖ 

(f) ―23 is a prime number.‖ 

(g) ―0 is a natural number.‖ 

(h) ―0.5 is an irrational number‖. 

(i) ―15 is an even integer.‖ 

(j) ―–2 is a rational number.‖ 
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Problem 2. Suppose 

 

P is the statement ―100 is an even integer‖. 

Q is the statement ―52 is a prime number‖. 

(a) Write the statement ―52 is a prime number or 100 is not an even integer‖ in 

symbols. 

(b) Write the statement ―100 is not an even integer and 52 is not a prime number‖ in 

symbols. 

(c) Write the statement ―52 is not a prime number but 100 is an even integer‖ in 

symbols. 

(d) Write the statement ―52 is a prime number if and only if 100 is not an even 

integer‖ in symbols. 

(e) Write the statement ―If 100 is an even integer, then 52 is a prime number‖ in 

symbols. 

(f) Write the statement P  Q in words, and determine whether the statement is true or 

false. 

(g) Write the statement P  Q in words, and determine whether the statement is true or 

false. 

(h) Write the statement Q   P in words, and determine whether the statement is true 

or false. 

(i) Write the statement  (P  Q) in words, and determine whether the statement is 

true or false. 

(j) Write the statement  (Q  P) in words, and determine whether the statement is 

true or false. 

 

Problem 3. Suppose that 

 

C = “Bob likes cheddar.” 

S = “Bob likes swiss.” 

M = “Bob likes mozzarella.” 

F = “You have the flu.” 

E = “You miss the final examination.” 

P = “You pass the course.”  
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(i) Translate the following logical statements into words: 

 

(a) C   S. 

(b) (C  S)   M. 

(c)  ( M   C). 

(d) M  (C   S).  

(e)  (M  C  S) . 

(f)  F  (E  P). 

(g)  (E  F). 

(h) (P  E )   F. 

(i)  F  E  P.  

(j) P  ( F  E). 

 

 

(ii) Translate the following statements into logical symbols: 

 

(a) “Bob likes cheddar if he likes mozzarella.” 

(b) “Bob doesn’t like either cheddar or mozzarella.” 

(c) “Bob doesn’t like cheddar if and only if either he doesn’t like swiss or he doesn’t 

like mozzarella.” 

(d) “Bob likes mozzarella whenever he doesn’t like cheddar.” 

(e) “Bob doesn’t like mozzarella but if he likes cheddar then he likes swiss.” 

(f) “If you have the flu, you miss the final examination.” 

(g) “You pass the course if and only if you take the final exam.” 

(h) “If you miss the final examination, you will not pass the course.” 

(i) “You either have the flu, miss the final examination, or pass the course.” 

(j) “Either you have the flu and miss the final exam, or you don’t miss the final exam 

and pass the course.” 
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A2 Truth Tables 

 

Mathematics normally works with a two-valued logic: Every statement is either True or 

False. You can use truth tables to determine the truth or falsity of a complicated statement 

based on the truth or falsity of its simple components.  

A statement in sentential logic is built from simple statements using the logical connectives ~, 

, , →, and ↔. I’ll construct tables which show how the truth or falsity of a statement built 

with these connective depends on the truth or falsity of its components. 

Here’s the table for negation: 

P ~ P 

T F 

F T 

This table is easy to understand. If P is true, its negation ~ P is false. If P is false, then ~ P is 

true. 

P  Q should be true when both P and Q are true, and false otherwise: 

 

P Q P  Q 

T T T 

T F F 

F T F 

F F F 

P  Q is true if either P is true or Q is true (or both). It’s only false if both P and Q are false. 

 

P Q P  Q 

T T T 

T F T 

F T T 

F F F 

Here’s the table for logical implication: 

 

P Q P → Q 

T T T 

T F F 

F T T 

F F T 

To understand why this table is the way it is, consider the following example: ―If you get an 

A, then I’ll give you a dollar.‖ The statement will be true if I keep my promise and false if I 

don’t.  

Suppose it’s true that you get an A and it’s true that I give you a dollar. Since I kept my 

promise, the implication is true. This corresponds to the first line in the table.  

Suppose it’s true that you get an A but it’s false that I give you a dollar. Since I didn’t keep 

my promise, the implication is false. This corresponds to the second line in the table.  

What if it’s false that you get an A? Whether or not I give you a dollar, I haven’t broken my 

promise. Thus, the implication can’t be false, so (since this is a two-valued logic) it must be 

true. This explains the last two lines of the table. 
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P ↔ Q means that P and Q are equivalent. So the double implication is true if P and Q are 

both true or if P and Q are both false; otherwise, the double implication is false  

 

P Q P ↔ Q 

T T T 

T F F 

F T F 

F F T 

You should remember — or be able to construct — the truth tables for the logical 

connectives. You’ll use these tables to construct tables for more complicated sentences. It’s 

easier to demonstrate what to do than to describe it in words, so you’ll see the procedure 

worked out in the examples. 

 

Remark 1. When you’re constructing a truth table, you have to consider all possible 

assignments of True (T) and False (F) to the component statements. For example, suppose the 

component statements are P, Q, and R. Each of these statements can be either true or false, so 

there are 2
3  

= 8 possibilities. When you’re listing the possibilities, you should assign truth 

values to the component statements in a systematic way to avoid duplication or omission. The 

easiest approach is to use lexicographic ordering. Thus, for a compound statement with three 

components P, Q, and R, I would list the possibilities this way: 

 

P Q R 

T T T 

T T F 

T F T 

T F F 

F T T 

F T F 

F F T 

F F F 

Remark 2. There are different ways of setting up truth tables. You can, for instance, write the 

truth values ―under‖ the logical connectives of the compound statement, gradually building up 

to the column for the ―primary‖ connective. I’ll write things out the long way, by constructing 

columns for each ―piece‖ of the compound statement and gradually building up to the 

compound statement. 

 

Example. Construct a truth table for the formula ~ P  (P → Q). 

 

P Q ~ P P → Q ~ P  (P → Q) 

T T F T F 

T F F F F 

F T T T T 

F F T T T 
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Summary 

 

A statement is a sentence that is either true or false. A closed sentence is an objective 

statement which is either true or false. An open sentence is a statement which contains a 

variable and becomes either true or false depending on the value that replaces the variable.  

The negation of statement P is ―not P‖, symbolized by ~ P. A statement and its negation have 

opposite truth values. 

A conjunction is a compound statement formed by joining two statements with the connector 

―and‖. The conjunction ―P and Q‖ is symbolized by P  Q. A conjunction is true when both 

of its combined parts are true; otherwise it is false. 

A disjunction is a compound statement formed by joining two statements with the connector 

―or‖. The disjunction ―P or Q‖ is symbolized by P  Q. A disjunction is false if and only if 

both statements are false; otherwise it is true. 

A conditional statement, symbolized by P → Q, is an if-then statement in which P is a 

hypothesis and Q is a conclusion. The conditional is defined to be true unless a true 

hypothesis leads to a false conclusion. 

A biconditional statement is defined to be true whenever both parts have the same truth value. 

The biconditional operator is denoted by a double-headed arrow ↔. The biconditional P ↔ Q 

represents ―P if and only if Q‖ where P is a hypothesis and Q is a conclusion.  

B2 Problem Set 

 

Problem 1. Given 

(i) R = ―I am an honor student‖, S = ―I play football‖, 

(ii) R = ―I eat cold cereal for breakfast‖, S = ―I play football‖, 

(iii) R = ―I love mathematics‖, S = ―I can dance the samba‖, 

(iv) R = ―I like winter‖,  S = ―I live in Vitebsk‖, 

(v) R = ―I am a famous singer‖, S = ―I work in a hospital‖. 

Write the statement represented by each of the following 

(a)  R ______________________________________________________ 

(b) R  S ______________________________________________________ 

(c) R   S ______________________________________________________ 

(d)  R  S ______________________________________________________ 

(e) R  S ______________________________________________________ 

(f) R   S ______________________________________________________ 

 

Problem 2. (i) Given 

A = ―y < 6‖, 

B = ―y > 1‖. 

Let the domain U = {1, 2, 3, 4, 5, 6, 7}. 

(a) For what values y is A  B true? __________________________________ 

(b) For what values y is A  B true? __________________________________ 

 

(ii) Given 

C = ―z  8‖, 

D = ―z > 4‖. 

Let the domain U = {4, 5, 6, 7, 8, 9}. 

(a) For what values z is C  D true? __________________________________ 

(b) For what values z is C  D true? __________________________________ 
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(iii) Given 

M = ―t < 4‖, 

N = ―t  0‖. 

Let the domain U = {–1, 0, 1, 2, 3, 4}. 

(a) For what values t is M  N true? __________________________________ 

(b) For what values t is M  N true? __________________________________ 

 

(iv) Given 

P = ―x < 4‖, 

Q = ―x > 1‖. 

Let the domain U = {1, 2, 3, 4, 5}. 

(a) For what values x is P  Q true? __________________________________ 

(b) For what values x is P  Q true? __________________________________ 

 

(v) Given 

R = ―v > 0‖, 

S = ―v < –1‖. 

 

Let the domain U = {–4, –3, –2, –1, 0, 1}. 

(a) For what values v is P  Q true? __________________________________ 

(b) For what values v is P  Q true? __________________________________ 

 

Problem 3. Create the following truth table for the statements given in problem 1.  

 

R S  R R  S  S R   S  R  S R  S R   S 

T T        

T F        

F T        

F F        

 

Problem 4. Complete the truth table below using your knowledge of symbolic logic.  

 

P Q  Q P  Q P  Q P → Q Q → P P ↔ Q P →  Q P  Q → P P  Q → Q 

T T          

T F          

F T          

F F          

 

Problem 5. Construct a truth table for  

 

(a) ( P  Q) → P, 

P Q  P  P  Q ( P  Q) → P 

T T    

T F    

F T    

F F    
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(b) ( P ↔ Q) → P, 

P Q  P  P ↔ Q ( P ↔ Q) → P 

T T    

T F    

F T    

F F    

(c)  Q   Q  P, 

P Q  Q  Q  P  Q   Q  P 

T T    

T F    

F T    

F F    

 

(d)  ( P → Q), 

P Q  P  P → Q  ( P → Q) 

T T    

T F    

F T    

F F    

 

(e) P ↔ (Q ↔  P), 

P Q  P Q ↔  P P ↔ (Q ↔  P) 

T T    

T F    

F T    

F F    

 

(f) P  (Q   P), 

P Q  P Q   P P  (Q   P) 

T T    

T F    

F T    

F F    

 

(g) P   Q  P  Q, 

P Q  Q P   Q P  Q P   Q  P  Q 

T T     

T F     

F T     

F F     
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(h) P ↔  Q   P, 

P Q  Q  P  Q   P P ↔  Q   P 

T T     

T F     

F T     

F F     

 

(i) (P   Q) → (P  Q), 

 

P Q  Q P   Q P  Q (P   Q) → (P  Q) 

T T     

T F     

F T     

F F     

(j) P  Q  P   Q   P   Q. 

 

P Q P  Q  Q P   Q  P  P   Q P  Q  P   Q P  Q  P   Q   P   Q 

T T        

T F        

F T        

F F        

 

Problem 6. Construct a truth table for  

(a) P  Q → P  R, 

P Q R P  Q P  R P  Q → P  R 

T T T    

T T F    

T F T    

T F F    

F T T    

F T F    

F F T    

F F F    

(b) P   Q ↔ R, 

P Q R  Q P   Q P   Q ↔ R 

T T T    

T T F    

T F T    

T F F    

F T T    

F T F    

F F T    

F F F    
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(c) P ↔ ((Q → P)  R), 

P Q R Q → P (Q → P)  R P ↔ ((Q → P)  R) 

T T T    

T T F    

T F T    

T F F    

F T T    

F T F    

F F T    

F F F    

 

(d) P  Q  R →  Q, 

P Q R P  Q P  Q  R  Q P  Q  R →  Q 

T T T     

T T F     

T F T     

T F F     

F T T     

F T F     

F F T     

F F F     

(e) P ↔ Q   R ↔ Q, 

P Q R  R Q   R P ↔ Q   R P ↔ Q   R ↔ Q 

T T T     

T T F     

T F T     

T F F     

F T T     

F T F     

F F T     

F F F     

(f)  P → (P  Q   R), 

 

P Q R  R P  Q P  Q   R  P  P → (P  Q   R) 

T T T      

T T F      

T F T      

T F F      

F T T      

F T F      

F F T      

F F F      
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(g) P  Q   R  R, 

P Q R  R P  Q P  Q   R P  Q   R  R 

T T T     

T T F     

T F T     

T F F     

F T T     

F T F     

F F T     

F F F     

 

(h) (P   Q) → (Q   R), 

P Q R  Q P   Q  R Q   R (P   Q) → (Q   R) 

T T T      

T T F      

T F T      

T F F      

F T T      

F T F      

F F T      

F F F      

 

(i)  (P →  Q) → (P →  R), 

P Q R  Q P →  Q  (P →  Q)  R P →  R  (P →  Q) → (P →  R) 

T T T       

T T F       

T F T       

T F F       

F T T       

F T F       

F F T       

F F F       

 

(j) (P ↔ Q   R)  ( Q → R). 

P Q R  R Q   R P ↔ Q   R  Q  Q → R (P ↔ Q   R)  ( Q → R) 

T T T       

T T F       

T F T       

T F F       

F T T       

F T F       

F F T       

F F F       
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A3 Logical Equivalence 

 

 

A tautology is a formula which is ―always true‖ — that is, it is true for every assignment of 

truth values to its simple components. You can think of a tautology as a rule of logic. The 

opposite of a tautology is a contradiction, a formula which is ―always false‖. In other words, 

a contradiction is false for every assignment of truth values to its simple components. 

 

Example 1. Show that (P → Q)  (Q → P) is a tautology. 

 

I construct the truth table for (P → Q)  (Q → P) and show that the formula is always true. 

 

P Q P → Q Q → P (P → Q)  (Q → P) 

T T T T T 

T F F T T 

F T T F T 

F F T T T 

 

The last column contains only T’s. Therefore, the formula is a tautology. 

 

Two statements X and Y are logically equivalent if X ↔ Y is a tautology. Another way to say 

this is: For each assignment of truth values to the simple statements which make up X and Y, 

the statements X and Y have identical truth values.  

 

From a practical point of view, you can replace a statement in a proof by any logically 

equivalent statement.  

 

To test whether X and Y are logically equivalent, you could set up a truth table to test whether 

X ↔ Y is a tautology — that is, whether X ↔ Y ―has all T’s in its column‖. However, it’s 

easier to set up a table containing X and Y and then check whether the columns for X and for Y 

are the same. 

 

Example 2. Show that P → Q and ~ P  Q are logically equivalent. 

 

P Q P → Q ~ P ~ P  Q 

T T T F T 

T F F F F 

F T T T T 

F F T T T 

 

Since the columns for P → Q and ~ P  Q are identical, the two statements are logically 

equivalent. This tautology is called Conditional Disjunction. You can use this equivalence to 

replace a conditional by a disjunction. 

 

There are an infinite number of tautologies and logical equivalences; I’ve listed a few below. 
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List of Tautologies 
 

 Symbolic form Name 

1 P   P Law of the excluded middle 

2  (P   P) Contradiction 

3 [(P → Q)  P] → Q Modus ponens 

4 [(P → Q)  ~Q] → ~ P Modus tollens 

5 ~ ~ P ↔ P Double negation 

6 [(P → Q)  (Q → R)] → (P → R) Law of the syllogism 

7 

(P  Q) → P Decomposing a conjunction 

(P  Q) → Q Decomposing a conjunction 

8 

P → (P  Q) Constructing a disjunction 

Q → (P  Q) Constructing a disjunction 

9 (P ↔ Q)↔[(P → Q)  (Q → P)] Definition of the biconditional 

10 (P  Q) ↔ (Q  P) Commutative law for   

11 (P  Q) ↔ (Q  P) Commutative law for  

12 [(P  Q)  R]↔ [P  (Q  R)] Associative law for   

13 [(P  Q)  R]↔ [P  (Q  R)] Associative law for  

14 ~ (P  Q) ↔ (~ P  ~ Q) DeMorgan’s law 

15 ~ (P  Q) ↔ (~ P  ~ Q) DeMorgan’s law 

16 [P  (Q  R)] ↔ [(P  Q)  (P  R)] Distributivity 

17 [P  (Q  R)] ↔ [(P  Q)  (P  R)] Distributivity 

18 (P → Q) ↔ (~ Q → ~ P) Contrapositive 

19 (P → Q) ↔ (~ P  Q) Conditional disjunction 

20 [(P  Q)  ~ P] → Q Disjunctive syllogism 

21 (P  P) ↔ P Simplification 

22 (P  P) ↔ P Simplification 

 

When a tautology has the form of a biconditional, the two statements which make up the 

biconditional are logically equivalent. Hence, you can replace one side with the other without 

changing the logical meaning. 
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Example 3. Write down the negation of the following statements, simplifying so that only 

simple statements are negated. 

 
(a) (P  ~ Q) ~ (P  ~ Q) ↔ ~ P  ~ ~ Q 

 

↔ ~ P  Q 

DeMorgan’s law 

 

Double negation 

 

(b) (P  Q) → R ~ [(P  Q) → R] ↔ ~  [~ (P  Q)  R] 

 

↔ ~ ~ (P  Q)  ~ R 

 

↔ (P  Q)  ~ R 

Conditional Disjunction 

 

DeMorgan’s law 

 

Double negation 

I showed that (A → B) and (~ A  B) are logically equivalent in an earlier example. 

 

Example 4. Use DeMorgan’s Law to write the negation of the following statement, 

simplifying so that only simple statements are negated: ―If Phoebe buys a pizza, then Bob 

buys popcorn.‖ 

 

Let P be the statement ―Phoebe buys a pizza‖ and let C be the statement ―Bob buys popcorn‖. 

The given statement is P → C. To simplify the negation, I’ll use the Conditional Disjunction 

tautology which says 

 

(P → Q) ↔ (~ P  Q). 

 

That is, I can replace P → Q with ~ P  Q (or vice versa). Here, then, is the negation and 

simplification: 

 

~ (P → C) ↔ ~ (~ P  C) 

 

↔ ~ ~ P ~ C 

 

↔ P ~ C  

Conditional Disjunction 

 

DeMorgan’s Law 

 

Double negation 

 

The result is ―Phoebe buys the pizza and Bob doesn’t buy popcorn‖. 

 

Example 5. Show that the inverse and the converse of a conditional are logically equivalent. 

Let P → Q be the conditional. The inverse is ~ P →~ Q. The converse is Q → P. 

I could show that the inverse and converse are equivalent by constructing a truth table for  

(~ P → ~ Q) ↔ (Q → P). 

I’ll use some known tautologies instead. 

Start with ~ P → ~ Q: 

 

~ P → ~ Q ↔ ~ ~ Q → ~ ~ P  

 

↔ Q → P 

Contrapositive 

 

Double negation 

 

Remember that I can replace a statement with one that is logically equivalent. For example, in 

the last step I replaced ~ ~ Q with Q, because the two statements are equivalent by Double 

negation. 
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Remark. Suppose we know that a statement of the form P → Q is true. This tells us that 

whenever P is true, Q will also be true. By itself, P → Q being true does not tell us that either 

P or Q is true (they could both be false, or P could be false and Q true). However if in 

addition we happen to know that P is true then it must be that Q is true. This is called a 

logical inference: Given two true statements we can infer that a third statement is true. In this 

instance true statements P → Q and P are ―added together‖ to get Q. This is described below 

with P → Q and P stacked one atop the other with a line separating them from Q. The 

intended meaning is that P → Q combined with P produces Q. 

 

B3 Problem Set 

 

Problem 1. Answer questions 1 through 7 based on the truth table above (see B2.Problem 4). 

1. Which statement is negation?______________________________________ 

2. Which statements are conditionals?_________________________________ 

3. Which statement is a disjunction?__________________________________ 

4. Which statement is a biconditional?_________________________________ 

5. Which statement is a conjunction?__________________________________ 

6. Which statements are logically equivalent?___________________________ 

7. Which statement is a tautology?____________________________________ 

 

Problem 2. In each case, determine whether the statement is true or false. Explain your 

answers. 

(a) ―If 2 1.414 , then John likes bagels with lox and cream cheese.‖ 

(b) ―If 4 2 , then 9 3  .‖ 

(c) ―If 11
2
 = 121, then 11 12 121  .‖ 

(d) ―If 3 is a divisor of 12, then 12  3.‖ 

(e) ―If 2 – 5 = – 3, then C++ is a computer game.‖ 

(f) ―If 5 > 4, then 5 > 2.‖ 

(g) ―If 1 + 1 = 3, then dogs can fly.‖ 

(h) ―If Juan has a smartphone, then 2 + 3 = 5.‖ 

(i) ―If 5 > – 1, then Wolfgang Mozart is a dancer.‖ 

(j) ―If  is a real number, then Abuja is the capital of Nigeria.‖ 

Note: You should not need a truth table to do this problem. 

 

Problem 3. Use DeMorgan’s laws to negate each statement, then write the negation in words. 

(a) ―Bob buys the stromboli or Sam does not eat the hamburger.‖ 

(b) ― is not rational and (sin x)
2
 + (cos x)

2
 = 53.‖ 

(c) ―If Sam has chicken pox, then the class will be dismissed.‖ 

(d) ―Tomas learns discrete mathematics and Tomas will find a good job.‖ 

(e) ―2 is a divisor of 15 or 7 is a divisor of 15.‖ 

(f) ―If  is a rational number, then  is a real number.‖ 

(g) ―Heather will go to the concert and Steve will go to the concert.‖ 

(h) ―If Jan is rich, then Jan is happy.‖ 

(i) ―2.5 + 1 = 3.5 and 2.5 + 0.01 = 2.51.‖ 

(j) ―– 5 > – 10 or an apple is blue.‖ 

In (c), (f) and (h) use conditional disjunction to write the ―if-then‖ statement as an ―or‖ 

statement first. 
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Problem 4. Use DeMorgan’s laws to simplify the statement, so that only simple statements (if 

any) are negated. 

 

(a)  (P   (Q  R)), 

(b)  (A  B  C), 

(c)  (R  S)   (R   T), 

(d)  ((P  Q)  (Q  R)), 

(e)  (R  S  T   R   T), 

(f)  (P → Q)  (Q →  R), 

(g)  (P → Q →  R), 

(h)  (P   Q  Q  R   Q), 

(i) (A   B → C) →  A, 

(j)  (P  Q → R) → (P → Q → R). 

 

In (f), (g), (i) and (j) use conditional disjunction to write the ―if-then‖ statement as an ―or‖ 

statement first. 

 

Problem 5. Use a truth table to prove: 

 

(a) PQ and (PQ) are logically equivalent (this is a version of DeMorgan’s law), 

(b) P  Q  P and P are logically equivalent, 

(c) P → Q and  P  Q are not logically equivalent, 

(d)  (P → Q) and  P  Q are not logically equivalent, 

(e) P  Q and (P   Q)  ( P  Q)  (P  Q) are logically equivalent, 

(f) P ↔ Q and ( P  Q)  ( Q  P)  are logically equivalent, 

(g) (P → Q) → R and P → (Q → R) are not logically equivalent, 

(h) (P → Q)  (Q → R) and P → R are not logically equivalent, 

(i) (P  Q)   Q  R and P   Q  R are logically equivalent, 

(j) (P   Q)  ( P  R) and P  R   Q   P   Q  R are logically equivalent. 

 

Problem 6. Use a (single) truth table to show: 

 

(a) R   R is a tautology, 

(b) R →  R is a not tautology, 

(c) (R  S) → (R  S) is a not tautology, 

(d) (R  S) → (R  S) is a tautology, 

(e)  (R  S) ↔ ( R   S) is a tautology, 

(f) R → (S → R  S) is a tautology, 

(g) ( R →  S) ↔ (S → R) is a tautology, 

(h) (R → S) → ((S → T) → (R → T)) is a tautology, 

(i)  (P  Q  R) →  P   Q   R is a not tautology, 

(j) (S → T) → ((R  S) → (R  T)) is a tautology. 
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A4 Quantifiers 

 

Here is a (true) statement about real numbers: 

Every real number is either rational or irrational. 

I could try to translate the statement as follows: Let 

P = ―x is a real number‖ 

Q = ―x is rational‖ 

R = ―x is irrational‖ 

The statement can be expressed as the implication P → (Q  R). 

 

The simple statements contain a variable x, and you might find it difficult to translate these 

statements without using a variable (or, what is the same thing, a pronoun). The reason is that 

the original statement is meant to apply to every element of a set — in this case, every 

element of the set of real numbers. 

 

You can see that I’m cheating in making my translation: ―x is a real number‖ is not a single 

statement about a uniquely specified object ―x‖. It is a different kind of statement than ― is a 

real number‖, which talks about a specific real number . 

 

I can use quantifiers to translate statements like these so as to capture this meaning. 

Mathematicians use two quantifiers: 

 

, the universal quantifier, which is read ―for all‖, ―for every‖, or ―for each‖. 

, the existential quantifier, which is read ―there is‖ or ―there exists‖. 

 

Here are some examples which show how they’re used. 

 

Example 1. Let P(x) mean ―x likes pizza‖. Then: 

x(P(x)) means ―Everyone likes pizza‖. 

x(P(x)) means ―Someone likes pizza‖. 

 

Note that if ―Someone likes pizza‖ is true, it may be true that ―Everyone likes pizza‖. On the 

other hand, if ―Everyone likes pizza‖ — and assuming that the set of people is nonempty — it 

must be true that ―Someone likes pizza‖. 

 

~ x(P(x)) means ―Not everyone likes pizza‖. 

~ x(P(x)) means ―No one likes pizza‖. 

 

Again, if ―Not everyone likes pizza‖, it may be true that ―No one likes pizza‖. On the other 

hand, if ―No one likes pizza‖, it must be true that ―Not everyone likes pizza.‖ Note also that if 

―Not everyone likes pizza,‖ it may be true that ―Someone likes pizza.‖ 

 

Example 2. Translate the statement ―Every real number is either rational or irrational‖ using 

universal or existential quantifiers. Then determine whether the statement is true or false. 

 

Let R(x) = ―x is rational‖ and I(x) = ―x is irrational‖. The statement may be translated as  

x(R(x)  I(x)). 
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(Some people prefer to write the initial x as a subscript: x(R(x)  I(x)). Use whichever form 

you prefer.) Here are the details. 

First, when you use a quantifier you do so within the context of some universe of applicable 

objects. For this statement, the universe would be the set of real numbers. (It would be of little 

use to let x be a car, or an orange, or the right to freedom of speech.)  

How do you know what the universe is for a given quantified statement? Sometimes, it is 

apparent from the context: In a mathematical discussion, it would probably be clear that the 

statement above was intended to apply to real numbers. In any case where confusion might 

arise, you should name the universe for quantification explicitly. In this case, the first part of 

the statement (―Every real number‖) makes it clear that the universe is the set of real numbers. 

Notice that there is no conditional (―→‖) in the quantified translation.  

The statements R(x) and I(x) depend on the variable x. That is, R(3) would mean ―3 is 

rational‖, R( 5 ) would mean ― 5 is rational‖ and so on. R(x) and I(x) are called one-place 

predicates or single variable predicates. Finally, note that while this statement happens to be 

true, truth value is distinct from how you translate the statement. 

 

If you know a quantified statement is true, you can draw certain conclusions. 

 

Universal Quantifiers. If you know xP(x), then for any element c in the universe, P(c) is 

true. Thus, if a and b are elements of the universe, P(a) is true and P(b) is also true. 

 

Existential Quantifiers. If you know xP(x), then you can say there is an element c such that 

P(c). In a proof, you will usually say something like: ―Let c satisfy P(c)‖, or ―Let c be such 

that P(c)‖. When you say ―Let c ... ‖, you create an element named c — in this case, satisfying 

P(c). From then on, c acts like a constant. In particular, you can’t assign a value to it 

arbitrarily. 

 

In addition, the existence statement only guarantees the existence of at least one thing 

satisfying P(x). So having said ―Let c satisfy P(c)‖, you can’t say in addition ―And let d satisfy 

P(d)‖, since this creates another thing d which satisfies P(x). On the other hand, you can’t 

assume that c is the only thing which satisfies P(x). Thus, there might be an element d such 

that P(d) — but you’re not justified in saying there is. 

 

Example 3. Let P(x) mean ―x likes pepperoni‖, and let O(x) mean ―x likes onions‖. Translate 

each statement into logical symbols. 

 

(a) ―Some people don’t like pepperoni.‖ The statement is that there are people who don’t 

like pepperoni. In logical symbols, this is x (~ P(x)). 

 

(b) ―Everyone who likes pepperoni likes onions.‖ The statement means that if someone 

likes pepperoni, then the person likes onions. In logical symbols, this is  

x(P(x) → O(x)). 

 

(c) ―Everyone likes pepperoni and onions.‖ The statement means that everybody likes 

both pepperoni and onions. In logical symbols, this is x(P(x)  O(x)). 

 

Do you understand the difference between the statements in (b) and (c)? In (b), you know that 

if there is a person who likes pepperoni, then the person likes onions. But there might not be 

anyone who likes pepperoni! In (c), everyone likes both pepperoni and onions, so in 

particular, there are certainly many people who like pepperoni. 
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Remark. What is the negation of ―Everyone likes pizza‖?  

Let P(x) mean ―x likes pizza‖. The statement may be written in quantified form as x(P(x)). 

The negation is (literally) ~ x(P(x)): ―It is not the case that everyone likes pizza.‖ What does 

this mean? 

A common mistake is to think that this means ―No one likes pizza‖. However, ask yourself 

what it would take to show that the original statement was false. If I knew, for instance, that 

Bob doesn’t like pizza, that’s enough to prove that ―Everyone likes pizza‖ is false. 

In other words, for ―Everyone likes pizza‖ to be false — or equivalently, for ―It is not the case 

that everyone likes pizza‖ to be true — it’s enough if I find someone who doesn’t like pizza. 

So the negation actually means ―There exists someone who doesn’t like pizza‖ — in symbols, 

x(~ P(x)). 

 

Let Q(x) mean ―x likes lasagne‖. What is the negation of ―Someone likes lasagne‖? 

In symbols, ―Someone likes lasagne‖ becomes x(Q(x)). The negation is ~ x(Q(x)). In 

words, this is: ―It is not the case that someone likes lasagne‖. This is the same as ―No one 

likes lasagne‖, which is x(~ Q(x)). 

To summarize: 

 

[~ x(P(x))] ↔ [x(~ P(x))] 

[~ x(P(x))] ↔ [x(~ P(x))] 

 

In other words, to negate a quantified statement, change the quantifier to the ―other‖ 

quantifier —  to  and  to  — and negate the ―stuff inside‖. 

B4 Problem Set 

 

Problem 1. (a) Show by specific counterexample that the following universal statement about 

real numbers is false: 

(i)  x  R [(x – 3)
2
 > 0], 

(ii)  x  R (4x > 4), 

(iii)  x  R (sin x < 1), 

(iv)  n  N [n(n + 1) = n
2
 + 1], 

(v)  k  Z (2.5k = 25). 

 (b) Show by specific example that the following existence statement about real numbers is 

true: 

(i)  x  R (x
2
 = –x

2
), 

(ii)  x  R (x
2
 + 1 > 26), 

(iii)  x  R (0.1x > 2), 

(iv)  m  N (m < 3), 

(v)  m  N (m + 1 is a prime number). 

 

Problem 2. Suppose 

C(x) = ―x likes chicken‖, 

H(x) = ―x likes ham‖, 

D (x, y) means ―x has dinner with y‖, 

I(x) = ―x has an Internet connection‖, 

T(x,y) = ―x and y have chatted over the Internet‖. 
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(a) Translate the following logical statements into words: 

(i)  x (H(x)  C(x)), 

(ii)  x (H(x) → C(x)), 

(iii)  x (T(x, Daria)), 

(iv)  x (T(x, Nikita) ↔ T(x, Anna)), 

(v)  x ( y (T(x,y) → I(x))). 

 

(b) Translate the following statements into logical symbols: 

(i) ―Some people don’t like either chicken or ham.‖ 

(ii) ―Someone has dinner with everyone who likes chicken.‖ 

(iii) ―Not everyone has an Internet connection.‖ 

(iv) ―Someone does not have an Internet connection.‖ 

(v) ―Someone has an Internet connection but has not chatted with anyone.‖ 

 

Problem 3. Negate each quantified statement, simplifying so that only the simple statements 

are negated. Show each step of your work. 

(a)  x ( ~ P(x)  Q(x)), 

(b)  x (Q(x) → ~ P(x)), 

(c)  x ( ~ Q(x)  P(x)), 

(d)  x ( ~ Q(x) → ~ P(x)), 

(e)  x ( ~ (Q(x) → P(x))), 

(f)  x (P(x)  ~ Q(x)), 

(g)  x ( ~ Q(x)  P(x)), 

(h)  x ( ~ P(x) → Q(x)), 

(i)  x ( ~ (P(x)  ~ Q(x))), 

(j)  x ( ~ P(x)  ~ Q(x)). 

 

Problem 4. In each case, negate the given statement, simplify so that only simple statements 

are negated, and write the answer in words. Show your work! 

(a) ―Everyone likes hot dogs and onion rings.‖ 

(b) ―There’s someone who likes hot dogs but doesn’t like onion rings.‖ 

(c) ―There is someone who can speak Russian and who knows C++.‖ 

(d) ―There is someone who can speak Russian but who doesn’t know C++.‖ 

(e) ―Everyone either can speak Russian or knows C++.‖ 

(f) ―No one can speak Russian or knows C++.‖ 

(g) ―For all integers n, n > 0 and 5n < 1.‖ 

(h) ―There exists an integer k such that k > 3 and k
2
 < 2.‖ 

(i) ―For each natural number k, if k < 3 then k is a prime number‖. 

(j) ―For all natural numbers n, if n is divisible by 2 then n
2
 is divisible by 4.‖ 
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II Sets 

A5 Introduction to Sets 

 

All of mathematics can be described with sets. This becomes more and more apparent the 

deeper into mathematics you go. It will be apparent in most of your upper level courses, and 

certainly in this course. The theory of sets is a language that is perfectly suited to describing 

and explaining all types of mathematical structures. 

A set is a collection of things. The things in the collection are called elements of the set. We 

are mainly concerned with sets whose elements are mathematical entities, such as numbers, 

points, functions, etc. A set is often expressed by listing its elements between commas, 

enclosed by braces.  

 

Example 1. The collection {2, 4, 6, 8} is a set which has four elements, the numbers 2, 4, 6 

and 8. Some sets have infinitely many elements. For example, consider the collection of all 

integers, {..., –4, –3, –2, –1, 0, 1, 2, 3, 4, ...}. 

 

Here the dots indicate a pattern of numbers that continues forever in both the positive and 

negative directions. A set is called an infinite set if it has infinitely many elements; otherwise 

it is called a finite set. 

Two sets are equal if they contain exactly the same elements.  

 

Example 2. {2, 4, 6, 8} = {4, 2, 8, 6} because even though they are listed in a different order, 

the elements are identical; but {2, 4, 6, 8}  {2, 4, 6, 7}. Also 

 

{..., –4, –3, –2, –1, 0, 1, 2, 3, 4, ...} = {0, –1, 1, –2, 2, –3, 3, –4, 4, ...}. 

 

We often let uppercase letters stand for sets. In discussing the set {2, 4, 6, 8} we might 

declare A = {2, 4, 6, 8} and then use A to stand for {2, 4, 6, 8}. To express that 2 is an element 

of the set A, we write 2  A, and read this as ―2 is an element of A,‖ or ―2 is in A,‖ or just ―2 

in A.‖ We also have 4  A, 6  A and 8  A, but 5  A. We read this last expression as ―5 is 

not an element of A,‖ or ―5 not in A.‖ Expressions like 6, 2  A or 2, 4, 8  A are used to 

indicate that several things are in a set. 

Here is some notation for some sets that occur often in mathematics. 

N is the set of natural numbers. 

Z is the set of integers. 

Q is the set of rational numbers. 

R is the set of real numbers. 

C is the set of complex numbers. 

Sets need not have just numbers as elements. The set B = {T, F} consists of two letters, 

perhaps representing the values ―true‖ and ―false.‖ The set C = {a, e, i, o, u} consists of the 

lowercase vowels in the English alphabet. 

If X is a finite set, its cardinality or size is the number of elements it has, and this number is 

denoted as |X|. Thus for the sets above, |A| = 4, |B| = 2 and |C| = 5. 
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There is a special set that, although small, plays a big role. The empty set is the set {} that has 

no elements. We denote it as  so  = {}. Whenever you see the symbol  it stands for {}. 

Observe that || = 0. The empty set is the only set whose cardinality is zero. 

 

A special notation called set-builder notation is used to describe sets that are too big or 

complex to list between braces.  

Example 3. Consider the infinite set of even integers E = {..., –6, –4, –2, 0, 2, 4, 6, ...}. 

In set-builder notation this set is written as E = {2n : n  Z}. We read the first brace as ―the 

set of all things of form,‖ and the colon as ―such that.‖ So the expression E = {2n : n  Z} is 

read as ―E equals the set of all things of form 2n, such that n is an element of Z.‖ The idea is 

that E consists of all possible values of 2n, where n takes on all values in Z.  

In general, a set X written with set-builder notation has the syntax X = {expression : rule}, 

where the elements of X are understood to be all values of ―expression‖ that are specified by 

―rule.‖ 

Remark 1. You have to be a little bit careful in constructing sets in order to avoid set-

theoretic paradoxes. The philosopher and mathematician Bertrand Russell (1872–1970) did 

groundbreaking work on the theory of sets and the foundations of mathematics. He was 

probably among the first to understand how the misuse of sets can lead to bizarre and 

paradoxical situations. He is famous for an idea that has come to be known as Russell’s 

paradox.  

Consider ―the set S of all sets which are not members of themselves‖. Is S an element of S? If 

S is an element of S, then by definition S is not a member of itself — contradicting my 

assumption that S is an element of S. If S is not an element of S, then S is an element of S, 

since S consists of sets which are not members of themselves. This is also a contradiction. By 

the Law of the Excluded Middle, either S is an element of S, or it is not — but both 

alternatives lead to contradictions. Paradoxes of this kind are avoided by setting up axioms for 

set theory which do not allow the construction of sets such as this one. 

Given two sets A and B, it is possible to ―multiply‖ them to produce a new set denoted as 

A × B. This operation is called the Cartesian product. To understand it, we must first 

understand the idea of an ordered pair.  An ordered pair is a list (x, y) of two things x and y, 

enclosed in parentheses and separated by a comma.  

 

Example 4. For example, (2, 4) is an ordered pair, as is (4, 2). These ordered pairs are 

different because even though they have the same things in them, the order is different. We 

write (2, 4)  (4, 2).  

The Cartesian product of two sets A and B is another set, denoted as A × B and defined as 

A × B ={(a, b) : a  A, b  B}. Thus A × B is a set of ordered pairs of elements from A and B.  

Example 5.  If A = {k, l, m} and B = {q, r}, then  

A × B = {(k, q), (k, r), (l, q), (l, r), (m, q), (m, r)}. 

For another example, {0, 1}×{2, 1} = {(0, 2), (0, 1), (1, 2), (1, 1)}. 

 

Remark 2. If A and B are finite sets, then |A × B| = |A|·|B|. 

We can also define Cartesian products of three or more sets by moving beyond ordered pairs. 

An ordered triple is a list (x, y, z). The Cartesian product of the three sets R, N and Z is  

R × N × Z = {(x, y, z) : x  R, y  N, z  Z}. 

Of course there is no reason to stop with ordered triples. In general,  

A1 × A2 × … × An = {(x1, x2, ..., xn) : xi  Ai for each i = 1, 2, ..., n}. 

We can also take Cartesian powers of sets. For any set A and positive integer n, the power A
n
 

is the Cartesian product of A with itself n times: 

A
n
 = A × A × … × A = {(x1, x2, ..., xn) : x1, x2, ..., xn  A}. 

Ре
по
зи
то
ри
й В
ГУ



32 

B5 Problem Set 

 

Problem 1. Write each of the following sets by listing their elements between braces. What is 

the cardinality of each of these sets? 

(a) {x  N : – 2  x < 7}, 

(b) {x  Z : – 2  x < 7}, 

(c) {x  R : x
2
 = 4}, 

(d) {x  R : (x – 3)(2x – 5)(x + 11) = 0}, 

(e) {x : x is the square of an integer and x < 100}, 

(f) {x : x is a positive integer less than 12}, 

(g) {5x – 1: x  N, x < 5}, 

(h) {x
2
: x  Z, | x |  6}, 

(i) {x : x  Z, x
2
 = 2}, 

(j) {x : x  R, x
2
 + 5 = 0}. 

 

Problem 2. Write each of the following sets in set-builder notation: 

(a) {2, 4, 8, 16, 32, 64, …}, 

(b) {0.1, 0.01, 0.001, 0.0001, …}, 

(c) {…, – 6, – 3, 0, 3, 6, 9, 12, …}, 

(d) {0, 1, 4, 9, 16, 25, 36, …}, 

(e) {1, 3, 5, 7, 9, …}, 

(f) {0, 4, 16, 36, 64, 100, …}, 

(g) {8, 9, 10, 11, … , 35, 36}, 

(h) {3, 4, 5, 6, 7, 8}, 

(i) {– 4, – 3, –2, –1, 0, 1, 2}, 

(j) {… , 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, …}. 

 

Problem 3. Write out the indicated sets by listing their elements between braces. 

(a) {1, 2, 3, 4} × {a, c}, 

(b) {a, c} × {1, 2, 3, 4}, 

(c) {1, 2, 3, 4} × {1, 2, 3, 4}, 

(d) {1, 2, 3, 4} × , 

(e) {1, 2, 3, 4} × {1, 2, 3, 4} × {a, c}, 

(f) {a, c}
3
, 

(g) {x  R : x
2
 = 4} × {1, 5}, 

(h) {x  Q : x
2
 = 4} × {1, 5}, 

(i) {x  Z : – 3 < x < 3} × {x
2
: x  Z, | x | = 6}, 

(j) {x  Z : – 2  x  2} × {x
2
: x  Z, | x |  2}. 

Problem 4. Sketch these Cartesian products on the x-y plane R
2
 (or R

3
 for the last two). 

(a) {1, 2, 3} × {– 1, 0, 1}, 

(b) {– 1, 0, 1} × {1, 2, 3}, 

(c) [0, 1] × [0, 1], 

(d) [– 1, 1] × [1, 2], 

(e) {1, 1.5, 2} × [1, 2], 

(f) [1, 2] × {1, 1.5, 2}, 

(g) {1} × [– 3, 3], 

(h) Z × {2}, 

(i) [0, 1] × [0, 1] × [0, 1], 

(j) {(x, y)  R
2
 : x

2
 + y

2
  1} × [0, 1]. 
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A6 Subsets 

 

It can happen that every element of some set A is also an element of another set B. For 

example, each element of A = {0, 2, 4} is also an element of B = {0, 1, 2, 3, 4}. When A and B 

are related this way we say that A is a subset of B. 

 

Definition 1. Suppose A and B are sets. If every element of A is also an element of B, then we 

say A is a subset of B, and we denote this as A  B. We write A  B if A is not a subset of B, 

that is, if it is not true that every element of A is also an element of B. Thus A  B means that 

there is at least one element of A that is not an element of B. 

 

Remark 1. Some people use ―T ⊂ S‖ to mean that T is a subset of S, but is not equal to S. A 

subset of S other than S itself is called a proper subset of S. With this convention, you write 

T  S mean that T is a subset of S, possibly S itself. 

 

Example 1. Be sure you understand why each of the following is true. 

1. {2, 3, 7}  {2, 3, 4, 5, 6, 7}. 

2. {2, 3, 7}  {2, 4, 5, 6, 7}. 

3. {2, 3, 7}  {2, 3, 7}. 

4. {2n : n  Z}  Z. 

 

This brings us to a significant fact: If B is any set whatsoever, then   B. To see why this is 

true, look at the last sentence of Definition 1. It says that   B would mean that there is at 

least one element of  that is not an element of B. But this cannot be so because  contains 

no elements! Thus it is not the case that   B, so it must be that   B. 

 

Remark 2. The empty set is a subset of every set, that is,   B for any set B. Here is another 

way to look at it. Imagine a subset of B as a thing you make by starting with braces {}, then 

filling them with selections from B. For example, to make one particular subset of B = 

{a, b, c}, start with {}, select b and c from B and insert them into {} to form the subset {b, c}. 

Alternatively, you could have chosen just a to make {a}, and so on. But one option is to 

simply select nothing from B. This leaves you with the subset {}. Thus {}  B. More often we 

write it as   B. 

 

Remark 3. If a finite set has n elements, then it has 2
n
 subsets. 

 

Given a set, you can form a new set with the power set operation, defined as follows. 

Definition 2. If A is a set, the power set of A is another set, denoted as P(A) and defined to be 

the set of all subsets of A. In symbols, P(A) ={X : X  A}. 

 

Example 2. Suppose A = {1, 2, 3}. The power set of A is the set of all subsets of A. We 

learned how to find these subsets in the previous section, and they are {}, {1}, {2}, {3}, 

{1, 2}, {1, 3}, {2, 3} and {1, 2, 3}. Therefore the power set of A is  

P(A) = {, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. 

As we saw the previous remark, if a finite set A has n elements, then it has 2
n
 subsets, and 

thus its power set has 2
n
 elements. 
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Remark 4. I If A is a finite set, then |P(A)| = 2
|A|

.  

 

Example 3. You should examine the following statements and make sure you understand how 

the answers were obtained. In particular, notice that in each instance the equation |P(A)| = 2
|A|   

is true.  

1. P({0, 1, 3}) = {, {0}, {1}, {3}, {0, 1}, {0, 3}, {1, 3}, {0, 1, 3}}. 

2. P({1, 2}) = {, {1}, {2}, {1, 2}}. 

3. P({1}) = {, {1}}. 

4. P() = {}. 

 

If A is finite, it is possible (though maybe not practical) to list out P(A) between braces as was 

done in the above example. That is not possible if A is infinite. 

 

Example 4. For example, consider P(N). If you start listing its elements you quickly discover 

that N has infinitely many subsets, and it’s not clear how (or if) they could be arranged as a 

list with a definite pattern: 

P(N) = {, {1}, {2}, …, {1, 2}, {1, 3}, …., {39, 47}, …, {3, 87, 131}, …, ?, …}. 

 

 

B6 Problem Set 

 

Problem 1. Decide if the following statements are true or false. Explain. 

(a) {2, 3, 5}  {2, 3, 5, 8, 10}, 

(b) {– 5, 0, 10, 25, 35}  Z, 

(c) {2, 4, 8, 16}  {2
n
  : n  N}, 

(d) Z  N, 

(e) Q  R, 

(f) {x  R : 2x
2
 + 1 = 0}  {1, 2, 5}, 

(g) {– 5, 5}  {x  R : x
2
 = 25}, 

(h) {(x, y) : x
2
 – 1 = 0}  {(x, y) : x

2
 – x = 0}, 

(i) [0, 1] × [0, 1] × [1, 2]  R
3
, 

(j) R
2
  R

3
. 

 

Problem 2. Find the indicated sets. 

(a) P({1, 5}), 

(b) P({x, y, z}), 

(c) P({3, 9, 27, 81}), 

(d) P({5m – 8 : m  N, 3 < m < 7}), 

(e) P({4
x
 : x  R, (2x – 1)(x – 2)(x + 2) = 0}), 

(f) P({x  R : x
2
 = 5}), 

(g) P({x  N : x
2
 = 5}), 

(h) P({a, b} × {1, 2}), 

(i) P({1, 2} × {3}), 

(j) P({1, 5, 9} × ). 
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A7 Venn Diagrams  

 

In thinking about sets, it is sometimes helpful to draw informal, schematic diagrams of them. 

In doing this we often represent a set with a circle (or oval), which we regard as enclosing all 

the elements of the set. Such diagrams can illustrate how sets combine using various 

operations. Such graphical representations of sets are called Venn diagrams, after their 

inventor, British logician John Venn, 1834–1923. Though you are unlikely to draw Venn 

diagrams as a part of a proof of any theorem, you will probably find them to be useful 

―scratch work‖ devices that help you to understand how sets combine, and to develop 

strategies for proving certain theorems or solving certain problems. 

This picture illustrates T ⊂ S: 

 
When one is discussing sets, there is usually a ―big set‖ which contains all the sets under 

discussion. This ―big set‖ is usually called the universe; usually, it will be clear from the 

context what it is. For example, if I’m discussing sets of integers, the universe is the set of 

integers Z. If I’m discussing sets of real numbers, the universe is the set of real numbers R. 

 

Definition 1. Let S and T be sets in the universe X. The complement of S is the set of elements 

of the universe which are not contained in S; it is denoted S  or X − S. Thus, 

S   = {x  X : x S}. 

 

The complement of S in T is the set of elements of T which are not elements of S; it is denoted 

T − S. Thus, 

T – S = {x  T : x S}. 

Here’s a picture; the shaded area is T − S. 
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Set complements function likes logical negations; the analogy even extends to DeMorgan’s 

Laws, as I’ll show below. 

Example 1. If X is the universe, X  =   and   = X.    

 

Example 2. Let the universe be {1, 2, 3, 4, apple}. Then  

}apple,3,2{}4,1{    and   }.4,1{}apple,3,2{   

In fact, for any set S, .SS   In this situation, },apple,3,2{}4,1{   but  }.apple,3,2{}4,1{   

 

Definition 2. Let S and T be sets. The union of S and T is the set whose elements are elements 

of S or elements of T; it is denoted .TS   That is,  

TS  = {x : x  S or x  T}. 

Picture: 

 
Definition 3. Let S and T be sets. The intersection of S and T is the set whose elements are 

elements of both S and T; it is denoted .TS   That is, 

TS  = {x : x  S and  x  T}. 

Picture: 

 
Note that the ―or‖ and ―and‖ in the last two definitions are the logical ―or‖ and ―and‖. 

 

Example 3. Let S = {1, 2, 3, 4, 5}, let T be the set of even integers, and suppose the universe 

is Z. Then 

 .,10,8,6,5,4,3,2,1,0,2,4,6,8,  TS   .4,2TS   
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 .5,3,1TS   .4 and 2except  integerseven  all ST   .integersoddallT  

 

Remark 1. Here are the Venn diagrams for some set constructed using complements, unions, 

and intersection: 

 

 
  

 

CBA   CBA  )(  )( BAC   )( CAB   

 

Remark 2. Important points:  

 

1) If an expression involving sets uses only ,  then parentheses are optional. 

2) If an expression involving sets uses only ,  then parentheses are optional. 

3) If an expression uses both   and ,  then parentheses are essential. 

 

Students in their first advanced mathematics classes are often surprised by the extensive role 

that sets play and by the fact that most of the proofs they encounter are proofs about sets. 

Perhaps you’ve already seen such proofs in your linear algebra course, where a vector space 

was defined to be a set of objects (called vectors) that obey certain properties. Your text 

proved many things about vector spaces, such as the fact that the intersection of two vector 

spaces is also a vector space, and the proofs used ideas from set theory. As you go deeper into 

mathematics, you will encounter more and more ideas, theorems and proofs that involve sets.  

 

There are a lot of rules involving sets; you’ll probably become familiar with the most 

important ones simply by using them a lot. Usually you can check informally (for instance, by 

using a Venn diagram) whether a rule is correct; if necessary, you should be able to write a 

proof. In most cases, you can give a proof by going back to the definitions of set constructions 

in terms of elements. 
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B7 Problem Set 

 

Problem 1. Decide if the following statements are true or false. Explain. 

(a) 5  {1, 5, 10} {2, 4, 11}, 

(b) 5  {1, 5, 10} {2, 4, 11}, 

(c) 4  {2, 4, 6, 8} – {1, 2, 8}, 

(d) 2   R – Q,  

(e) 3  Z – N,  

(f) 2.5  R – Q, 

(g) 5  {x  R : x > 4}   {x  R : x + 2 = 10}, 

(h) – 2  {x  R : x > 4}   {x  R : x + 2  0}, 

(i) (1, 1)   ({1, 5} {2}) × N,  

(j)N = Z   N. 

 

Problem 2. Suppose 

(i) A = {4, 3, 6, 7, 1, 9}, B = {5, 6, 8, 4}, C = {5, 8, 4}; 

(ii) A = {0, 2, 4, 6, 8}, B = {1, 3, 5, 7}, C = {2, 8, 4}. 

Find: 

(a) A   B, (b) A   B, (c) A – B, (d) A – C, (e) B – A, 

(f) A   C, (g) B   C, (h) B   C, (i) C – A, (j) C – B. 

 

Problem 3. Suppose 

(i) A = {4, 3, 6, 7, 1, 9}, B = {5, 6, 8, 4}, the universe U = {0, 1, 2, … , 10}; 

(ii) A = {0, 2, 4, 6, 8}, B = {1, 3, 5, 7}, the universe U = {0, 1, 2, … , 8}. 

Find: 

 

(a) A , (b) B , (c) A   A ,  

(d) A   A ,  (e) A – A , (f) A – B , 

(g) A  – B ,      (h) A B , (i) A B , 

(j) A B .   

 

 

Problem 4. Draw a Venn diagram for: 

 

(a) A , (b) B – A, (c) A B , 

(d) ( )A B C  , (e) ( )A B C , (f) A B C , 

(g) A B C  , (h) A B C  , (i) ( ) ( )A B A C   , 

(j) ( )A B C  .   
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Glossary 
 

biconditional 

statement 

A biconditional statement is defined to be true whenever both 

parts have the same truth value. The biconditional operator is 

denoted by a double-headed arrow  ↔ . 

cardinality of a set The cardinality of a set is the number of elements in the set. 

The cardinality of S is denoted by |S| 

complement of a 

set 

Given set A, the complement of A is the set of all elements in 

the universal set that are not in A, denoted by А . 

conditional 

statement 

A conditional statement, symbolized by p → q, is an if-then 

statement in which p is a hypothesis and q is a conclusion. 

disjunction A disjunction is a compound statement formed by joining two 

statements with the connector "or". The disjunction of p and q 

is denoted by p  q. 

empty set The empty set (or null set) is the set which contains no objects 

and is denoted by . 

finite set A finite set has a finite (bounded) number of elements. 

infinite set An infinite set is a set with an infinite (countless) number of 

elements. 

intersection The intersection of two sets is the set of all the elements they 

have in common. The intersection of S and T is denoted by 

S T . 

negation The negation of statement p is "not p", denoted by ~ p. 

proper subset If the set A is a subset of B, but is not equal to B, then A is said 

to be a proper subset of B and it is denoted by A  B. 

set A set is a collection of objects that have something in common 

or follow a rule. 

set equality For any two sets, if A is a subset of B and B is a subset of A, 

then A = B. Thus A and B are equivalent. 

set-bulder notation Set-builder notation is a shorthand used to write sets, often sets 

with an infinite number of elements. 

statement A statement is a sentence that is either true or false, but not 

both simultaneously. 

subset The set A is a subset of B if and only if every element of A is 

also an element of B. We use the notation A  B to indicate that 

A is a subset of the set B. 

union The union of two sets S and T, denoted by TS  , is the set of 

elements which are in S or in T or in both. 

universe A universe is the set of all elements under consideration, 

denoted by capital U. 

Venn diagram In a Venn diagram sets are represented by shapes; usually 

circles or ovals. The elements of a set are labelled within the 

circle. Venn diagrams are especially useful for showing 

relationships between sets. 

truth table A truth table helps us find all possible truth values of a statement. 

Each statement is either true (T) or false (F), but not both. 
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