Описание штарковского расщепления мультиплетов иона Pr³⁺ в кристаллах La₂O₃ и Pr₂O₃

Л.А. Фомичева, А.А. Корниенко, Е.Б. Дунина

Учреждение образования «Витебский государственный технологический университет»

С учетом влияния возбужденной конфигурации противоположной четности и конфигураций с переносом заряда выполнено описание итарковской структуры мультиплетов иона Pr³⁺ в кристаллах La₂O₃ и Pr₂O₃. Для этого используется модифицированный гамильтониан кристаллического поля, применение которого для описания экспериментальных данных позволяет уменьшить среднеквадратичное отклонение на 49% и 57% для La₂O₃ и Pr₂O₃ соответственно по сравнению со стандартными теориями. Из описания итарковской структуры уровней получены параметры кристаллического поля четной и нечетной симметрии, а также параметры ковалентности.

Ключевые слова: эффект Штарка, кристаллическое поле, мультиплет.

Description of Stark splitting of multiplates of Pr^{3+} in La₂O₃ and Pr₂O₃ crystals

L.A. Fomitcheva, A.A. Korniyenko, E.B. Dunina

Educational Institution Vitebsk State Technological University

At description of multiplate Stark structure of Pr^{3+} ion in La₂O₃ and Pr_2O_3 crystal the influence of an excited opposite parity configuration and configurations with charge transfer is taken into account. For this purpose the modified crystal field Hamiltonian is used. The application of this Hamiltonian allows reducing a root-mean-square deviation by 49% and 57% for La₂O₃ and Pr_2O_3 correspondingly in comparison with standard theories. From description of Stark structure the crystal field parameters of even and odd symmetry as well as covalence parameters are obtained.

Key-words: Stask effect, crystal field, multiplate.

Вработе [1] выполнено описание кри-сталлического поля систем La₂O₃:Pr³⁺ и Pr₂O₃ с учетом и без учета влияния 4f2/4f6p конфигурационного взаимодействия. В целом получены хорошие результаты, но при таком описании не принимается в расчет влияние конфигураций противоположной четности и эффектов ковалентности, которые играют определяющую роль в формировании интенсивностей f-f переходов. С целью устранения данного недостатка в данной работе выполнено описание штарковской структуры мультиплетов иона Pr^{3+} в La₂O₃ и Pr₂O₃ с учетом влияния возбужденной конфигурации противоположной четности и конфигураций с переносом заряда. Такой подход позволяет получить хорошее согласие теоретических данных с экспериментальными, и при этом определить параметры кристаллического поля нечетной симметрии и параметры ковалентности, с помощью которых можно вычислить интенсивности f-f переходов.

Материал и методы. В приближении слабого конфигурационного взаимодействия описание экспериментальных данных по штарковской структуре выполняют с помощью гамильтониана:

$$H_{cf} = \sum_{k=2,4,6} \sum_{q=-k}^{k} B_q^k C_q^k , \qquad (1)$$

где B_q^k – параметры кристаллического поля, C_q^k – сферические тензоры.

Условие слабого конфигурационного взаимодействия для 4f-элементов не выполняется, так как энергии возбужденных конфигураций порядка энергий высоко лежащих мультиплетов. Влияние возбужденных конфигураций более детально учитывается в приближении промежуточного [2] и сильного [3] конфигурационного взаимодействия.

Приближение сильного конфигурационного взаимодействия [3] позволяет получить хорошее согласие с экспериментом, если определяющий вклад в параметры межконфигурационного взаимодействия дает лишь одна возбужденная конфигурация или несколько возбужденных конфигураций с близкими значениями энергии. Если же возбужденные конфигурации имеют существенно разные энергии, то эффективный гамильтониан имеет более сложный вид [4]:

Таблица 1

		$La_2O_3:Pr^{3+}$			Pr ₂ O ₃					
$^{2S+1}L_{J} \\$	Е _{эксп,} [1]	$E_{3\kappa c \pi} - E_{pac 4 1}$	$E_{3\kappa c \pi} - E_{pac 42}$	$^{2S+1}L_{J} \\$	Е _{эксп,} [1]	$E_{3\kappa c \pi} - E_{pac 4 1}$	$E_{3\kappa c \pi} - E_{pac 42}$			
$^{3}H_{4}$	0	-23	-5	³ H ₄	0	3	3			
114	110	-23	-18	114	117	-3	-3			
	472	51	7	_	_	(417)	(412)			
	573	26	2	_	_	(553)	(556)			
	644	33	1	-	_	(606)	(595)			
	707	23	5	_	_	(799)	(741)			
³ H ₅	2215	10	14	³ H ₅	-	(1858)	(1878)			
	2247	-7	-3		-	(1912)	(1917)			
	2353	-35	-27		-	(2060)	(2056)			
	2551	8	7		-	(2226)	(2238)			
	2635	32	18		-	(2275)	(2248)			
	2676	-10	-14		-	(2398)	(2393)			
	-	(2754)	(2749)		-	(2561)	(2493)			
³ H ₆	4292	-9	-1	³ H ₆	_	(4253)	(4288)			
	4343	-19	-19		_	(4318)	(4344			
	4460	-25	-6		4427	-18	-5			
	-	(4650)	(4631)		-	(4639)	(4576)			
	4644	-22	-6		-	(4642)	(4698)			
	-	(4844)	(4857)		-	(4824)	(4821)			
	4916	9	1		4946	18	5			
	-	(4968)	(4973)		-	(5103)	(4964)			
3	-	(4978)	(5007)		-	(5109)	(5077)			
³ F ₂	5165	10	9	$^{3}F_{2}$	5193	34	1			
	-	(5276)	(5268)	_	-	(5321)	(5271)			
³ F ₃	5269	-10	_9	³ F ₃	5302	-34	-1			
	6479	-16	2		6483	-15	4			
	6526	-55	4		6536	-29	4			
	0012	10	-2		0039	15	-4			
		(6706)	(6722)			(0008)	(0009)			
${}^{3}F_{4}$	60/0	(0700)	(0732)	³ F ₄	_	(6034)	(6958)			
	6949	1	-10		6071	(0934)	(0938)			
	7047		0		7065	_13	-2			
	/04/	(7144)	(7148)	_	7005	(7142)	(7147)			
	7179	-5		-	7214	14	10			
	7243	-24	2	_	7279	-8	2			
$^{1}G_{4}$	9771	32	12	${}^{1}G_{4}$	9768	11	2			
-4	9771	3	-4	-4	9768	-4	-1			
	9906	-45	-7	_	9901	-20	2			
	_	(10101)	(10094)		_	(10105)	(10033)			
	10184	2	3		10198	22	-1			
	10364	-32	-12		10419	-11	-2			
$^{1}D_{2}$	16370	3	8	$^{1}D_{2}$	16342	17	1			
	16829	-4	-8		16824	-27	-5			
	16930	-3	-8		16951	-17	-1			
${}^{3}P_{0}$	20274	0	0	${}^{3}P_{0}$	20252	0	0			
${}^{3}P_{1}$	-	(21023)	(21012)	${}^{3}P_{1}$	-	(20928)	(20809)			
	-	(21058)	(21053)		-	(20970)	(20878)			
$^{1}I_{6}$	20741	7	10	$^{1}I_{6}$	20687	-37	1			
	20821	5	-3		20795	-5	3			
	20916	24	0		20887	-23	1			
	-	(20949)	(20956)			(20992)	(20933)			
	-	(21208)	(21111)		-	(21164)	(21047)			
	-	(21308)	(21304)		-	(21347)	(21415)			
	-	(21541)	(21552)		-	(21670)	(21755)			
	21924	3	16	_	21910	37	-1			
	21924	-7	-10		-	(22149)	(22272)			
$^{J}P_{2}$	-	(21870)	(21844)	³ P ₂	_	(22042)	(22137)			
	22168	0	0	4	22182	0	0			
		(22257)	(22253)			(22275)	(22249)			
S 0	I —	(46935)	(47/190)	-So		(4694())	(47/432)			

Сравнение экспериментальных [1] и вычисленных уровней энергии в приближении слабого (1) и аномально сильного конфигурационного взаимодействия (2) систем La₂O₃:Pr³⁺ и Pr₂O₃. Все величины даны в см⁻¹

Таблица 2

	B_q^k	B_{0}^{2}	B_0^4	B_3^4	B_{0}^{6}	B_{3}^{6}	B_{6}^{6}
La_2O_3 :Pr ³⁺	(1)	-850	693	1446	489	-102	250
	(2)	-682	1209	1979	1007	-428	364
Pr ₂ O ₃	(1)	-1173	527	1455	687	-237	219
	(2)	-1063	638	1469	596	-287	605
	$S_t^p \times 10^4$	S_0^1	S_{0}^{3}	S_{3}^{3}	S_{0}^{5}	S_{3}^{5}	
$La_2O_3:Pr^{3+}$	(2)	362	703	833	1363	-546	
Pr ₂ O ₃	(2)	183	-145	210	538	-138	
		γ _{σf}	$\gamma_{\pi f}$	Δ_d	Δ_{c1}	Δ_{c2}	Δ_{c3}
$La_2O_3:Pr^{3+}$	(2)	-0.0100	0.0141	44942	6626	7137	10244
Pr ₂ O ₃	(2)	-0.0099	0.0149	46803	5471	6514	20970

Параметры гамильтонианов кристаллического поля (1) и (2). Параметры B_0^k , Δ_d , Δ_{ci} в см⁻¹, параметры $S_t^{\ p} = B_t^{\ p} / \Delta_d$, $\gamma_{\sigma f}$, $\gamma_{\pi f}$ – безразмерные

$$H_{cf} = \sum_{k,q} \left\{ B_q^k + \left(\frac{\Delta_d^2}{\Delta_d - E_J} + \frac{\Delta_d^2}{\Delta_d - E_{J'}} \right) \widetilde{G}_q^k \, \textcircled{P} \right\} + \sum_i \left(\frac{\Delta_{ci}^2}{\Delta_{ci} - E_J} + \frac{\Delta_{ci}^2}{\Delta_{ci} - E_{J'}} \right) \widetilde{G}_q^k \, \textcircled{P} \right\} C_q^k.$$

$$(2)$$

Здесь Δ_d – энергия конфигурации 4f^{N-1}5d, параметры $\tilde{G}_q^k(d)$ можно оценить по формуле [2]:

$$\begin{split} \widetilde{G}_{q}^{k}(d) &= -\frac{2k+1}{2\left\langle f \left\| c^{k} \right\| f \right\rangle} \sum_{p',p''} \sum_{t',t''} (-1)^{q} \begin{pmatrix} p' & p'' & k \\ t' & t'' & -q \end{pmatrix} \times \\ &\times \begin{cases} p' & p'' & k \\ f & f & d \end{cases} \left\langle f \left\| c^{p'} \right\| d \right\rangle \left\langle d \right\| c^{p''} \left\| f \right\rangle \frac{B_{t'}^{p'}(d)}{\Delta_{d}} \frac{B_{t''}^{p''}(d)}{\Delta_{d}}, \end{split}$$

где $B_t^p(d)$ – параметры кристаллического поля нечетной симметрии.

Влияние конфигураций с переносом заряда зависит от энергии конфигурации Δ_{ci} , от симметрии окружения

$$\widetilde{\widetilde{G}}_{q}^{k}(c) = \sum_{b} \widetilde{J}^{k}(b) C_{q}^{k^{*}} \boldsymbol{\Theta}_{b}, \boldsymbol{\Phi}_{b},$$

а также от параметров ковалентности $\gamma_{\sigma f}$ и $\gamma_{\pi f}$ [5]:

$$\begin{split} \widetilde{J}^{2}(b) &\approx \frac{5}{28} \left[\gamma_{\sigma f}^{2} + 3\gamma_{\pi f}^{2} \right], \\ \widetilde{J}^{4}(b) &\approx \frac{3}{14} \left[\gamma_{\sigma f}^{2} + \gamma_{\pi f}^{2} \right], \\ \widetilde{J}^{6}(b) &\approx \frac{13}{28} \left[\gamma_{\sigma f}^{2} - 3\gamma_{\pi f}^{2} \right], \end{split}$$

где углы Θ_b, Φ_b задают направление на лиганд.

Ионы Pr³⁺ имеют незаполненную 4f²-оболочку, состояния которой распределены по тринадцати мультиплетам (табл. 1). Характер расщепления мультиплетов и количество штарковских компонент зависят от симметрии поля. В кристаллах La_2O_3 и Pr_2O_3 ионы Pr^{3+} занимают позиции с локальной симметрией C_{3v} . Минимальное количество варьируемых параметров для этой симметрии в гамильтониане (1) равно шести.

Результаты и их обсуждение. Расчеты в приближении слабого и промежуточного конфигурационного взаимодействия не позволили получить удовлетворительное описание штарковской структуры мультиплетов иона Pr³⁺ в кристаллах La₂O₃ и Pr₂O₃. Наилучшего описания штарковской структуры удается достичь с помощью гамильтониана (2), полученного в приближении аномально сильного конфигурационного взаимодействия (табл. 1). Стандартное среднеквадратичное отклонение в этом случае составляет σ =12,23 см⁻¹ для La₂O₃:Pr³⁺ и $\sigma = 9,6$ см⁻¹ для Pr_2O_3 , т.е. соответственно на 49% и 57% меньше среднеквадратичного отклонения, полученного при описании штарковских уровней в приближении слабого конфигурационного взаимодействия.

При описании экспериментальных данных в приближении слабого конфигурационного взаимодействия в качестве варьируемых выступали шесть параметров кристаллического поля B_0^k (табл. 2).

При описании штарковских уровней с помощью гамильтониана (2) кроме шести параметров кристаллического поля B_0^k варьируемыми являются пять параметров кристаллического поля нечетной симметрии B_t^p , параметры ковалентности $\gamma_{\sigma f}$ и $\gamma_{\pi f}$, а также энергии Δ_d , Δ_{ci} , соответствующие возбужденным конфигурациям (табл. 2). Обращает на себя внимание тот факт, что значения варьируемых энергий Δ_{ci} близки к энергиям тех мультиплетов, описание расщепления которых в приближении слабого конфигурационного взаимодействия было неудовлетворительным.

Заключение. Таким образом, в результате исследования установлено, что наилучшее описание штарковского расщепления мультиплетов иона Pr^{3+} в La₂O₃ и Pr_2O_3 достигается в приближении аномально сильного конфигурационного взаимодействия (2), в котором учитывается влияние возбужденных конфигураций противоположной четности и конфигураций с переносом заряда. При таком подходе в отличие от метода, использованного в работе [1], удается также получить параметры кристаллического поля нечетной симметрии и параметры ковалентности, на основе которых можно вычислить параметры интенсивностей. На основе параметров интенсивностей можно выполнить предсказание наиболее эффективных каналов генерации лазерного материала, что важно для оптимального выбора активной среды.

ЛИТЕРАТУРА

- 1. Electronic transitions, crystal field analysis and anomalous levels splittings in the optical spectrum of Pr^{3+} in La₂O₃ and $Pr_2O_3 / O.K.$ Moune [et. al.] // J. Lumin. 1999. Vol. 85. P. 59–70.
- Корниенко, А.А. Зависимость штарковской структуры от энергии мультиплетов / А.А. Корниенко, Е.Б. Дунина // Письма в ЖЭТФ. – 1994. – Т. 59, № 6. – С. 385–388.
- Корниенко, А.А. Влияние межконфигурационного взаимодействия на кристаллическое поле Ln³⁺-ионов / А.А. Корниенко, А.А. Каминский, Е.Б. Дунина // ЖЭТФ. – 1999. – Т. 116, № 6. – С. 2087–2102.
- Dunina, E.B. Modified theory of f-f transition intensities and crystal field for systems with anomalously strong configuration interaction / E.B. Dunina, A.A. Kornienko, L.A. Fomicheva // Cent. Eur. J. Phys. – 2008. – Vol. 6, № 3. – P. 407–414.
- Корниенко, А.А. Определение параметров интенсивности по тонким деталям штарковской структуры энергетического спектра иона Tm³⁺ в Y₃Al₅O₁₂ / А.А. Корниенко, Е.Б. Дунина // Опт. и спектр. – 2004. – Т. 97, № 1. – С. 75–82.

Поступила в редакцию 29.06.2010 Адрес для корреспонденции: 210021, г. Витебск, пер. Торфяный, д. 6, е-mail: a_a_kornienko@mail.ru – Корниенко А.А.