Влияние индексов нормализаторов несубнормальных 2- и 3-максимальных подгрупп на строение конечной группы

В.С. Монахов, Т.В. Бородич

Учреждение образования «Гомельский государственный университет им. Ф. Скорины»

Рассматриваются только конечные группы. Все обозначения и определения соответствуют принятым в [1–2].

В 1962 году П.И. Трофимов предложил исследовать свойства группы в зависимости от наибольшего общего делителя (в дальнейшем НОД) d(G) порядков всех классов ненормальных сопряженных подгрупп. В работах [3–4] он установил признаки непростоты, разрешимости и сверхразрешимости группы G c d(G)>1. В частности, им доказано, что если d(G)>1, то d(G) – простое число и G сверхразрешима.

Эти исследования нашли отклик в работе К. Геринга [5], в которой получен следующий критерий: d(G)=p является простым числом тогда и только тогда, когда справедливы следующие утверждения: а) существует нормальная подгруппа N такая, что G/N циклическая, |G/N| делит p-1 и N=P × D, где P — силовская p-подгруппа в G и D дедекиндова; b) каждая нормальная подгруппа из P нормальна в G; c) G/P дедекиндова; d) G/D не дедекиндова. Отсюда при p=2 получается следствие: тогда и только тогда d(G)=2, когда G является прямым произведением недедекиндовой 2-группы и абелевой 2'-группы. Напомним, что дедекиндовой называется группа, в которой все подгруппы нормальны.

- В.А. Ведерников [6] развил это направление, исследовав свойства группы в зависимости от НОД порядков не всех классов ненормальных сопряженных подгрупп, а только некоторых из них. При этом ему удалось не только обобщить результаты П.И. Трофимова и К. Геринга, но и получить новые признаки разрешимости и частичной сверхразрешимости группы с ограничениями на НОД порядков классов максимальных и 2-максимальных ненормальных сопряженных подгрупп. Из результатов работы [6] приведем следующие: если $d_2(G)>1$, то $d_2(G)$ простое число и G сверхразрешима; тогда и только тогда $d_2(G)=p$, где p наименьший простой делитель порядка G, когда
- G является прямым произведением абелевой р'-группы и недедекиндовой р-группы. Здесь $d_2(G)$ НОД порядков всех классов ненормальных максимальных сопряженных подгрупп и порядков всех классов ненормальных примарных сопряженных подгрупп группы G.
- В.А. Ведерников [6] также предложил через $D_k(G)$ обозначать НОД порядков всех классов ненормальных сопряженных k-максимальных подгрупп. Он установил разрешимость группы в каждом из следующих случаев: $D_1(G) \neq 1$; $D_2(G) \neq 1$; $D_3(G)$ делится на квадрат простого числа. Группа с $D_3(G) \neq 1$ может быть неразрешимой, примером служит простая группа A_5 порядка 60, у которой $D_3(A_5)=15$.

В настоящей работе развивается это направление. Здесь исследуются свойства группы в зависимости от НОД $D_k(G)$ порядков всех классов сопряженных несубнормальных k-максимальных подгрупп. Доказываются следующие две теоремы.

Теорема 1. Пусть G – группа и $D_2(G) \neq 1$. Тогда G разрешима и $n(G) \leq 3$. Кроме того, для $q \in \pi(D_2(G))$ справедливы следующие утверждения:

- 1) если силовская q-подгруппа Q нормальна в G, то G/Q либо нильпотентна, либо G/Q группа Шмидта с абелевыми собственными подгруппами;
- 2) если Q ненормальна в G, то Q максимальна и циклична, $|Q/O_q(G)| = q$ и $G/O_q(G) = [E_{p^s}]Z_q -$ группа Шмидта с абелевыми собственными подгруппами.

Теорема 2. Предположим, что $D_3(G) \neq 1$ и пусть простое число р делит $D_3(G)$. Тогда справедливы следующие утверждения:

- 1) если силовская р-подгруппа P нормальна в G, то G/P либо нильпотентна, либо изоморфна группе из **B**\B₄;
 - 2) если P ненормальна в G, то P-k-максимальная подгруппа для $k\leq 2$, $|P/O_p(G)|\leq p^2$, и либо
 - 2.1) P 2-максимальна и циклична, $|P/O_p(G)|=p$; либо

2.2) P максимальна, все 2-максимальные подгруппы из P субнормальны в G и $G/O_p(G)=(P/O_p(G))[G_p,O_p(G)/O_p(G)]$ – группа Фробениуса с дополнительным множителем $P/O_p(G)$.

Адрес для корреспонденции: 246050, г. Гомель, ул. Ланге, 5a, кв. 21, e-mail: monakhov@gsu.by – Монахов В.С.

Группа из теоремы 2 может быть неразрешимой, примером служит простая группа A_5 порядка 60, у которой D_3 (G)=15. Но группа G с D_3 (G) \neq 1 является разрешимой в каждом из следующих случаев: D_3 (G) — четное число; D_3 (G) делится на квадрат простого числа; p делит D_3 (G) и силовская

p-подгруппа самонормализуема, см. следствия 1–3. Кроме того, разрешимая группа G с $D_3^*(G) \neq 1$ имеет нильпотентную длину не выше 3, следствие 4.

Используемые обозначения и определения. Пусть k — натуральное число. Подгруппу H группы G называют k-максимальной в G, если существует цепочка подгрупп

$$G = G_0 \supset G_1 \supset \ldots \supset G_i \supset G_{i+1} \supset \ldots \supset G_k = H,$$

такая, что G_{i+1} максимальна в G_i для каждого i = 0, 1, ..., k-1.

НОД порядков всех классов сопряженных несубнормальных k-макси-мальных подгрупп группы G обозначим через $D_k^{\cdot}(G)$. Если все k-макси-мальные подгруппы субнормальны в G, либо их нет, то полагаем $D_k^{\cdot}(G)$ =0. Если G – простая группа, то $D_k(G)$ = $D_k^{\cdot}(G)$ для любого k. В общем случае $D_k(G) \neq D_k^{\cdot}(G)$. Например, если G – диэдральная группа порядка G0, то G0, G0

Говорят, что группа G дисперсивна, если она имеет нормальный ряд, факторы которого изоморфны силовским подгруппам. Группа G называется группой Фробениуса, если в ней найдется собственная подгруппа H, совпадающая со своим нормализаторам и взаимно простая со своими сопряженными подгруппами, отличными от H. Последние два условия эквивалентны следующему: $H \cap H^g$ =1 для всех $g \in GVH$. Группой Шмидта называют ненильпотентную группу, все собственные подгруппы которой нильпотентны.

Символами p и q всегда обозначаются различные простые числа, а δ – показатель p по модулю q. Напомним, что показателем числа p по модулю q называют такое наименьшее натуральное число δ , что q делит (p^{δ} - 1).

Класс **В** состоит из всех разрешимых групп с нильпотентными 2-максимальными подгруппами. Группы из этого класса перечислены в работе В. А. Белоногова [7], всего имеется 7 типов таких групп. Пусть B_i – группа из пункта i теоремы работы [7].

 Φ (X) — подгруппа Фраттини, а Z(X) — центр группы X. π (X) — множество всех простых делителей порядка группы X. Если H — подгруппа группы G, то $H_G = \bigcap_{x \in G} H^x$ — наибольшая нормальная в G подгруппа, содержащаяся в H, а H^G — подгруппа, порожденная всеми сопряженными с H подгруппами в группе G. Наибольшая разрешимая нормальная подгруппа в группе G обозначается через G(G). Конкретные группы обозначаются следующим образом: G0 — циклическая группа порядка G1, G2, G3 — элементарная абелева G4, G5, G6, G7, G7, G8, G9, G9

Влияние индексов нормализаторов несубнормальных 2-максималь-ных подгрупп на строение группы

Лемма 1. Пусть G – группа и N – ее нормальная подгруппа. Если $D_k^*(G) \neq 0$, то $D_k^*(G)$ делит $D_k^*(G/N)$.

Доказательство. Пусть $D_k^*(G/N) \neq 0$. Тогда существует несубнормальная k-максимальная подгруппа M/N. Ясно, что M — несубнормальная k-максимальная подгруппа в G. По определению $D_k^*(G)$ делит $|G:N_G(M)|=|G/N:N_{G/N}(M/N)|$. Итак, $D_k^*(G)$ делит $|G/N:N_{G/N}(M/N)|$ для каждой несубнормальной k-максимальной подгруппы M/N. Следовательно $D_k^*(G)$ делит $D_k^*(G)/N$.

Лемма 2. Тогда и только тогда $D_2^*(G) = 0$, когда G нильпотентна, или G является группой Шмидта с абелевыми собственными подгруппами.

Доказательство. Если $D_2^*(G)=0$, то все 2-максимальные подгруппы субнормальны в G, либо их нет. Пусть G ненильпотентна. Тогда все максимальные подгруппы в G нильпотентны и $G=[P]\left\langle y\right\rangle$ – группа Шмидта. В G максимальная подгруппа $M=\Phi\left(P\right)\times\left\langle y\right\rangle$ несубнормальна. Если Φ

 $(P) \neq 1$, то существует в Φ (P) подгруппа Φ_1 индекса p. Теперь $H = \Phi_1 \times \left\langle y \right\rangle$ будет 2-максимальной несубнормальной подгруппой в G, противоречие. Поэтому Φ (P)=1, P абелева, а значит все собственные подгруппы в G абелевы. Необходимость доказана.

Проверим достаточность. Если G нильпотентна, то в ней нет несубнормальных подгрупп и $D_2^{\, \cdot}(G)$ =0. Пусть G=[P]Q — группа Шмидта с абелевыми собственными подгруппами. Тогда P — минимальная нормальная подгруппа в G по теореме 1.5 [8]. Максимальные подгруппы в G — это в точности подгруппы Q^g , g G, и P X X Y максимальна в Y Y Сак как все собственные подгруппы из Y нормальны в Y Y нормальными в Y Y Максимальная подгруппа Y Y нормальна в Y и нильпотентна, поэтому все ее подгруппы субнормальны в Y

Доказательство **теоремы 1.** Вначале докажем утверждения 1 и 2. Ввиду леммы 2 считаем, что $D_2^*(G) \neq 0$.

- 1. По лемме 1 $D_2^*(G)$ делит $D_2^*(G/Q)$, поэтому q делит $D_2^*(G/Q)$. Но G/Q имеет порядок, не делящийся на q, поэтому $D_2^*(G/Q)$ =0 и G/Q либо нильпотентна, либо группа Шмидта с абелевыми собственными подгруппами по лемме 2.
- 2. Пусть Q ненормальна в G. Тогда ее нормализатор не совпадает с G и существует максимальная подгруппа H в G такая, что $Q \le N_G(Q) \le H$. Предположим, что $N_G(Q) \ne H$. Тогда $N_G(Q)$ содержится в некоторой максимальной подгруппе H_1 из H, и $H_1 = N_G(H_1)$, поэтому H_1 несубнормальна в G. Так как $Q \le N_G(Q) \le H_1 = N_G(H_1)$, то Q не делит $Q : H_1$, поэтому $Q : Q : H_2$ не делит $Q : H_3$.

Но $D_2^*(G)$ делит индекс нормализатора каждой несубнормальной 2-макси-мальной подгруппы, противоречие. Поэтому допущение неверно и $N_G(Q)=H$ максимальна в G. Предположим теперь, что $Q \neq H$ и пусть H_2 — максимальная в H подгруппа, содержащая Q. Тогда Q не делит $Q \in H$ и поэтому Q не делит $Q \in H$ и подгруппа $Q \in H$ и подгруппа Q субнормальна в Q по определению $Q \in H$ так как Q субнормальна в Q но субнормальная силовская подгруппа нормальна. Получили противоречие. Следовательно, допущение неверно и $Q = H = N_G(Q)$ максимальна в Q.

Пусть Q_1 — максимальная в Q подгруппа. Тогда Q_1 — вторая максимальная подгруппа в G. Так как $Q \le N_G(Q_1)$, то q не делит $|G:N_G(Q_1)|$. Поэтому Q_1 субнормальна в G. Ясно, что в этом случае Q_1 нормальна в G. Итак, каждая максимальная подгруппа из Q нормальна в G. Если Q нециклическая, то в ней существуют две максимальные подгруппы Q_1 и Q_2 , обе нормальна в G, поэтому $Q = Q_1$ Q_2 нормальна в G, противоречие. Следовательно, Q — циклическая подгруппа и $O_q(G)$ — максимальная подгруппа в Q.

Так как $Q=N_G(Q)$ и Q абелева, то по теореме IV.2.6 [2] в G существует нормальное q-дополнение $G_{q'}$. Теперь $G/O_q(G)=(Q/O_q(G))[G_{q'}O_q(G)/O_q(G)]$. Поскольку $|Q/O_q(G)|=q$ и $Q/O_q(G)$ максимальна в $G/O_q(G)$, то $G_{q'}O_q(G)/O_q(G)$ — минимальная нормальная подгруппа в $G/O_q(G)$. Поэтому $G/O_q(G)=[E_{n^\delta}]Z_q$ — группа Шмидта с абелевыми собственными подгруппами.

Ясно, что G разрешима. Пусть q делит $D_2^*(G)$. Если силовская q-подгруппа Q нормальна в G, то из утв. 1 получаем $n(G) \le 3$. Если Q не нормальна в G, то из утв. 2 получаем $n(G) \le 3$. Теорема 1 доказана.

Влияние индексов нормализаторов несубнормальных 3-максималь- ных подгрупп на строение группы

Лемма 3. Если $G \in \mathbf{B} \backslash B_{4}$, то G дисперсивна, метанильпотентна и $I_p(G)$ =1 для любого $p \in \pi$ G.

Доказательство. Из перечисленных в работе [7] свойств получаем, что группы из класса **В** $\$ B_4 дисперсивны и метанильпотентны. Хорошо известно, что если G метанильпотентна, то $I_p(G)$ =1 для любого $p \in \pi$ G.

Лемма 4. Группа B_4 обладает следующими свойствами: $n(B_4)=3;\ l_p(B_4)=1;\ l_q(B_4)=2;\ D_3^*(B_4)\neq 0.$ Д о к а з а т е л ь с т в о. Согласно п. 4 теоремы работы [7] группа

$$B_{4} = \left\langle a\right\rangle_{p^{1+\varepsilon}} \left([\left.P_{p^{\delta+\varepsilon}}\right.]\left\langle b\right\rangle_{q}\right), \, N_{G}(\left\langle b\right\rangle) = [\left\langle b\right\rangle]\left\langle a\right\rangle, \, |P:P'| = p^{\delta} \, , \, 0 \leq \varepsilon \leq 1.$$

Ясно, что $n(B_4)$ =3, $l_p(B_4)$ =2, $l_q(B_4)$ =1. Примером такой группы служит симметричная группа S_4 . Поскольку группа B_4 недисперсивна, то из теоремы 10 [9] получаем, что $D_3(B_4) \neq 0$.

Лемма 5. Если D_3 (G)=0, то G либо нильпотентна, либо изоморфна группе из класса $B \setminus B_4$.

Доказательство. Если $D_3^*(G)$ =0, то все 3-максимальные подгруппы субнормальны в G. Следовательно все 2-максимальные подгруппы нильпотентны. Если G неразрешима, то G изоморфна SL(2,5) или A_5 [10]. Несложно проверить, что $D_3^*(SL(2,5))$ =1 и $D_3^*(A_5)$ =15, противоречие. Следовательно, G разрешима и либо нильпотентна, либо $G \in \mathbf{B}$ [7]. Но теперь из леммы 4 следует, что $G \in \mathbf{B} \setminus B_4$.

Доказательство **теоремы 2.** 1. Пусть силовская p-подгруппа P нормальна в G. По лемме 1 D_3 (G) делит D_3 (G/P), поэтому p делит D_3 (G/P). Но G/P имеет порядок, не делящийся на p, поэтому D_3 (G/P)=0 и G/P либо нильпотентна, либо изоморфна группе из $\mathbf{B} \setminus B_4$ по лемме 5.

2. Пусть P ненормальна в G. Тогда ее нормализатор самонормализуем и не является субнормальной подгруппой. Так как p не делит $|G:N_G(P)|$, то P не 3-максимальна в G. Предположим, что P-k-максимальная подгруппа для $k \ge 4$. Если существует 3-максимальная подгруппа H в G такая, что $P \subset H \subseteq N_G(P)$, то, поскольку p не делит $|G:N_G(H)|$, H субнормальна G по определению $D_3^*(G)$. Но P нормальна в H, значит P нормальна в G, противоречие. Следовательно, $N_G(P)$ не является P-максимальной подгруппой в P-максимальная подгруппа, содержащая P-максимальная P-максимальная P-максимальная P-максимальна в P-максимальна в P-максимальной подгруппой для P-максимальна в P-максимальной подгруппой для P-максимальна в P-максимальной подгруппой для P

- 2.1. Пусть P-2-максимальная подгруппа в G. Тогда имеется цепочка подгрупп $P \subseteq N_G(P) \subset G$. Выберем в P максимальную подгруппу P_1 . Она будет 3-максимальной подгруппой в G. Так как $P \subseteq N_G(P_1)$, то P не делит $|G:N_G(P_1)|$. Поэтому P_1 субнормальна в G. Но теперь P_1^G нормальная в G P-подгруппа. Если $P_1 \neq P_1^G$, то $P = P_1^G$, противоречие. Значит $P_1 = P_1^G$. Таким образом, каждая максимальная подгруппа из P нормальна в P и P0 из P1 обе нормальные в P1 и P2 из P3 обе нормальнае в P3 из P4 пормальнае в P4 и P4 пормальнае в P6 и P5 нормальнае в P6 и P6 нормальнае в P9 и P6 нормальнае в P9 и P7 нормальнае в P9 и P9 нормальнае в P9 нормальнае в P9 и P9 нормальнае в P9 нормальнае в P9 и P9 нормальнае в P9 и P9 нормальнае в P9 нормальнае
- 2.2. Пусть P максимальна в G. Тогда $P = N_G(P)$. Предположим, что $|P| \ge p^3$. Тогда в P существует неединичная подгруппа P_2 такая, что P_2 нормальна в P и $P_2 3$ -максимальная подгруппа в G. Так как $N_G(P_2) = P$, то p не делит $|G:N_G(P_2)|$ и P_2 субнормальна в G. Теперь $P_2{}^G \subseteq O_p(G)$ и $|P/O_p(G)| \le p^2$. Если $|P| \le p^2$, то ясно, что $|P/O_p(C)| \le p^2$. Итак, в любом случае, $|P/O_p(G)| \le p^2$. Теперь в $G/O_p(G)$ подгруппа $P/O_p(G)$ совпадает со своим нормализатором. По теореме IV.2.6 [2] $G/O_p(G) = (P/O_p(G))[G)$ $G_{p'}O_p(G)/O_p(G)$. Так как $O_p(G/O_p(G)) = 1$, то из [2, c. 37] следует, что подгруппа $P/O_p(G)$ имеет тривиальное пересечение с каждой своей сопряженной подгруппой. Это означает, что $G/O_p(G)$ является группой Фробениуса с дополнительным множителем $P/O_p(G)$. Теорема 2 доказана.

Следствие 1. Если $D_3(G)$ делится на квадрат простого числа, то группа G разрешима.

Доказательство. Пусть G – контрпример минимального порядка. Если $D_3^*(G)$ =0, то G разрешима по лемме 5. Пусть $D_3^*(G)$ = p^a n>1, где a>1, n≥1. Если R(G) \neq 1, то $D_3^*(G)$ делит $D_3^*(G/R(G))$ по лемме 1 и G/R(G) разрешима по индукции. Следовательно, G разрешима. Значит R(G)=1 и для подгруппы P выполняется одно из утверждений 2.1 или 2.2 теоремы 2. Но если выполняется утв. 2.1, то |P|=p и p^2 не делит порядок группы, противоречие с условием. Если выполняется утв. 2.2, то G – группа Фробениуса с дополнительным множителем P порядка p^2 , поэтому G разрешима.

Следствие 2. Если $|D_3^*(G)|$ – четное число, то группа G разрешима.

Доказательство. Пусть p=2 в обозначениях теоремы 2. Тогда P ненормальна в G и либо подгруппа P циклическая, либо $G/O_2(G)$ — группа Фробениуса с дополнительным множителем $P/O_2(P)$. В любом случае группа G разрешима.

Следствие 3. Если p делит $D_3(G)$ и силовская p-подгруппа P самонормализуема, то $G/O_p(G)$ является группой Фробениуса c дополнительным множителем $P/O_p(G)$ порядка $\leq p^2$. В частности. G разрешима.

Доказательство. Из утв. 2 теоремы 2 следует, что $|P/O_p(G)| \leq p^2$, в частности, $P/O_p(G)$ абелева. Если $P=N_G(P)$, то $P/O_p(G)=N_{G/Op}(G)(P/O_p(G))$ и в $G/O_p(G)$ существует нормальное p-дополнение $H/O_p(G)$ по теореме IV.2.6 [2]. Так как $O_p(G/O_p(G)=1)$, то из [2], стр. 37, следует, что $P/O_p(G)$ имеет тривиальное пересечение с каждой своей сопряженной подгруппой. Это означает, что $G/O_p(G)$ является группой Фробениуса с дополнительным множителем $P/O_p(G)$ порядка $\leq p^2$. Так как ядро группы Фробениуса нильпотентно, то группа G разрешима.

Следствие 4. Если группа G разрешима и $D_3^*(G) \neq 1$, то $n(G) \leq 3$.

Доказательство. Пусть p делит $D_3(G)$. Если силовская p-подгруппа P нормальна в группе G, то из утв. 1 теоремы 2 следует, что G/P либо нильпотентна, либо изоморфна группе из класса $\mathbf{B} \backslash B_4$. По лемме 3 группа G дисперсивна и $n(G) \leq 3$. Пусть P ненормальна в G. Предположим, что справедливо утв. 2.2. Тогда $G/O_p(G) = (P/O_p(G))[G_{p'}O_p(G)/O_p(G)]$ является группой Фробениуса с

ядром $G_{p'}O_p(G)/O_p(G)$ и примарным дополнительным множителем $P/O_p(G)$. Так как ядро группы Фробениуса нильпотентно [2], теорема V.8.7, то $n(G) \le 3$. Предположим, что справедливо утв. 2.1. Тогда

2-максимальна и циклична, а $|P/O_p(G)|$ =p. Если $|\pi(G)|$ =2, то $n(G) \le 3$, так как p-длина G равна 1 [2], теорема VI.6.6. Поскольку P 2-максимальна в разрешимой группе G, то остается рассмотреть случай, когда $|\pi(G)|$ =3. Если P= $N_G(P)$, то $G/O_p(G)$ будет группой Фробениуса с дополнительным множителем $P/O_p(G)$ порядка p. Поэтому $n(G) \le 3$. Пусть P — собственная подгруппам в H= $N_G(P)$. Тогда |H|=|P|q, H — максимальная в G подгруппа и G/H_G примитивна. Отсюда следует, что все силовские в G подгруппы абелевы. Теперь $n(G) \le 3$ по теореме VI.14.16. [2].

ЛИТЕРАТУРА

- 1. *Монахов, В.С.* Введение в теорию конечных групп и их классов / В.С. Монахов // Минск: Вышэйшая школа. 2006. 320 с.
- 2. Huppert, B. Endliche Gruppen I. / B. Huppert // Berlin, Heidelberg, New York: Springer. 1967. 792 s.
- 3. *Трофимов, П.И.* О признаках непростоты и разрешимости конечных групп / П.И. Трофимов // Сибирский математический журнал. 1962. Т. 3, № 6. С. 876–881.

- 4. **Трофимов, П.И.** Заметка о признаках сверхразрешимости и разрешимости конечных групп / П.И.
- Трофимов // Известия высших учебных заведений. Математика. 1965. Т. 49, № 6. С. 144—146. 5. *Hering, Ch.* Gruppen mit nichttrivialer Trofimovzahl / Ch. Hering // Arch. Math. 1964. – Vol. 15, № 6. – C. 404–407.
- 6. Ведерников, В.А. О признаках разрешимости и сверхразрешимости конечных групп / В. А. Ведерников // Сибирский математический журнал. 1967. № 6. – C. 1236–1244.
- 7. Белоногов В.А. Конечные разрешимые группы с нильпотентными 2-максималь-ными подгруппами / В.А. Белоногов IIМатематические заметки. 1968. № 1. – C. 21–32.
- 8. *Монахов, В.С.* Подгруппы Шмидта, их существование и некоторые приложения / В.С. Монахов // Труды Украинского математического конгресса. – Киев: Институт математики, 2002. – С. 81–90.
- 9. Mann, A. Finite groups whose n-maximal subgroups are subnormal / A. Mann // Trans. Amer. Math. Soc. -1968. - Vol. 132. - P. 395-405.
- Endliche Z. zweitmaximalen 10. **Janko**, Gruppen mit lauter nilpotenten Untergruppen Z. Janko // Math. Z. - 1962. - Vol. 79, № 5. - P. 422-424.

S U M M A R Y

The structure of finite group with non-identity GCD of orders of all classes of conjugate non-subnormal k-maximal subgroups is investigated for k<4. In particular, new sufficient conditions for solvability of the group are established. Exact upper estimations of the nilpotent length of this group are obtained.

Поступила в редакцию 12.03.2010