ОСОБЕННОСТИ ВИДОВОГО СОСТАВА ФИТОПЛАНКТОНА ОЗЕР РЕСПУБЛИКАНСКОГО ЛАНДШАФТНОГО ЗАКАЗНИКА «СИНЬША»

Ю.Л. Мержвинская Витебск, ВГУ имени П.М. Машерова

Республиканский ландшафтный заказник «Синьша», расположенный на северовостоке Беларуси, представляет собой уникальный природный комплекс и является одним из центров сохранения биологического разнообразия в Белорусском Поозерье. Водоросли, обитающие в толще воды (фитопланктон), являются продуцентами органического вещества, начальным звеном практически всех трофических цепей — биологической основой существования других живых организмов, что определяет их роль в существовании всей экосистемы. Знание видового состава альгофлоры на современном этапе важно для долгосрочного мониторинга, так как многие виды водорослей являются показателями экологического состояния водоемов.

Цель — изучение видового состава фитопланктона крупнейших озер республиканского ландшафтного заказнмка «Синьша».

Материал и методы. Пробы фитопланктона отбирались посезонно (за исключением зимнего периода) с июля 2008 г. по октябрь 2011 г. на десяти озёрах заказника (Глыба, Дриссы, Островцы, Синьша, Пролобно, Оптино, Волобо, Ножницы, Чёрное, Жабинка). Сбор и обработка полученного материала производились в соответствии с общепринятыми в гидробиологии методиками.

Результаты и их обсуждение. В фитопланктоне озер выявлено 337 таксонов, рангом ниже рода, из них: зеленых — 101, диатомовых — 98, синезеленых (цианопрокариот) — 55, золистых — 33, эвгленовых — 26, динофитовых и криптофитовых по 12 и 8 видов соответственно, 3 вида желто-зеленых и 1 вид рафидофитовых. Наибольшее число видов и внутривидовых таксонов отмечено в оз. Волобо (167) и оз. Синьша (163). Более ста видов выявлено в озёрах Глыба (138), Островцы (135), Оптино (128), Дриссы (127), Ножницы (114) и Пролобно (108). Наименьшее число таксонов, рангом ниже рода определено для малых озёр Жабинка и Чёрное, по 55 и 35 видов соответственно.

Из значительного разнообразия обитающих в фитопланктоне озер заказника видов водорослей общими для большинства из них являются лишь порядка 50 видов, в соответствии с таблицей.

Сходство видового состава фитопланктона исследуемых озер можно объяснить их непосредственной связью друг с другом через ручьи и протоки. Озера Ножницы, Чёрное и Жабинка, не входящие в систему, но расположенные на территории водосбора несколько отличаются по видовому составу фитопланктона вероятно из-за особенностей экосистемы малых бессточных водоемов.

Таблица – Виды, характерные для большинства исследованных озер

Вид	Озеро									
	Глыба	Ириссы	Островцы	Синьша	он9огоб∐	Оптино	Волобо	итинжоН	әондәҺ	Жабинка
Merismopediatenuissima Lemm.	+	+	+	+	+	+	+	+	_	_
Aphanothececlathrata W. et G. S. West	+	+	+	+	+	+	+	+	+	+
Gloeocapsa minima (Keissl.) Hollerb.	+	+	+	+	+	+	+	+	+	+
Gloeocapsaturgida (Kütz.) Hollerb.	+	+	+	+	+	+	+	+	1	_
Oscillatoriaagardhii Gom. f. agardhii	+	+	+	+	+	+	+	+	+	_
Lyngbyalimnetica Lemm.	+	+	+	+	+	+	+	+	+	+
Aphanizomenonflos-aquae (L.) Ralfs	+	+	+	+	+	+	+	+	_	_
Rhodomonaspusilla (Bachm.) Javor.	+	+	+	+	+	+	+	+	+	+
Cryptomonascurvata Ehr.	+	+	+	+	+	+	+	+	+	+

Cryptomonaserosa Ehr.	+	+	+	+	+	+	+	+	+	+
Cryptomonasmarssonii Skuja	+	+	+	+	+	+	+	+	+	+
Cryptomonasovata Ehr.	+	+	+	+	+	+	+	+	+	+
Ceratiumhirundinella тип furcoides (Levander)								-		-
Schroeder	+	+	+	+	+	+	+	_	+	
Gonyostomumsemen (Ehr.) Dies.	+	+	+	+	+	+	+	_	_	+
Chromulinarosanofii (Woronin) Bütschli	+	+	+	+	+	+	+	+	_	- 1
Kephyrionmoniliferum (Schmid) Bourrelly	+	+	+	+	+	+	+	+		
Kephyrionparvulum (Schmidle) Bourrelly	+	+	+	+	+	+	+	+	+	_
Kephyrionplanctonicum Hillard	+	+	+	+	+	+	+	+	_	_
Kephyrionsphaericum (Hilliard) Starmach	+	+	+	+	+	+	+	+	+	+
Uroglena Ehr. sp.	+	+	+	+	+	+	+	+	_	+
Dinobryon Ehr. sp.	+	+	+	+	+	+	+	+		_
Dinobryonbavaricum Imhof	+	+	+	+	+	+	+	+		_
Dinobryonkorschikovii Matv.	+	+	+	+	+	+	4	_	—	+
Dinobryonsertularia Ehr.	+	+	+	+	+	+	+	+	_	_
Dinobryonsuecicum Lemm. var. longispinum	+	+	+	+	+	+	+	+	_	_
Pseudokephyrionschilleri (Schiller) Conrad	+	+	+	+	+	+	+	+	_	_
Chrysidalisperitaphrena Schiller	+	+	+	4	+	+	+	+	_	+
Cyclotellacomensis Grunow	+	+	+	+	+	+	+	+	_	_
Cyclotellameneghiniana Kütz.	+	+	+	+	+	+	+	+	_	_
Melosiravarians Ag.	+	+	+	+	+	+	+	+	_	_
Aulacoseiragranulata (Ehr.) Simonsen	+	+	+	+	+	+	+	+	_	_
Aulacoseiragranulata var. angustissima (O. Müll.)		4								
Simonsen	+	+	+	+	+	+	+	_	_	_
Fragilariaconstruens var. subsalinaHust.	+	+	+	7	+	+	+	+	_	_
Fragilariacrotonensis Kitt.	1	+	+	+	+	+	+	+	+	_
Synedraacus Kütz.	+	+	4	+	+	+	+	+	_	_
Synedraulna (Nitzsch.) Ehr.	+	+	+	+	+	+	+	+	_	_
Asterionellaformosa Hass.	+	+	+	+	+	+	+	+	_	_
Cocconeispediculus Ehr.	+	+	+	+	+	+	+	_	_	_
Nitzschiaacicularis W. Sm.	+	+	+	+	+	+	+	_	_	_
Trachelomonashispida (Perty) Stein em. Defl. var.										
hispida	+	+	+	+	+	+	+	+	_	_
Trachelomonasvolvocina Ehr.	+	+	+	+	+	+	+	+	_	+
Tetraedron minimum (A. Br.) Hansg.	+	+	+	+	+	+	+	+	+	+
Coelastrumreticulatum (Dang.) Senn	+	+	+	+	+	+	+	+	_	_
Crucigeniatetrapedia (Kirchn.) W. et W.	+	+	+	+	+	+	+	+	+	+
Scenedesmusquadricauda (Turp.) Bréb. var.										
quadricauda	+	+	+	+	+	+	+	+	_	_
Didimocystisinconspicua Korschik.	+	+	+	+	+	+	+		+	_
Ankistrodesmusminutissimus Korschik.	+	+	+	+	+	+	+	+	+	_
Kirchneriellacontorta (Schmidle) Bohlin	+	+	+	+	+	+	+	+	_	+
Monoraphidiumarcuatum (Korš.) Hind.	+	+	+	+	+	+	+	+	_	_
Monoraphidiumkomarkovae Nyg.	+	+	+	+	+	+	+	+	_	_

Помимо сходства видового состава для каждого озера можно отметить виды, характерные только для одного из водоемов. Наиболее своеобразным является озеро Волобо, которое имеет наибольшую площадь и самое высокое из изучаемых водоёмов видовое разнообразие. В нём отмечено 29 видов, не встречающихся в других озёрах. В основном это представители отделов Суапорнута, Васіllагіорнута и Chlorophyta. Затем следуют озёра Синьша (20 видов) и Оптино (16 видов), которые отличаются от остальных водоёмов представителями синезелёных, золотистых, диатомовых и зелёных водорослей. Озёра Островцы, Дриссы и Ножницы имеют по 15, 13 и 12 характерных видов соответственно. По десять видов, не встречающихся в других исследованных водоёмах, отмечено для озёр Глыба и Жабинка. Наименьшее число характерных видов отмечено для озёр Пролобно (8 таксонов рангом ниже рода) и Чёрное (3 вида — Cyclotellasp., Stichococcusmirabilis,

Cosmariumasphaerosporum). И если такое малое отличие от других водоёмов для оз. Чёрное можно объяснить наименьшим видовым разнообразием (35 таксонов рангом ниже рода), обособленностью и отсутствием непосредственной связи с другими озёрами, то для оз. Пролобно оно, вероятно, объясняется расположением в системе озёр. Водоём является самым «нижним» по течению р. Дрисы, протекающей непосредственно через озёра Дриссы, Островцы и Синьша.

Заключение. Проанализировав список видового состава фитопланктона изученных озёр можно сделать выводы о том, что большинство видов являются аборигенными для водоёмов Беларуси. Также были выявлены виды, не отмечавшиеся ранее на территории республики.

В видовом составе альгофлоры фитопланктона озер заказника «Синьша», как и во всей альгофлоре республики, прослеживается концентрация видов в сравнительно небольшом числе родов и семейств из пяти отделов: диатомовых, зеленых, золотистых, синезеленых и эвгленовых водорослей.

ПОГРАНИЧНЫЕ ВИДЫ ФЛОРЫ БЕЛОРУССКОГО ПООЗЕРЬЯ

Л.М. Мержвинский Витебск, ВГУ имени П.М. Машерова

В состав каждой флоры входят виды, различные по времени своего возникновения, разновременно проникшие на данное пространство, занимающие в составе флоры различное положение. Изучение закономерностей географического распространения растений имеет большое значение для познания законов эволюции растительного мира вследствие её неразрывной связи с географическими дифференцированными условиями внешней среды. Изучение ареалов растений важно как для уяснения зависимости их распространения от современных условий, так и для воссоздания истории расселения видов и формирования флор. Флора Белорусского Поозерья, как и флора Беларуси в целом, по происхождению, видовому составу является типичной флорой реэвакуационномиграционного типа.

Цель – на основе собственных полевых исследований, изучения литературных материалов, ведомственных данных, гербарных материалов выявить виды сосудистых растений Белорусского Поозерья, которые находятся в регионе на естественных границах ареала, уточнить современные границы их распространения.

Материал и методы. Маршрутный способ в сочетании с полустационарными и стационарными методами, исследование популяций редких, охраняемых и пограничных видов, использование картографического материала, лесоустроительных и землеустроительных карт и схем, ведомственных материалов, фотографирование, гербарных материалов Национального Гербария ИЭБ НАНБ, гербария БИН РАН, БГУ, ВГУ имени П.М. Машерова, гербария Шимко И.И.

Результаты и их обсуждение. Для хорологического анализа региональной флоры весьма удобно пользоваться выделением таких условных хорологических групп видов, как: «южные», «северные», «западные», «восточные», и т.д. Всего выделено 8 хорологических групп, а также группа видов, требующих дополнительного изучения.

Группа «северных», преимущественно бореально-таежных, гипоарктических и арктоальпийских по происхождению видов. В Белорусском Поозерье они встречаются на южной, юго-восточной и юго-западной границе ареала. В их числе Equisetum variegatum, Matteuccia struthiopteris, Betula nana, Rubus chamaemorus, Melandrium dioicum, Salix myrtilloides, Nuphar pumila, Aconitum lasiostomum, Delphinium elatum, Linnaea borealis и др., обнаруживает довольно много общих для них черт в распространении и фитоценотической приуроченности. Большинство из них на территории Беларуси распространены преимущественно в БП (Equisetum variegatum, за исключением синантропной части его ареала, Matteuccia struthiopteris, Nuphar pumila, Linnaea borealis и др.) или встречаются только здесь (Betula nana, Rubus chamaemorus, Melandrium dioicum, Nuphar pumila, Aconi-