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1b  остается свободным. 

На практике удобно выбирать 
1 0b = . 

Заключение. Таким образом, в работе получены необходимые и достаточные 

условия представления произвольного полинома четырнадцатой степени комплексного 

аргумента в виде композиции полиномов второй и седьмой степеней. Также получены 

формулы прямого перехода от коэффициентов исходного полинома к коэффициентам 

полиномов, составляющих композицию.  
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ОБ ОДНОЙ ЗАДАЧЕ ДЛЯ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО  

УРАВНЕНИЯ С ПРОИЗВОДНОЙ АДАМАРА ДРОБНОГО ПОРЯДКА 

 

С.А. Шлапаков 

Витебск, ВГУ имени П.М. Машерова 

 

В работе объектом исследования является задача типа Коши для дифференциаль-

ного уравнения дробного порядка. В качестве производной выступает дробная произ-

водная Адамара [2] порядка 0 1.   Аналитическое решение такой задачи для зна-

чений 0   в пространстве суммируемых функций построено в [6]. Цель данного ис-

следования – понять структуру полученного решения для малых значений порядка  . 

Материал и методы. Материалом исследования служат операции дробного ин-

тегрирования и дифференцирования Адамара, являющиеся модификациями классиче-

ских операций дробного интегрирования и дифференцирования Римана-Лиувилля [1]. 
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В работе используется аппарат функционального анализа в сочетании с методами диф-

ференциального и интегрального исчислений.  

Результаты и их обсуждение. В работе [6] рассматривалась дифференциальная 

задача с дробными производными       

Адамара следующего вида: 

  ( )( ) ( ) ( ), 0, 0, ,aD y x y x g x a R   + = +                 (1) 

  ( )( ) , , 1, 2, , .k

a k kD y a b b R k n −

+ + =  = =             (2) 

 Её решение в пространстве регулярных функций [3; 4; 6] 

  ( , ) ( , ) ( , ) , 0aL a b y L a b D y L a b a b 

 +=      +      (3) 

запишется в виде 
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где )(, zE  – функция Миттаг-Лефлера [1]: 
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Поскольку порядок   уравнения (1) имеет значение 0 1  , то 1n = =    и   k=1, 

то есть условия (2) трансформируются в одно условие: 

   ( )1

1 1( ) ,aD y a b b R−

+ + =  ,         

которое можно записать в виде 
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является дробным интегралом  Адамара, причём справедливо соотношение, связыва-

ющее   дробные производные и интегралы Адамара [5; 6]: 

             ( ) ( ) ( )( ) ( ) ( ), 0, .n n n n

a a aD g x g x D g x n     − −

+ + +=  =  =      

В конструкции (4) сумма слагаемых трансформируется в одно слагаемое (с j=1) вида: 
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                   (5) 

Таким образом, приходи м к следующему утверждению. 

Теорема. Пусть 0 1, , ( ) ( , ), 0R g x L a b a b        . Тогда дифференциальная 

задача  

  ( )( ) ( ) ( ),aD y x y x g x + = +  

  ( )1

1 1( ) ,aD y a b b R−

+ + =   

в пространстве (3) имеет единственное решение, задаваемое формулой 
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где 
0 ( )y x определено в (5). Решение же соответствующей однородной задачи типа 

Коши (с ( ) 0g x = ) имеет вид (5): 
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Непосредственной проверкой можно убедиться, что, например, 
0 ( )y x является 

решением однородной задачи: 

 ( )( ) ( ),aD y x y x + =  

 ( )1

1 1( ) , , , 0 1aD y a b b R  −

+ + =    . 

         
Заключение. В приложениях часто приходится решать аналоги задач Коши для 

дифференциальных уравнений дробного порядка. Интегрируя некоторые классы диф-
ференциальных уравнений целого порядка, приходится руководствоваться положени-
ями теории дробного дифференцирования и интегрирования. В работе исследован 
частный случай аналитического решения дифференциальной задачи типа Коши для 
линейного однородного дифференциального уравнения с дробными производными 
Адамара в пространстве регулярных функций.  
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Исследование сегнетоэлектрических материалов с градиентом состава, так назы-
ваемых градиентных сегнетоэлектриков, представляет собой одно из активно разви-
вающихся направлений в физике диэлектриков. Создание в материале управляемой 
неоднородности физических свойств позволяет не только улучшать существующие ха-
рактеристики, но и получать материалы с принципиально новыми функциональными 
возможностями. Однако поведение таких систем, в частности их поляризационные ха-
рактеристики, существенно отличается от поведения однородных аналогов, что требует 
разработки специализированных теоретических моделей. 

В отличие от тонкоплёночных градиентных структур, где часто наблюдается 
сдвиг петель диэлектрического гистерезиса, в объёмных (толстоплёночных) образцах 


