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Результаты и их обсуждение. Описанные выше результаты приводят к задаче 

определения локально нормального радикального множества в группе и его приложе-

ний для описания ее подгруппового строения. 

Определение 1. Пусть 𝒳 – инъективное радикальное множество группы 𝐺, ℱ – 

неединичное радикальное множество группы 𝐺 . Множество ℱ  группы 𝐺  назовём 

𝒳-нормальным или локально нормальным в 𝒳, если ℱ ⊆ 𝒳 и для любой подгруппы 

𝐻 ∈ 𝒳 группы 𝐺, ее ℱ-радикал является ℱ-максимальной подгруппой 𝐻. 

Определение 2 [1; определение VIII 4.3]. Множеством Фишера группы 𝐺 назы-

вается радикальное множество ℱ  группы 𝐺 , которое удовлетворяет следующему 

условию: если 𝐿 ≤ 𝐺, 𝐾 ⊴ 𝐿 ∈ ℱ  и 𝐻/𝐾  является 𝑝-подгруппой 𝐿/𝐾  для некоторого 

простого числа 𝑝, то 𝐻 ∈ ℱ. 

Если ℱ – непустое радикальное множество группы 𝐺 и 𝔛 – радикальный класс, 

то множество ℱ ⊙ 𝔛 = {𝐻 ≤ 𝐺: 𝐻/𝐻ℱ ∈ 𝔛} подгрупп группы 𝐺  называют произведе-

нием ℱ и 𝔛 [9]. В частности, если 𝔖𝜋(ℱ)
 – радикальный класс всех 𝜋(ℱ)-разрешимых 

групп, то  ℱ ⊙ 𝔖𝜋(ℱ) = {𝐻 ≤ 𝐺: 𝐻/𝐻ℱ ∈ 𝔖𝜋(ℱ)}.  

Результатом работы является развитие и расширение упомянутого ранее резуль-

тата Блессеноля-Гашюца в двух направлениях. Во-первых, доказан аналог теоремы 

Блессеноля-Гашюца для 𝒳-нормальных радикальных множеств, где 𝒳  – множество 

Фишера группы 𝐺. Во-вторых, условие разрешимости группы заменяется на условие 

частичной разрешимости группы. Основной результат работы 

Теорема. Пусть 𝒳  – множество Фишера группы 𝐺 , {ℱ𝑖|𝑖 ∈ 𝐼}  – семейство 

𝒳 -нормальных радикальных множеств группы 𝐺 . Если ℱ = ⋂ ℱ𝑖𝑖∈𝐼  и 

ℱ ⊆ 𝒳 ⊆ ℱ ⊙ 𝔖𝜋(ℱ), то ℱ – 𝒳-нормальное радикальное множество. 

Заключение. В настоящей работе доказана теорема о пересечении локально нор-

мальных радикальных множеств. 
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Композиции алгебраических полиномов встречаются в приложениях, например, 

при шифровании данных и кодировании информации.  

К настоящему времени математиками разработаны и применяются некоторые 

машинные алгоритмы декомпозиции полиномов [1, 2]. При этом установление наличия 

какой-либо композиции у полинома является отдельной трудной задачей, поэтому 

практическую ценность представляет также получение аналитических условий связи 

между коэффициентами полинома, при выполнении которых полином имеет заданную 

композиционную структуру. Получение таких условий требует большого числа преоб-
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разований в символьном виде и не поддается ручным вычислениям уже для полиномов 

относительно невысоких степеней, например, восьмой. Применение современных про-

граммных средств (например систем компьютерной математики) позволяет преодолеть 

данную трудность.  

Цель исследования – получить необходимые и достаточные условия представле-

ния произвольного полинома четырнадцатой степени в виде композиции полиномов 

второй и седьмой степеней. Настоящее исследование является естественным продол-

жением работ [3–5]. 

Материал и методы. Материалом исследования являются алгебраические поли-

номы комплексного аргумента четырнадцатой степени, являющиеся композицией по-

линомов меньших степеней. Методы исследования – методы алгебры с использованием 

системы компьютерной математики Maple 2023. 

Результаты и их обсуждение. Доказаны теоремы следующего вида. 

Теорема. Для представления полинома ( )
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1b  остается свободным. 

На практике удобно выбирать 
1 0b = . 

Заключение. Таким образом, в работе получены необходимые и достаточные 

условия представления произвольного полинома четырнадцатой степени комплексного 

аргумента в виде композиции полиномов второй и седьмой степеней. Также получены 

формулы прямого перехода от коэффициентов исходного полинома к коэффициентам 

полиномов, составляющих композицию.  

Благодарности. Исследование выполнено при поддержке Белорусского республи-

канского фонда фундаментальных исследований (проект № Ф25М-063, 

рег. № 20251037), а также в рамках ГПНИ Республики Беларусь «Конвергенция – 

2025» (рег. № 20210494). 

 
1. Kozen, D. Polynomial Decomposition Algorithms / D. Kozen, S. Landau // Journal of Symbolic Computation. – 1989. – Vol. 7, 

№ 5. – P. 445–456. 

2. Перминова, М. Ю. Алгоритм декомпозиции полиномов, основанный на разбиениях / М. Ю. Перминова, В. В. Кручинин, 

Д. В. Кручинин // Доклады ТУСУРа. – 2015. – № 4(38). – С. 102–107. 

3. Чернявский, М. М. Аналитические условия представимости полинома восьмой степени в виде композиции полиномов 

меньших степеней / М. М. Чернявский, Н. С. Грицкевич. – Текст : электронный // Репозиторий ВГУ имени П. М. Машерова. – URL: 

https://rep.vsu.by/handle/123456789/34660 (дата обращения: 20.12.2025). – Электрон. версия ст. из: XVI Машеровские чтения : мате-

риалы междунар. науч.-практ. конф. студентов, аспирантов и молодых ученых, Витебск, 21 окт. 2022 г. : в 2 т.  Витебск : ВГУ 

имени П. М. Машерова, 2022. – Т. 1. – С. 48–51.  

4. Чернявский, М. М. Условия декомпозиции полинома двенадцатой степени на полиномы четвертой и третьей степеней / 

М. М. Чернявский, Д. А. Китаров. – Текст : электронный // Репозиторий ВГУ имени П. М. Машерова. – URL: 

https://rep.vsu.by/handle/123456789/44696 (дата обращения: 20.12.2025). – Электрон. версия ст. из: XVIII Машеровские чтения : 

материалы междунар. науч.-практ. конф. студентов, аспирантов и молодых ученых, Витебск, 25 окт. 2024 г. : в 2 т.  Витебск : ВГУ 

имени П. М. Машерова, 2024. – Т. 1. – С. 60–62.  

5. Трубников, Ю. В. О представимости полинома двенадцатой степени в виде композиции трех полиномов меньших сте-

пеней / Ю. В. Трубников, М. М. Чернявский. – Текст : электронный // Репозиторий ВГУ имени П. М. Машерова. – URL: 

https://rep.vsu.by/handle/123456789/46195 (дата обращения: 20.12.2025). – Электрон. версия ст. из: Наука – образованию, производ-

ству, экономике : материалы 77-й Регион. науч.-практ. конф. преподавателей, научных сотрудников и аспирантов, Витебск, 

28 февр. 2025 г. Витебск : ВГУ имени П. М. Машерова, 2025. – С. 49–51.  

 

 

ОБ ОДНОЙ ЗАДАЧЕ ДЛЯ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО  

УРАВНЕНИЯ С ПРОИЗВОДНОЙ АДАМАРА ДРОБНОГО ПОРЯДКА 

 

С.А. Шлапаков 

Витебск, ВГУ имени П.М. Машерова 

 

В работе объектом исследования является задача типа Коши для дифференциаль-

ного уравнения дробного порядка. В качестве производной выступает дробная произ-

водная Адамара [2] порядка 0 1.   Аналитическое решение такой задачи для зна-

чений 0   в пространстве суммируемых функций построено в [6]. Цель данного ис-

следования – понять структуру полученного решения для малых значений порядка  . 

Материал и методы. Материалом исследования служат операции дробного ин-

тегрирования и дифференцирования Адамара, являющиеся модификациями классиче-

ских операций дробного интегрирования и дифференцирования Римана-Лиувилля [1]. 


