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4 

В В Е Д Е Н И Е 
 

 

Предлагаемое издание предназначено для проведения 

лабораторных работ и организации самостоятельной работы 

магистрантов факультета математики и информационных технологий, 

обучающихся по специальности «Математика и компьютерные науки». 

Основное назначение лабораторного практикума — помочь 

магистрантам в освоении курса «Вариационное исчисление».  

Методические рекомендации включают материалы для 

13 лабораторных работ, соответствующих количеству часов, 

предусмотренных программой по данной дисциплине. Каждый 

параграф начинается с основных определений, теорем, формул и 

других кратких теоретических сведений, необходимых для 

выполнения заданий. Затем следуют методические рекомендации по 

выполнению работы и разбор типичных примеров, иллюстрирующих 

практическое применение теоретических знаний. В конце каждого 

раздела приведены задания для лабораторных работ. 

Материал, приведенный в издании, соответствует учебной 

программе по курсу «Вариационное исчисление» для специальности 

второй ступени обучения «Математика и компьютерные науки», 

а также может быть использован при изучении курса «Методы 

оптимизации» на специальности бакалавриата «Прикладная 

математика». 
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Лабораторная работа № 1 

Функциональные пространства  
 

1.1. Основные теоретические сведения 

Функциональные пространства. Линейным нормированным 

пространством называется линейное пространство, каждому 

элементу которого ставится в соответствие действительное число ||x|| 

(норма х), для которого выполняются три аксиомы нормы: 

1) 0x , при этом 0=x  тогда и только тогда, когда х = 0; 

2)  xx = ||   (где   – постоянное число); 

3) yxyx ++ . 

Будем рассматривать множество функций y = f (x), 

определенных на отрезке [a, b], как элементы некоторого 

пространства, которое будем называть функциональным. 

Приведем примеры нормированных функциональных 

пространств. 

1. Пространство C[a, b] − множество всех непрерывных 

функций, заданных на отрезке [a, b]. Нормой элемента y пространства  

C[a, b] называется наибольшее значение модуля функции y = y (x) на 

отрезке [a, b],  т.е. 
a x b

y max | y (x) |
 

= . 

2. Пространство C1[а, b] − множество всех непрерывно 

дифференцируемых на отрезке [a, b] функций, где 

|)|max|,|maxmax(
    

yyy
 bx a bx a

=


. 

3. Пространство Ck[a, b] − множество всех непрерывных на 

отрезке [a, b] функций, имеющих на этом отрезке непрерывные 

производные до k-го порядка включительно, где ||max max )(

      0

n

 bx akn
yy


= . 

Каждым двум элементам y1 и y2 функционального пространства 

Ck[a, b] поставим в соответствие число  

21

)(

2

)(

1
      0

21 ||max max),( yyyyyy nn

 bx akn
k −=−=


 , 

которое называется расстоянием между функциями y1 и y2 в данном 

пространстве. 

Например, расстояние между элементами пространства C[a, b] 

находится по формуле 

||max),( 21
  

210 yyyy
 bx a

−=


 ; 

расстояние между элементами пространства C1[a, b] находится по 

формуле 
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|)|max|,|maxmax(),( 21
  

21
  

211 yyyyyy
 bx a bx a

−−=


 . 

Близость кривых. Говорят, что кривые y1  и y2 близки в 

пространстве C [a, b], если для всех x  [a, b] выполняется 

неравенство ),( 210 yy  < , где  - достаточно малое действительное 

число. Такую близость называют близостью нулевого порядка. 

Кривые y1  и y2  близки в пространстве C1[a, b] (близость 

первого порядка), если для всех x  [a, b] справедливо неравенство 

),( 211 yy < ,   где  - достаточно малое действительное число. 

Аналогично определяется близость k-го порядка: ),( 21 yyk < . 

Если кривые   y1  и y2 близки в смысле близости k -го порядка, то 

они близки и в смысле близости k −1-го порядка. Обратное, вообще 

говоря, не верно.   
 

1.2. Примеры решения задач 

Пример 1. Найти норму функции y = x3+ x2 − 5x + 3 в 

пространстве C [0, 2]. 

Решение. По определению, |35|max 23

10
+−+=


xxxy

x
. Очевидно, 

что критические точки функции y = |f (x)|, отличные, может быть, от 

нулей данной  функции, совпадают с критическими точками функции  

y = f (x). Следовательно, функция y = |35| 23 +−+ xxx  на отрезке [0, 2] 

достигает своего наибольшего значения или в критических точках 

функции y = x3+ x2 − 5x + 3, принадлежащих данному отрезку, или на 

концах отрезка. 

Найдем критические точки функции y = x3+ x2 − 5x + 3. 

y = 3x2 + 2х − ,  y = 0 при 11 =x , 
3

5
2 −=x   [0, 2]. 

Найдем значения функции y = |35| 23 +−+ xxx в точке х1 и на 

концах отрезка [0, 2]. y(0)=3,  ( ) 01 =y ,   y (2) =5 

Следовательно, =y 5. 

Пример 2. Найти расстояние между кривыми y1 = 2x и y2 = x3 в 

пространствах  а) C [0;1], б) C1 [0;1]. 

Решение. а) Найдем расстояние между кривыми в пространстве 

C [0, 1]. По определению, |2|max 3

1   0
0 xx

x
−=


 .  

Найдем максимум функции y = |x3 − 2x| на отрезке [0, 1]. Так как 

при x  [0, 1]   x3 − 2x  0, то  y = |x3 − 2x| =  2x − x3. 

y =2 − 3x2,  y = 0 при 
3

2
=x . 
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Так как 
3

2
−=x   [0;1], то эту точку рассматривать не будем. 

y(0) = 0,  
3

4

3

4

3

2

3

2

3

2
2

3

2
=−=










y ,   y (1)=1. 

Сравнивая найденные значения, видим, что 
3

4

3

4
= . 

б) Найдем расстояние между кривыми в пространстве C1[0, 1]. 

По определению |}|max|;|maxmax{ 21
1   0

21
1   0

1 yyyy
xx

−−=


 .  

||max 21
1   0

yy
x

−


= |2|max 3

1   0
xx

x
−


 найден в части а). 

Найдем ||max 21
1   0

yy
x

−


. )(32 2

21 xxyy =−=− ,  (х) = −6x,  

 (х) = 0 при х = 0,  | (0)| = 2,   | (1)| = 1.  

Значит, 2||max 21
1   0

=−


yy
x

. 22,
3

4

3

4
max =










= . 

Пример 3. Доказать, что функции 
n

xn
y

22

1

sin
=  и  y2 = 0 при 

достаточно больших значениях п близки в смысле близости нулевого 

порядка, но не близки в смысле близости первого порядка на отрезке 

[0, ]. 

Решение. Так как в пространстве  C [0, ]: 

||y1 – y2||
nn

xn

n

xn
yy

xxx

1sin
max0

sin
max||max

22

0

22

0
21

0
==−=−=

 
 

и при больших значениях п величина 
n

1
 мала, то, эти функции близки 

в смысле близости нулевого порядка. 

Рассмотрим пространство C1[0, ]. 

=











=

n

xn
y

22

1

sin
 = 222 cossin2
1

nxnxn
n

,2sin 2xnn  

,2sinmax02sinmaxmax 2

0

2

0
21

0
nxnnxnnyy

xxx
==−=−

 
 

.,
1

max)max|,|max(max
0

21
0

21
00

21
nn

n
yyyyyy

xxxx
=








=−−=−

 
 

Таким образом, в смысле близости первого порядка функции y1 

и y2 не близки. 
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1.3. Задания для лабораторной работы  

Задание 1. Найти расстояние между кривыми )(xy  и y1 (x) на 

указанных отрезках в пространстве C[a, b]: 

1) 
xxexy −=)( ,       y1 (x)  0 на [0, 2]; 

2) xxy 2sin)( = ,       y1 (x) = sin x на 






2
,0


; 

3) xxxy 3)( 2 += ,    y1 (x) = x − 1 на [−1, 3]; 

4) 22)( xxy −= ,     y1 (x) = x2 + 3 на [−3, 1]; 

5) xxy =)( ,     y1 (x) = ln(x) на [e-1, e]; 

6) 
3)( xxy = ,       y1 (x)  х на [0, 1]; 

7) xxy 2cos)( = ,       y1 (x) = cos x на 






2
,0


; 

8) xxxy 3)( 2 += ,    y1 (x) = x − 1 на [−2;4]. 

Задание 2. Найти расстояние между кривыми на указанных 

отрезках в пространстве C1[a, b]: 

1) xxxy 2)( 2 −= ,      y1 (x) = 2x2 на [0, 2]; 

2) 3)( xxy = ,     y1 (x) = 3x2 +2 на [0, 2]; 

3) xxy ln)( = ,     y1 (x) = x на [e-1, e]; 

4) 
3)( xxy = ,       y1 (x)  х на [0, 1]; 

5) xxxy 3)( 2 += ,    y1 (x) = x − 1 на [−2;4]. 

Найти расстояние между кривыми на указанных отрезках 

в пространстве C2[a, b]: 

6) xxxy 2)( 3 += , y1(x) = x2 на [-1, 2]; 

7) xxy =)( ,   y1(x) = − cos x на 






3
,0


; 

8) 
2)( xxy = ,  y1 (x) = х на [0, 1]. 

Задание 3. Установить порядок близости кривых )(xy  и )(1 xy , 

где n достаточно велико и y1(x)  0: 

1) 
5

sin
)(

2 +
=

n

nx
xy , x [0;2]; 2)

2

3sin
)(

+
=

n

x
xy , x [0;]; 

3) 
1

sin)(
2 +

=
n

x
xy , x [0;1]; 4) 

3

2sin
)(

n

xn
xy = , x [0;2]; 
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5)
2

sin
)(

+
=

n

пx
xy , x [0;]; 6) 

1

s
)(

2 +
=

n

пxсо
xy , x [0;1]; 

7) 
5

sin
)(

2 +
=

n

x
xy , x [0;2]; 8)

п

х
xy sin)( = , x [0;]. 

Задание 4. Найти число N, начиная с которого в пространстве   

C [a, b] выполняется 01,0
1

− yy , где  y1(x)  0,  или доказать, что 

такого числа не существует. 

1) 
5

sin
)(

2 +
=

n

nx
xy ,  [0;2]; 2)

2

3sin
)(

+
=

n

x
xy , x [0;]; 

3) 
1

sin)(
2 +

=
n

x
xy , x [0;1]; 4) 

3

2sin
)(

n

xn
xy = , x [0;2]; 

5)
2

sin
)(

+
=

n

пx
xy , x [0;]; 6) 

1

s
)(

2 +
=

n

пxсо
xy , x [0;1]; 

7) 
5

sin
)(

2 +
=

n

x
xy , x [0;2]; 8)

п

х
xy sin)( = , x [0;]. 

 

Лабораторная работа № 2 

Понятие функционала 
 

2.1. Основные теоретические сведения 

Понятие функционала.  Пусть дан некоторый класс H функций 

y (x). Если каждой функции  y (x)  H  по некоторому закону 

поставлено в соответствие определенное число, то говорят, что на 

множестве H определен функционал F = F [y]. 

Приведем примеры функционалов. 

1. Пусть H = C [a, b] и пусть F [y] = y (x0), где x0  [a, b]. Данный 

функционал каждой непрерывной на отрезке [a, b] функции  

y (x)  ставит в соответствие значение этой функции в точке x0. 

2. H = C1[0, 2],  )(][ 0xyyF = , где x0  [0, 2]. Данный функционал 

каждой функции y (x), имеющей непрерывную на отрезке [0, 2] 

производную, ставит в соответствие значение производной  функции 

в точке x0 [0, 2]. При x0 = 1, y = ex получим F [ex] = .)( 10
ee x

x =
=

 

3. Пусть H = C1[0, 1], т.е. множество непрерывно 

дифференцируемых на отрезке [0, 1] функций. Рассмотрим 

функционал  +=
1

0

)2(][ dxyyyF , который каждой функции y (x), 

имеющей непрерывную на отрезке [0, 1] производную, ставит в 

соответствие определенный интеграл  +
1

0

)2( dxyy . 
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Непрерывность функционала. Линейный функционал. 

Функционал F [y], определенный в пространстве Ck[a, b], называется 

непрерывным в смысле близости k-го порядка на функции y = y0 (x), 

если для любого числа   >  0,  существует число   > 0 такое, что для 

всех допустимых функций y (x), удовлетворяющих условию 

   k (y0 (x), y (x)) < ,  выполняется неравенство |F [y] – F [y0]| <  . 

Можно дать второе определение непрерывности функционала. 

Представим функцию y (x), определенную в пространстве  

Ck[a, b], в виде  y (x) = y0(x) +  (x), где  – параметр,  (x) – 

некоторая функция класса Ck[a, b]. Тогда функционал F [y], 

определенный в пространстве Ck[a, b], будет  непрерывным в смысле 

близости k-го порядка на функции y = y0 (x), если выполняется 

равенство 

                             

).()(lim 00
0

yFyF =+
→




 

(2.1) 

Функционал L[y] называется линейным, если он удовлетворяет 

условиям: 

1) L [сy]  = сL[y], где с − произвольная постоянная, 

2) L [y1 + y2]  = L [y1]  +  L [y2]. 

 

2.2. Примеры решения задач 

Пример 1. а) Найти значение функционала yxyxyF −+= 2][ , 

где y (x) С1[0, 2] на функции y = e2x. 

б) Найти значение функционала  +
1

0

)2( dxyy , где y (x) С1[0, 2] 

на функции 2xy = . 

Решение. а) Так как
xey 22= , то значение функционала на 

функции y = e2x равно 
xxx exexeF 242 2][ −+= . 

б) При 2xy = , получим  

3

5
 

3
2)22(][

1

0

2
31

0

22 =







+=+=  x

x
dxxxxF . 

Пример 2. Доказать, что функционал  +=
1

0

2 )2(][ dxyyxyF  

является линейным. 

Решение. Проверяем условия линейности функционала: 

1) ];[)2()2(][
1

0

2
1

0

2 yсFdxyyxсdxyссyxсyF =+=+=   

2) =+++=+ 
1

0
2121

2

21
))()(2(][ dxyyyyxyyF  

= .][][)2()2(
21

1

0
22

2
1

0
11

2 yFyFdxyyxdxyyx +=+++   
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Условия линейности выполняются, следовательно, функционал 

является линейным. 

Пример 3. Показать, что функционал  −=
1

0

)3(][ dxyyyF
 

непрерывен в пространстве C1[0, 1] на функции y0 = x + 2.
 Решение. Возьмем произвольное  > 0. Нужно показать, что 

найдется число  > 0 такое, что для любой функции y (x) из 

пространства C1[0, 1]  будет выполняться неравенство 

|F [y] − F [y0]| = |F [y] − F [x + 2]| < , 

как только |y − y0| = |y − (x + 2)| <  и    |y − 0y | = |y − 1|  < . 

F [x + 2] =  −−=+−=+−+
1

0

1

0

1

0

))53())2(31())2(3)2(( dxxdxxdxxx . 

Поэтому 

=++−−=++−=+−  |)2(313(||)533(||]2[][|
1

0

1

0

dxxyydxxyyxFyF

+−−−= 
1

0

1

0

|))2((3)1(| dxxydxy  +−+−
1

0

1

0

|)2(|3|1| dxxydxy . 

Возьмем 
5


  . Тогда, по свойству определенных интегралов от 

ограниченных функций,  для всех y(x)  C1[0, 1] и удовлетворяющих 

условиям 
5

|)2()(|


+− xxy , 
5

|1)(|


− xy , будет иметь место 

неравенство 




=++−
5

4

5

3

5
|]2[)]([| xFxyF . 

Это и означает, что функционал непрерывен на функции 

y = x + 2 в пространстве C1[0, 1].
 
 

Замечание 1. Доказать непрерывность функционала 

 −=
1

0

)3(][ dxyyyF  можно также используя формулу (2.1). Так как  

,))()3(())(3)((][
1

0

1

0

 −+−=+−+=+ dxyydxyyyF    

где  (х) – непрерывная вместе со своей производной на отрезке [0, 1] 

функция, то, по свойству определенных интегралов, зависящих от 

параметра 

=+
→

)(lim 0
0




yF  =−+−
→

1

0
00

0
))()3((lim dxyy 


 

][)3())()3((lim 0

1

0
00

1

0
00

0
yFdxyydxyy =−=−+−= 

→



. 
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Следовательно, функционал непрерывен на функции y = x + 2 

в пространстве C1[0, 1]. 

Замечание 2. Данный функционал не является непрерывным в 

пространстве C [0, 1] на функции y0 = x + 2, так как непрерывность 

данного функционала в смысле близости нулевого порядка не требует 

близости производных функций y (х) и y0(х). Следовательно, 

неравенство |y − 0y | = |y − 1|  <  может не выполняться. 
 

2.3. Задания для лабораторной работы 

Задание 1.  Вычислить значение функционала F[y] на 

соответствующих кривых: 

1) F [y (x)] = y (1), где y (x) С [0, 2] на кривых: а) y (x) = х;          

б) y (x) = ex; 

2) F [y (x)] = y (0), где y (x) С [−1, 2] на кривых: а) y (x) = х2;         

б) y (x) = e2x; 

3) F [y (x)] = y′ (1), где y (x) С1 [0, 2] на кривых: а) y (x) = х3;        

б) y (x) = e-x; 

4) F [y (x)] = y′ (2), где y (x) С [1, 2] на кривых:  а) y (x) = 2х − 3;    

б) y (x) = 4ex + 2; 

5) F [y (x)] = y (0), где y (x) С [−π, π] на кривых: а) y (x) = сos х;          

б) y (x) = sin x + tg x; 

6) F [y (x)] = y′ (
2


), где y (x) С1[0, π] на кривых: а) y (x) = cos2 х;        

б) y (x) = ctg x – sin 2x; 

7) F [y (x)] = y (1), где y (x) С [
2

1
, 2] на кривых: а) y (x) = 4х − 3;      

б) y (x) = ln x + x2; 

8) F [y (x)] = y′ (1), где y (x) С [0, 2] на кривых: а) y (x) = xe3x;   

б) y (x) = 5х2 − 4x + 2. 

Задание 2.  Вычислить значение функционала F[y] на 

соответствующих кривых: 

1)  +=
1

0

)2(][ dxyxyF  на кривых: а) y (x) = 5х2 − 4x + 2;    

б) y (x) = e3x; 

2)  −=
1

0

2 )3(][ dxyyxyF  на кривых: а) y (x) = х;       б) y (x) = ex; 
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3)  =
2

1

0

][ dxyxyF  на кривых: а) y (x) = х2;     б) y (x) = arcsin x.; 

4)  −=
1

0

)5(][ dxyxyyF  на кривых: а) y (x ) = 
x+1

1
;    б) y (x) = e-x; 

5)  +=
1

0

)(][ dxyxyF  на кривых: а) y (x) = 2х − 3; б) y (x) = arctg х; 

6)  −=


0

)(][ dxyxyyF  на кривых: а) y (x) = х2 − 1; б) y (x) = sin x; 

7)  −=
2

0

)1(][



dxyxyF  на кривых: а) y (x) = cos2 х; б) y (x) = 2x+1; 

8)  −=
2

1

2 )(][ dxyyxyF  на кривых: а) y (x)= 4х − 3; б) y (x) = ln x. 

Задание 3. Проверить на линейность следующие функционалы: 

1) F [y (x)] = y′ (1), где y (x) С1[0, 2]; 
 

2) F [y (x)] = y (1), где y (x) С [1/2,2]; 

3)  −=
1

0

)1(][ dxyxyF ; 4)  −=
1

0

)(][ dxyyxyF ; 

5)  −=
1

0

)2(][ dxyxyxyF ; 6)  +=
1

0

2 )(][ dxyeyxyF x ; 

7)  −+=
1

0

)(][ dxyyxyF ; 8)  −=
1

0

2 )(][ dxyyyF . 

Задание 4.  Определить, непрерывны ли следующие 

функционалы в пространстве С1[a, b] на прямой y  0: 

1)  =
2

0

2][ dxyyF ; 2)  +=
1

0

)(][ dxухуyF ; 

3)  +=
2

0

21][ dxyyF ; 4) 
−

+=
1

1

2 )2(][ dxyyF ; 

5)  −=
1

0

)1(][ dxyxyF ; 6)  +=


0

)21)((][ dxyxyyF . 

Определить, непрерывен ли функционал ][yF   в пространстве 

С1 [0, 1] на функции y0 (x): 

7)  +=
1

0

)2(][ dxууyF ;  y0 (x) = x;  

8)  +=
1

0

)2(][ dxухуyF ;    y0 (x) = х + 2. 
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Лабораторная работа № 3 

Вариация функционала. Экстремум функционала 
 

3.1. Основные теоретические сведения 

Вариация функционала. Вариацией  или приращением y 

аргумента y (х) функционала F [y] называется разность функций y (х) 

и y0 (х) принадлежащих заданному классу функций Н: y = y (х) – 

y0 (х). 

Приращением функционала F [y], соответствующим 

приращению y аргумента называется разность  

F = F [y0 + y] – F [y0]. 

Если приращение функционала F [y] можно представить в виде  

F = L [y, y] `+  [y, y]||y||, 

где L [y, y] – линейный относительно y функционал,  [y, y] → 0 

при ||y|| → 0, то L [y, y] называется вариацией функционала и 

обозначается F. В этом случае функционал называется 

дифференцируемым в точке y (x). 

Рассмотрим функционал F [y + y], где y (x) и y (х) – 

фиксированы,   – изменяющийся параметр. Вариацию функционала 

F [y] можно определить также как производную функционала 

F [y + y] по параметру : 

                        L [y, y] = .
][

lim
0 




yyF +

→

 

(3.1) 

Если существует вариация функционала, как главная линейная 

часть его приращения, то существует и вариация как значение 

производной по параметру  при  = 0 и эти вариации совпадают. 

Экстремум функционала. Необходимое условие экстремума. 

Говорят, что функционал F [y], определенный  в пространстве Сk[a, b], 

достигает максимума на кривой y = y0 (x), если на всех допустимых 

кривых, близких к y0 (x), выполняется неравенство F [y0]   F [y]  или 
0][][][Δ 00 −= yFyFyF . 

Если 0][Δ 0 yF

 

и ][Δ 0yF  = 0 только при ][][ 0yFyF = , то 

максимум называется строгим. 

Аналогично определяется минимум (строгий минимум) 

функционала на кривой y = y0 (x). В этом случае 0][Δ 0 yF  на всех 

кривых, близких к y0 (x). 

Максимум (минимум) функционала называется экстремумом  

функционала. 
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Если функционал F [y] достигает на кривой y = y0 (x) максимума 

(минимума) по отношению к допустимым кривым близким к y0 (x) в 

смысле близости нулевого порядка, то экстремум называется сильным. 

Если функционал F [y] достигает на кривой y = y0 (x) максимума 

(минимума) по отношению к допустимым кривым близким к y0 (x) в 

смысле близости первого порядка, то экстремум называется слабым. 

Сильный экстремум в то же время является слабым, но не 

наоборот. 

Теорема. Если дифференцируемый функционал F [y] достигает 

экстремума на кривой y = y0 (x), где  y0 (x) – внутренняя точка 

области определения функционала, то при  y = y0 (x) вариация 

F[y0] = 0. 
 

3.2. Примеры решения задач 

Пример 1. Найти вариацию функционала =
1

0

2][ dxyyF , 

определенного в классе функций C1[0, 1]. 

Решение.  Найдем приращение функционала 

=−+=−+= 
1

0

2
1

0

2)(][][][ dxydxyyyFyyFyF   

 +=+=−++=
1

0

2
1

0

1

0

2
1

0

222 )(2))(2())(2( dxydxyydxyyydxyyyyy  . 

В нашем случае линейной относительно y частью приращения 

будет функционал L [y, y] = 
1

0

2 dxyy , так как для него выполняются 

все условия линейности функционала: 

1) L [y, сy] = ==  сdxyyсdxyсy
1

0

1

0

22   L [y, y], 

2) L [y, y1 + y2] = =+=+ 
1

0
2

1

0
1

1

0
21 22][2 dxyydxyydxyyy    

= L [y, y1] + L [y, y2]. 

Оценим интеграл 
1

0

2)( dxy : 

||||||||||||||max)(max)( 22

10

2

10

1

0

2 yyyyydxy
xx

 ===


 . 

В этом случае  [y, y] = ||y|| → 0  при ||y|| → 0. 

Следовательно, вариацией ][yF  функционала является 

линейный функционал L [y, y] = 
1

0

2 dxyy  и, согласно определению, 

функционал =
1

0

2][ dxyyF  является дифференцируемым в каждой 

точке y(x)  C1[0, 1]. 
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Замечание. Вариацию функционала =
1

0

2][ dxyyF
 
можно так же 

найти по формуле (3.1): 

F [y + y] =  +
1

0

22 )( dxyy   =  ++
1

0

222 ))(2( dxyyyy  . 

=
+

=
→ 






][
lim][

0

yyF
yF =++




→

1

0

222

0
))(2(lim dxyyyy 


 

.2))(22(lim
1

0

1

0

2

0
 =+=

→
dxyydxyyy 


 

Пример 2.  Доказать, что функционал  −=


0

22 )1(][ dxyyyF , 

определенный на множестве Н функций y = y (x) пространства 

C1[0, ], удовлетворяющих начальным условиям y (0) = 0, y () = 0, 

достигает на кривой y = 0 слабого экстремума, но не достигает 

сильного. 

Решение. Докажем, что на кривой y = 0 функционал достигает 

слабого минимума. 

00]0[
0

== 


dxF . Оценим  −=−=


0

22 )1(]0[][]0[Δ dxyyFyFF . 

Рассмотрим множество функций, принадлежащих Н, расположенных 

в -окрестности первого порядка функции y = 0, где  - любое число 

меньшее единицы. Тогда 1y  и подынтегральная функция 

0)1( 22 − yy . По свойству определенного интеграла, 

0)1(]0[Δ
0

22 −= 


dxyyF . Следовательно, функционал достигает 

слабого минимума на кривой y = 0. 

Докажем, что на кривой y = 0 функционал не достигает сильного 

эксремума. Рассмотрим кривую nx
n

xy sin
1

)( = . При достаточно 

больших п данная кривая близка к кривой y = 0 в смысле близости 

нулевого порядка, так как в пространстве C [0, ]: 

||y (x) – y0 (x)|| = || nx
n

sin
1

|| = 
n

nx
nx

1
sin

1
max

0


 
. 

На кривых nx
n

xy sin
1

)( =  и y = 0 

=−=−= 


0

22 )cos1(sin
1

]0[][]0[Δ dxnxnnx
n

FyFF

 

=−= 


0

222 )cossinsin
1

( dxnxnxnx
n
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 −=
 

0 0

22 2sin
4

1
sin

1
dxnxnxdx

n 82


−=

n
. 

Таким образом, при больших п для кривой nx
n

xy sin
1

)( =  

0]0[Δ F . В то же время, по доказанному выше, для всех кривых, 

близких к  y = 0 в смысле близости первого порядка (значит и в 

смысле близости нулевого порядка) 0]0[Δ F . Следовательно на 

кривой y = 0 сильный экстремум не достигается. 
 

3.3. Задания для лабораторной работы 

Задание 1. Проверить следующие функционалы на 

дифференцируемость и найти первую вариацию двумя способами: 

а) по определению; б) с помощью формулы (3.1):  

1)  +=
1

0

2 )(][ dxухyF ; 2)  +=
1

0

)23(][ dxухyF ; 

3)  +=
1

0

22 )2(][ dxухyF ; 4)  −=
1

0

2 )(][ dxухуyF ; 

 5)  =
2

0

2][ dxуyF ; 6)  +=
−

1

1

2 )2(][ dxуyF ; 

7)  +=
2

0

21][ dxуyF ; 8)  +=
1

0

2 )(][ dxуеухyF х . 

Задание 2. Пользуясь определением, доказать, что на кривой 

у = у (х) функционал ][yF достигает глобального минимума: 

1) 1)1(,0)0(,][
1

0

2 == = ууdxуyF ,  где y (x) = х;. 

2) 1)1(,0)0(,)2(][
1

0

2 == += ууdxухyF , где y (x) = х;. 

3) 1)1(,0)0(,)(][
1

0

22 == += ууdxухyF   где y (x) = х; 

4) ,][
1

0

2
 = dxуyF ,0)1()0()0( === ууу 1)1( =у , где y (x) = х3−x2. 

Пользуясь определением, доказать, что на кривой у = у (х) 

функционал 

5) 0)()0(,)3(][
0

22 == −= 


ууdxууyF  имеет слабый минимум 

на кривой у(х) ≡ 0, а сильного минимума на этой кривой нет; 

6) 0)()0(,)1(][
0

22 == −= 


ууdxууyF  имеет сильный минимум 

на кривой у(х) ≡ 0; 
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7) 0)()0(,)21(][
0

22 == −= 


ууdxууyF  имеет слабый минимум 

на кривой у(х) ≡ 0, а сильного минимума на этой кривой нет; 

8) 0)()0(,)1(][
0

22 == += 


ууdxууyF  имеет сильный минимум 

на кривой у(х) ≡ 0. 

 
Лабораторная работа № 4 

Простейшая задача вариационного исчисления.  

 Уравнение Эйлера 
 

4.1. Основные теоретические сведения 

Пусть функция  f (x, y, y) имеет непрерывные частные 

производные по всем переменным до второго порядка включительно 

на множестве a  x  b,     −  < у , y < +. 

Рассмотрим задачу: среди всех функций y(x)  C1[a, b], 

удовлетворяющих граничным условиям 

                                      y(a) = A, y(b) =B, (4.1) 

найти ту функцию, на которой достигается слабый экстремум 

функционала 

                                =
b

a

dxyyxfxyF ),,()]([ . (4.2) 

Такая задача называется простейшей задачей вариационного 

исчисления. Основой для решения простейшей задачи вариационного 

исчисления является следующая теорема. 

Теорема.  Если на функции y0(x)  C1[a, b],  удовлетворяющей 

условиям (4.1), достигается экстремум функционала (4.2), то эта 

функция является решением уравнения 

                                      0=−
yy

f
dx

d
f . (4.3) 

Уравнение (4.3) называется уравнением Эйлера. Семейство 

интегральных кривых y = y (x, C1, C2) уравнения Эйлера называют 

экстремалями функционала (4.2). 

Уравнение Эйлера в развёрнутой форме имеет вид: 

                         
0=−−−


yfyfff

yyyyyxy
. (4.4) 
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4.2. Примеры решения задач 
 

Пример. Найти экстремали функционала 

 ++=
1

0

2 )424][ dxyyyxyyF  

при условиях y (0) = 0, y (1) = 4. 

Решение. .424),,( 2yyyxyyyxf ++=  

Найдем частные производные функции ),,( yyxf  : 

yxf
y

+= 24 ,   yyf
y

+=


8 ,    0=
yx

f ,   1=
yy

f ,    8=
yy

f . 

Уравнение Эйлера: 0824 =−−+ yyyx , т.е. xy 3= . 

Интегрируя последнее уравнение, получаем  

1

2

2

3
C

x
y += , 21

3

2
CxC

x
y ++= . 

Из граничных условий находим: 








=++

=

4
2

1

0

21

2

СС

С

,         







=

=

2

7

0

1

2

С

С

. 

Таким образом, x
x

y
2

7

2

3

+=  − искомая экстремаль. 

 

4.3. Задания для лабораторной работы 

Найти экстремали функционалов, при заданных граничных 

условиях. 

Задание 1.   

1)
 

( )dxуухy  ++=
1

0

32 3)(F ;  2)1(,0)0( == yу ; 

2) ( )dxуyxyy  +−−=
2

0

22 2sin24)(F



;  0)0( =y , 3)
2

( =


y ; 

3)
 

( )dxуyxyy  ++−=
2

0

22 2cos9)(F



; 1)0( =y , 2)
2

( =


y ; 

4)
 

( )dxуyxyy  ++=
1

0

22 29)(F ; 0)1()0( == yy ; 

5) ( )dxyxyyF y −+=


0

22cos4)( ; 0)()0( == yy ; 

6) dxyyeyF x

 +=
2ln

0

222 )3()( ; 0)0( =y , 
8

15
)2(ln =y ; 
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7) dxyxyyF 
−

−=
1

1

2 )2()( ; 1)1( −=−y , 1)1( =y ; 

8) dxyxyyF 
−

−=
0

1

2 )2()( ; 0)1( =−y , 2)0( =y . 

 

Задание 2. 

1) ( )dxухyy
e

 −=
0

222)(F ; ey =)1( , 0)( =ey ; 

2) ( )dxxyyyyyF  ++=
1

0

2 12)( ; 0)1()0( == yy ; 

3) ( )dxxyyyF  +=
1

0

2)( ; 0)1()0( == yy ; 

4) ( ) +=
1

0

2)( dxyyeyF x
; 0)0( =y , 1)1( =y ; 

5)  +=
1

0

22 )()( dxxyyyF ; 0)1()0( == yy ; 

6) dxyxyyF 
−

−=
0

1

2 )12()( ; 1)1( =−y , 0)0( =y ; 

7) dxyxyyyF
е

 +=
1

2 )()( ; 0)1( =y , 1)( =еy ; 

8) ( )dxууyxy  −=
2

0

23 3)(F ; 6)2(;4)0( == yy . 

 

Задание 3. 

1) ( ) dxуyxyy  +−=
1

0

22 sin24)(F ; 0)0( =y , 2)1( =y ; 

2)
 

( )dxууxy  ++=
1

0

443sin)(F ; 
2

2
)1()0( == yy ; 

3) ( )dxxyyyF
b

 −+=
0

22 39)( ; 0)()0( == byy ; 

4)
 

( )dxууxy  −+=
1

0

363ln)(F ; 1)0( =y , 3)1( =y ; 

5) ( )dxyyyxyF  −=
2

1

34 2)( ; 0)1( =y , 1)2( =y ; 

6)  dxуyyeyF x

 −−=
1

0

222 )()( ; 0)0( =y , 
1)1( −= еy ; 

7) ( )dxуyеxyy х

 ++=
1

0

2224)(F ; 2)1(;0)0( == yy ; 

8) ( )dxууyyy  −+=
6

0

22 29)(F



; 0)
6

(;1)0( ==


yy . 
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Лабораторная работа № 5 

Частные случаи уравнения Эйлера 
 

5.1. Основные теоретические сведения 
 

Рассмотрим некоторые частные случаи уравнения Эйлера. 

1) Пусть подынтегральная функция ),,( yyxf   функционала F [y] 

не зависит от y : ),( yxff = . В этом случае 0=
y

f .   Тогда уравнение 

Эйлера имеет вид 0),( = yxf
y

. Оно является не дифференциальным, 

а алгебраическим. Поэтому данная задача имеет решение только 

в исключительных случаях. 

2) Функция ),,( yyxf   линейно зависит от y : 

),,( yyxf   = M (x, y) + N (x, y) y . 

Уравнение Эйлера имеет вид 0=



−





x

N

y

M
, которое, как и в 

предыдущем случае, не является дифференциальным. Кривая, 

заданная уравнением  0=



−





x

N

y

M
, вообще говоря, не удовлетворяет 

начальным условиям и задача, как правило,  не имеет решения.  

Если в некоторой области D 0



−





x

N

y

M
, то выражение 

),,( yyxf   = M (x, y) dx  + N (x, y)dy  

является полным дифференциалом и функционал не зависит от пути 

интегрирования. Значение функционала одно и то же на всех 

допустимых кривых, вариационная задача теряет смысл. 

3) Функция ),,( yyxf  зависит только от y : )( yff = .  

Уравнение Эйлера имеет вид 0=


yf
yy

. Отсюда 0=y  или 

0=
 yy

f . Решением уравнения 0=y  является семейство прямых 

21
CxCy += . Если уравнение 0=

 yy
f  имеет один или несколько 

действительных корней 
i

ky = , то решения Cxky
i

+=  –  это частный 

случай семейства прямых 
21

CxCy += . Следовательно, в этом случае 

экстремалями являются прямые 
21

CxCy += . 

4) Функция ),,( yyxf  зависит от х и y : ),( yxff = .  

Уравнение Эйлера имеет вид 0=
y

f
dx

d
. Следовательно, имеет 

первый интеграл 
1

),( Cyxf
y

=


.   Это уравнение первого порядка не 
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зависящее от у. Решить это уравнение можно или с помощью 

подстановки, или выразив y , а затем проинтегрировав. 

5) Функция ),,( yyxf  зависит от y и y : ),( yyff = . Уравнение 

Эйлера имеет вид 0)( =−


yff
dx

d
y

. Данное уравнение имеет первый 

интеграл 
1

Cyff
y

=−


.  
 

 

5.2. Примеры решения задач 

Пример 1. Найти экстремали функционала 

 ==−=
1

0

22 )1(,0)0(,)5(][ еууdxуеyyF х
. 

Решение. Подынтегральная функция ),,( yyxf   функционала 

F [y] не зависит от y : ),( yxff = . Уравнение Эйлера имеет вид 

0),( = yxf y . 

Получаем  2у – 5е2х = 0, т.е. у = xe2

2

5
. Эта функция не может 

быть экстремалью, так как для нее не выполняются граничные 

условия ееуу == 2

2

5
)1(,0

2

5
)0( . 

Пример 2. Найти экстремали функционала 

( )dxyyyF  −=
1

0

22)( ; 0)0( =y , 2)1( =y . 

Решение. Подынтегральная функция ),,( yyxf  зависит только 

от y : )( yff = . Уравнение Эйлера имеет вид 0=


yf
yy

. Отсюда 

0=y  или 0=
 yy

f . Решением уравнения 0=y  является семейство 

прямых линий 
21

CxCy += . Экстремаль, удовлетворяющая 

граничным условиям, есть прямая у = 2х. 

Пример 3. Найти экстремали функционала 

( )dxyхyхyF  −=
1

0

22 2)( . 

Решение. Подынтегральная функция ),,( yyxf  зависит от х и 

y : ),( yxff = . Уравнение Эйлера имеет вид 0=
yf

dx

d
.  
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Следовательно, уравнение имеет первый интеграл 1

2 4 Cухх =− .  

Найдем y :  

х

Сх

х

Сх
y

444
11

2

−=
−

= . 

Проинтегрировав, получим 
2

1

2

ln
48

Cx
Сх

y +−= . 

Пример 4. Найти экстремали функционала dxууyF  +=
1

0

21)( .  

Решение. Подынтегральная функция ),,( yyxf  зависит от y и 

y : ),( yyff = . Уравнение Эйлера имеет вид 0)( =−


yff
dx

d
y

. Это 

уравнение имеет первый интеграл 
1

Cyff
y

=−


. В нашем случае 

получаем 
12

2

2

1
1 С

у

уу
уу =

+


−+ . Преобразовав это уравнение, имеем 

.1 2

1
уСу +=  Экстремалями являются линии 

1

2

C

Cx
chу

+
= . 

 

5.3. Задания для лабораторной работы 

Найти экстремали функционалов. 

Задание 1. 

1) ( ) −+=
3

0

22 )2()( ydxуxyF ; а) 2)0( =y , 2)3( =y ; б) 1)0( =y , 2)3( =y ; 

2) ( ) −=
2

1

2)( ydxyxyF ;  1)1( =y , 3)2( =y ; 

3) ( ) −=
2

0

22 ,2sin)( dxyxyyF а) у(0) = 0; у(2) = 8;   б) у(0) = 0;  у(2) = 4;   

4)  −=
2

0

2 ,)4cos()( dxyxyyF  а) у(0) = 0; у(2) = 22 ; б) у(0) = 0;  у(2) = 4;   

5) 
−=

2

0

2 ,)(
32

dxeyF yxy  а) 0)0( =y , 8)2( =y ; б) 1)0( =y , 8)2( =y ; 

6) 
−=

2

0

,)(
2

dxeyF yxy

 
а) 2)0( =y , 

2

2
)2( =y ;  б) 0)0( =y , 

2

2
)2( =y ; 

7) 
−=

2

0

sin2

,)(



dxeyF xyy  а) у(0) = 0;  у(
2


) = 

2

1
;   б) у(0) =

2


;  у(

2


) = 4;    

8)  +−=
e

dxyxyyF
1

23 ,)23ln()(  у(1) = −1; у(е)=В. 
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Задание 2. 

1) ( ) +=
1

0

22)( dxyxyyF ; у (0) = 0;   у (1) = В; 

2) ( ) +=
1

0

23 32)( dxyxyyF ; у(0) = 0; у(1) = В; 

3) ( ) −=
2

0

2 sin2)(



dxyxyyF ;     у(0) = −
4

1
;   у(

2


) = В; 

4) ( ) −=
2

0

2 cos)(



dxyxyyF ; у(0)=0; у(π/2)=В; 

5) ( ) +=
2

0

42 34)( dxyxxyyF ; у(0)=0; у(2)=В; 

6) ( ) +=
2

0

33)( dxyуxxyyF ; у(0)=0;   у(2)=В; 

7) ( ) +=
2

0

)( dxyxyyF ; у(0)=0;  у(2)=В; 

8) ( ) ++=
1

0

22332 )()( dxyууxxyyF ;   у(0)=0;   у(1)=В. 

Задание 3. 

1)  =
1

0

2)( dxyyF ; 0)0( =y , 1)1( =y ; 

2) dxyyyF 
−

+=
1

1

23 )()( ; 1)1( −=−y , 3)1( =y ; 

3) ( )dxyyyF  +=
1

0

2)( ; 0)0( =y , 3)1( =y ; 

4) ( )dxуyF  +=
1

0

21)( ; 1)0( =y , 3)1( =y ;  

5) dx
у

у
yF  
















+
=

2

0

21
)( ; 2)0( −=y , 1)2( =y ; 

6) ( )dxуyF  +=
1

0

231)( ; 1)0( =y , 3)1( =y ; 

7) ( )dxууyF  ++=
1

0

21)( ; 0)0( =y , 5)1( =y ; 

8) ( )dxууyF  +−=
1

0

2432)( ; 3)0( −=y , 3)1( =y . 
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Задание 4. 

1) ( )dxухyy
e

 −=
0

222)(F ; ey =)1( , 0)( =ey ; 

2) dx
y

yF
x




=
2

1
2

3

)( ; 1)1( =y , 4)2( =y ; 

3)  =
2

1

2)( dxyxyF ; 1)1( =y , 2)2( =y ; 

4)  +=
1

0

22 )3()( dxxyyF ; 0)1()0( == yy ; 

5)  ( ) +=
1

0

2)( dxyxyF ; у(0)=1; у(1)=2;  

6) ( ) +=
1

0

2)( dxyуxyF ; у(0)=2; у(1)=4; 

7) dxyyF x
n 2

2

1

)( =  , Nn  , 1n ; 
n

y
−

=
1

1
)1( , 

n
y

п

−
=

−

1

2
)2(

1

; 

8) ( )dxуухyF 
−

+=
1

1

2)( ; 1)1( =−y , 0)1( =y . 

Задание 5. 

1) ( ) dxykyyF
b

 ++=
0

2 )1()( ;   0)0( =y , kby =)( ; 

2) dxyyyF  +=
1

0

2 )1()( ;   
2

2
)1()0( == yy ; 

3) ( )dxyyyyF  −=
1

0

32)( ; 0)1()0( == yy ; 

4)  +=
1

0

22 )()( dxyyyF ; 1)0( =y , ey =)1( ; 

5)  −+=
2

0

22 )2()(


dxyyyyF ; 0
2

)0( =







=


yy ; 

6) ( )dxyyyF  +=
1

0

22
4)( ; 1)0( =y , 2)1( еy = ; 

7)  dxyyyF  −=
1

0

2 )()( ; 0)1()0( == yy ; 

8) dxyyyF  −=
2

0

22 )()( ; 1)0( =y , 1)2( =y . 
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Лабораторная работа № 6 

Функционалы, зависящие от производных  

высших порядков 
 

6.1. Основные теоретические сведения 

Рассмотрим функционал: 

                         =
b

a

n dxyyyyxfyF ),,,,,(][ )( ,  (6.1) 

где функция ),,,,,( )(nyyyyxf   имеет непрерывные производные до 

(n +2)-го порядка по всем аргументам, а ],[)( baCxy n . 

Граничные условия в этой задаче имеют вид: 

0)( yay = ,  0)( yay = , …, )1(

0

)1( )( −− = nn yay , 

1)( yby = ,  1)( yby = , …,  )1(

1

)1( )( −− = nn yby . 

Для того, чтобы функционал (6.1) достигал на функции 

],[)( baCxy n  локального экстремума необходимо, чтобы эта 

функция удовлетворяла уравнению Эйлера — Пуассона 

               
0)()1()()( )(2

2

=−+−+−


 nyn

n
n

yyy f
dx

d
f

dx

d
f

dx

d
f  . (6.2) 

 

6.2. Примеры решения задач 

Пример 1. Найти экстремали функционала 

 −=
1

0

22 )120(][ dxyyxyF , удовлетворяющие граничным условиям  

2)1( ,
6

1
)1( ,0)0()0( ==== yyyy . 

Решение. Запишем уравнение Эйлера — Пуассона: 260xy IV = . 

Интегрируем обе части: 

1

320 Cxy += ,     21

45 CxCxy ++= ,   

 
32

215

2
CxCx

C
xy +++= , 

43

2231

6

266
CxCx

C
x

Cx
y ++++= . 

Обозначим: 
6

1
1

C
C = , 

2

2
2

C
C = . 

Общее решение уравнения Эйлера — Пуассона: 

43

2

2

3

1

6

6

1
CxCxCxCxy ++++= . 
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С помощью граничных условий получаем систему уравнений 

для определения постоянных 
41

,, CC  : 













=+++

=++++

=

=

,2231

,
6

1

6

1

,0

,0

321

4321

3

4

CCC

CCCC

C

C

 

из которой находим 0,0,1,1 4321 ==−== CCCC . 

Экстремум функционала может достигаться на кривой 

236

6

1
xxxy −+= . 

 

6.3. Задания для лабораторной работы 

Найти экстремали функционалов, зависящих от производных 
высших порядков. 

Задание 1. 

1)  ++=
1

0

222 )2()( dxyyyyF , 0)0( =y , 0)1( =y , 1)0( =y , 1sh)1( −=y ; 

2) 
−

−=
0

1

2 )240()( dxyyyF , 0)0( =y , 1)1( =−y , 5.4)1( −=−y , 

0)0( =y , 16)1( =−y , 0)0( =y ; 

3)  +=
b

a

dxyyyF )()( , 
0

)( yay = , 
1

)( yby = , 
0

)( yay = , 
1

)( yby = ; 

4)  +=
b

a

dxyyyyF )()( 2 , 
1

)( Aay = , 
1

)( Bby = , 
2

)( Aay = , 
2

)( Bby = ; 

5)  +=
1

0

22 )()( dxyyyF , 0)0( =y , 1sh)1( =y , 1)0( =y , 1ch)1( =y . 

6)  +=
1

0

2 )2(][ dxyyyF ,  0)0( =y , 2)0( =y , ( ) 21 =y , ( ) 41 =y ; 

7)  =
1

0

2][ dxyyF ,  1, )0(,0)0( == yy 0)1(,0)1( == yy ; 

8)  −=
2

0

22 )(][



dxyyyF , 0 )0()0( == yy , 
22


=








y , 0

2
=











y . 

Задание 2. 

1)   −=
1

0

2 )48(][ dxyyyF ,  0)0()0( == yy , 4)1(,1)1( == yy ; 

2)   −+=
2

0

222 )2(][



dxyxyyyF ,   ,0)0( =y ,
42

2
=








y   ,0)0( =y  

1
2

+=







 


y ; 
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3)  +=
b

dxyyyF
0

22 )(][ ,   ( ) ( ) 0  ,0)0(,0 ,0)0( ==== byybyy ; 

4)  +−=
2

0

222 )(][



dxxyyyF ,   1)0( =y , 0
2

=







y ,   ,0)0( =y  1

2
=











y ; 

5)  ++=
1

0

222 )54(][ dxyyyyF ,  0)0()0( == yy , ( ) 11 =y , ( ) 21 =y ; 

6)  −=
1

0

22 )360(][ dxyyxyF , 0)0( =y , 1)0( =y , ( ) 01 =y , ( ) 5,21 =y ; 

7)  −=
1

0

2 )48(][ dxyуyF ,  0 )0()0( == yy , 4)1(,1)1( == yy ; 

8)  = −
1

0

2][ dxyeyF x ,  1 )0(,0)0( == yy , eyey 2)1(,)1( == . 

Задание 3. 

1)  −=
1

0

22 )(][ dxyyyF , ( ) 00 )0( == yy ,  ( ) 1sh1 )1( == yy , 

 ,1)0( =y  ( ) 1sh1 =y ; 

2)  =
1

0

2][ dxyyF ,  ( ) 00 )0()0( === yyy ,  ,4)1(,1)1( == yy  

( ) 121 =y ; 

3)  −=


0

22 )(][ dxyyyF , ( ) 00 )0()0( === yyy , ( )  ,sh )(  == yy  

1sh)( += y ; 

4)  −=
1

0

22 )720(][ dxyyxyF , ( ) ( ) 11  ,01 ,1)0(,0)0( ==== yyyy ; 

5)  +−=
2

0

222 )54(][



dxyyyyF ,  ,3)0( =y

 

 ,4)0( =y   ,1
2

=







y  

4
2

−=










y ; 

6)
 


−

−=
0

1

2 )240(][ dxyуyF , 0)0( =y , 1 )0( =y , ,0)0( =y  1)1( =−y ,  

2

9
)1( −=−y ,   16(-1)y = ; 

7)  ++=
1

0

22 )21(][ dxyxyF ,  1)0( =y , 0 )0( =y , 2)0( −=y , 

2)1( =y ,  6)1( =y ,  22(1)y = ; 

8)  +=
1

0

2 )240(][ dxyxуyF ,  0)0( =y , 2)0(,1 )0( == yy , 

2)0( =y , 
42

85
)1( =y ,  

6

13
)1( =y ,  5(1)y = . 
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Лабораторная работа № 7 

Функционалы, зависящие от нескольких функций 
 

7.1. Основные теоретические сведения 
 

Рассмотрим функционал вида 

                              =)](,),(),([ 21 xyxyxyF n                       

            dxxyxyxyxyxyxf
b

a
nn ))(,),(),(,),(),(,( 121 =  ,          (7.1) 

где функция f имеет непрерывные частные производные до второго 

порядка включительно по всем своим аргументам и 

),1( ],,[)( 1 nkbaCxyk = . 

Граничные условия имеют вид  
0)( kk yay = , 

1)( kk yby = , ),1( nk = . 

Если набор функций ],[)(,),( 1

1 baCxyxy n   доставляет 

экстремум функционалу (7.1), то эти функции удовлетворяют системе 

дифференциальных уравнений Эйлера 

                          ),1( ,0)( nkf
dx

d
f

kk yy ==−  . (7.2) 

 
7.2. Примеры решения задач 

 

Пример 1. Найти функции )(
1

xy  и ],[)( 1

2
baCxy  , на которых 

может достигаться экстремум функционала 

 +−+=
2

0
121

2

2

2

121 )22()](),([



dxxyyyyyxyxyF  

при граничных условиях 0)0()0( 21 == yy , 1)
2

()
2

( 21 ==


yy . 

Решение. Система уравнений Эйлера имеет вид 





=+
=−+

.0

,0

12

21

yy

xyy
 

Находим из второго уравнения 21
yy −=  и подставляем в первое 

уравнение. Имеем xyy IV =− 22 . 

Общее решение этого уравнения 

xCxCeCeCyy xx sincos 432121 ++−−=−= −
, 

xxCxCeCeCy xx −+++= − sincos 43212 . 

Из граничных условий получаем 
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











=+−−

=−++

=+−−

=++

−

−

.1

,1
2

,0

,0

4
2

2
2

1

4
2

2
2

1

321

321

CeCeC

CeCeC

CCC

CCC




  

Найдем неизвестные постоянные  

,

2
8

1 



sh

C −=    ,

2
8

2 



sh

C =   ,03 =C    .
4

14


+=C  

Решение системы уравнений Эйлера имеет вид 

xshx

sh

y sin)
4

1(

2
4

1






++= , 

xxshx

sh

y −++−= sin)
4

1(

2
4

2






. 

 

7.3. Задания для лабораторной работы 

Найти экстремали функционалов, зависящих от нескольких 

функций. 

Задание 1. 

1)  −++−=
4

0

2222 )42(),(



dxzyyyzzyF , 0)0( =y , 1)
4

( =


y , 

0)0( =z , 1)
4

( =


z ; 

2) 


+−=
−

1

1

3
2 )

3
2(),( dx

z
yxyzyF , 2)1( =−y , 0)1( =y , 1)1( −=−z , 

1)1( =z ; 

3)  −+=
2

0

22 )2(],[



dxyzzyzyF , 0)0( =y , 1)
2

( =


y , 0)0( =z ,   

1)
2

( =


z ; 

4) ,)
3

1
2(],[

1

1

2

1

3

221  −+=
−

dxyyхyyF
 

0)1(1 =y , 2)1(1 =−y , 1)1(2 =y , 

1)1(2 −=−y ; 
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5)  −=
1

2

1

2 )2(],[ dxzxyyzyF , 6)
2

1
( =y , 3)1( =y , 15)

2

1
( =z , 1)1( =z ; 

6)  −+=
1

0

22 )2(),( dxyzzyzyF ,  0)0( =y , 
2

)1(
1−−

=
ее

y , 0)0( =z , 

2
)1(

1−−
−=

ее
z ; 

7)  +=
1

0
212121
)(],[ dxуyуyyyF , 0)0(

1
=y , еy =)1(

1 , 0)0(
2

=у , 

1

2
)1( −= еу ; 

8)  ++=
3

1
21

2

2

2

121
)(],[ dxухyуyхyyF , 1)1(

1
=y , 3ln1)3(

1
+=y , 

0)1(
2

=у ,   0)3(
2

=у . 

 

Задание 2. 

1)  −+=
2

0
21

2

2

2

121
)2(],[



dxyyyyyyF , 0)0(
2

=y , 1)
2

(
1

=


y , 

1)
2

(
2

=


у , 0)0(
1

=y ; 

2) 


+−=
−

1

1

3

22

1221 )
3

2(],[ dx
y

yxyyyF , 0)1(1 =y , 2)1(1 =−y ,  

1)1(2 =y , 1)1(2 −=−y ; 

3)  −+−=


0

2

2

2

1

2

12121 )22(],[ dxyyyyyyyF , 0)0(1 =y , 1)(1 =y , 

0)0(2 =y , 1)(2 =у ; 

4)  −+−=
4

0

2

2

2

1

2

1221 )42(],[



dxyyyyyyF , 0)0(2 =y , )0(1y 0= , 

1)
4

(1 =


y , 1)
4

(2 =


y ; 

5)  ++=
2

1

2

22121 )(],[ dxyyyyyF , 1)1(1 =y , 2)2(1 =y , 0)1(2 =у , 

1)2(2 =у ; 

6)  −=
2

0
212121 )(],[



dxуyуyyyF , 0)0(1 =y , 1)
2

(1 =


y , 0)0(2 =у , 

1)
2

(2 −=


у ; 
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7)  ++=
1

0
2

2

12121 )126(],[ dxуххyуyyyF , 0)0(1 =y , 2)1(
1

=y , 

0)0(
2

=у ,  3)1(
2

=у ; 

8)  ++=
1

0
1

2

2

2

121 )2(],[ dxyуyyyF , 1)0(
1

=y , 
2

3
)1(

1
=y , 1)0(

2
=у , 

1)1(
2

=у . 

Задание 3. 

1)  +++=
4

2

2

3

2

2

2

1321 1],,[ dxууууyyF ,
 

1)2(1 =y , 3)4(1 =y , 

2)2(2 =y , 4)4(2 =y ,  y3(2) = 5,  y3(4) = 9; 

2)  ++=
3

0

3 2

2

2

121 1],[ dxууyyF , 1)0(1 =y , 7)3(1 =y , 2)0(2 −=y , 

1)3(2 =y ; 

3)  ++=
1

0

22 )2(],[ dxyzyzyF , 1)0( =y ,
2

3
)1( =y , 0)0( =z , 1)1( =z ; 

4)  ++=
1

0

2

1

2

2

2

121 )4(],[ dxyyyyyF , 0)0(1 =y , 1)1(1 =y ,  0)0(2 =y , 

0)1(2 =y ; 

5)  +++=
2

0

2

321

2

2

2

1321
)2(],,[



dxууyуyyyyF ,  0)0(1 =y , 0)0(2 =у , 

0)0(
3

=у ,  1)
2

(
1

=


y , 1)
2

(
3

−=


у ,  
2

)
2

(
2


=у ; 

6)  +++=
2

0
3221

2

3

2

121
)22(],[



dxуууyуyyyF ,    0)0()0()0(
321

=== ууy , 

2
)

2
(

1


=y , 

2
)

2
(

3


−=у ;  

7)   +++−=


0
2121

2

2

2

121
)2cos22(],[ dxухууyуyyyF ,    1)0(

1
−=y , 

1)(
1

+= y , 0)0(
2

=у , 0)(
2

=у ; 

8)  +−+=


0

2

21

2

2

2

121
)2(],[ dxхуyуyyyF ,    1)0(

1
=y , 1)(

1
−=y , 

1)0(
2

=у , 1)(
2

−=у . 
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Лабораторная работа № 8 

Поле экстремалей 
 

8.I. Основные теоретические сведения 

Семейство кривых y = y (x, C) образует собственное поле 

в заданной области D плоскости Oxy, если через каждую точку (x, y) 

этой области проходит одна и только одна кривая семейства 

y = y (x, C) (рис.1). 

Угловой коэффициент ),( yxp  касательной к кривой семейства 

y = y (x, C), проходящей через точку (x, y) называют наклоном поля  в 

точке (x, y). 

Если все кривые семейства y = y (x, C) проходят через 

некоторую точку (x0, y0), то они образуют пучок кривых, а точка (x0, y0) 

является центром пучка кривых. 

Семейство кривых y = y (x, C) образует центральное поле в 

области D плоскости Oxy, если кривые покрывают всю область и 

нигде не пересекаются, кроме центра пучка, который лежит на 

границе области  D (рис.2). 

В случае, если поле образуют решения уравнения Эйлера, то 

говорят о поле экстремалей (собственном или центральном). 

Выбрав какую-то точку в области D, мы однозначно задаём 

экстремаль, проходящую через эту точку. 

Пусть кривая )(xyy = является экстремалью функционала 

 =
1

0

),,(][

x

x

dxyyxfyF , 

проходящей через точки ),( 00 yxA и ),( 11 yxB . Говорят, что экстремаль 

)(xyy =  включена в поле экстремалей (собственное или 

центральное), если найдется семейство экстремалей y = y (x, C), 

образующих поле, содержащее при некотором значении С= С0 

Рис. 1 Рис. 2 
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экстремаль )(xyy = , причём эта экстремаль не лежит на границе 

области D. 

Условие Якоби возможности включения экстремали в поле 

экстремалей.   Пусть имеем простейшую вариационную задачу. Для 

того, чтобы дугу экстремали AB можно было включить в центральное 

поле экстремалей с центром в точке ),(
00

yxA , достаточно, чтобы 

существовало решение u = u (x) уравнения Якоби 

                          0)()( =−−
 uf

dx

d
uf

dx

d
f yyyyyy , (8.1) 

удовлетворяющее условию 0)( 0 =xu , которое не обращается в нуль 

ни в одной точке полуинтервала 10 xxx  . 

Замечание. Условие Якоби является и необходимым для 

достижения экстремума функционала F [y]. 

Усиленное условие Лежандра. Достаточным условием для 

включения экстремали в поле экстремалей является выполнение 

неравенства 0
yy

f  при всех ],[ 10 xxx  . 
 

8.2. Примеры решения задач 

Пример 1. Образуют ли поле следующие семейства кривых 

в указанных областях: 

1) xCy ln= , 1)1()3( 22 −+− yx ; 

2) 2)( Cxy += , 122 + yx ; 

3) )1( −= xCy , 1x . 

Решение. 

1) Внутри круга 1)1()3( 22 −+− yx  семейство кривых  

xCy ln=   образует собственное поле (рис. 3). 
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2) Семейство парабол внутри круга 122 + yx  собственного 

поля не образует, так как различные кривые пересекаются внутри 

круга и не покрывают всю область (рис. 4). 

 

 

3) Семейство прямых y = C(x – 1) образует центральное поле в 

области 1x . 

Пример 2. Образуют ли поле экстремали функционала 

 =
1

0

2][ dxyyF ? 

Решение. Экстремалями функционала являются прямые 

21
CxCy += . Семейство экстремалей 

2
Cy =  образует собственное 

поле, а семейство экстремалей xCy
1

=  образует центральное поле 

с центром в начале координат. 

Пример 3. Выполнимо ли условие Якоби для экстремали 

функционала 
−+−=

a
x dxeyyyF

0

22 )4(][
2

, )0,)
2

1
(( + ana  , 

проходящей через точки A(0,0) и B(a,0)? 

Решение. Уравнение Якоби имеет вид: 04 =+ uu . Его общее 

решение xCxCxu 2sin2cos)(
21

+= . Из условия 0)0( =u  находим, что 

0
1

=C , так что  xCxu 2sin)( 2= . 

Если 
2


a , то функция 0)( xu  при ax 0  и условия Якоби 

выполнены. Если же 
2


a , то решение уравнения Якоби обращается 

в нуль в точке 
2


=x  и условия Якоби не выполнены. 
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8.3. Задания для лабораторной работы 

Задание 1. Образует ли поле (собственное или центральное) 

следующие семейства кривых в указанных областях. Сделать чертеж.  

1) y = Ccos x;   a) 
44


− x ;   б) 


 x

2
;  в)  − x ; 

2) y = Cx + 1; a) 122 + yx ; б) 1)1()1( 22 −+− yx ;                      

в) 1)1()1( 22 −+− yx ; 

3) 
222)( CyCx =+− ; a) 11 − x ;   б) 10  x ;  в) 10  x ; 

4) y=C( x2−2x);      a)  0≤  x < 1;   б) −1 ≤ x ≤ 3;  в) 
2

3

2

1
 x ; 

5) y=Csin(x−
4


); a) 

24


 x ;   б) 


 x

3
;  в) 


2

8
 x ; 

6) 422 =+ Cyx ; a) 222 + yx ; б) 1)1()1( 22 −+− yx ;                      

в) область, лежащая внутри треугольника АВС, где А (2, 0), В (0, 2), 

С (0, 1); 

7) )( 2 xxCy −= , a) 
2

1
0  x , б) 21 − x , в) 

4

3

4

1
 x ; 

8) 
222 )( CСyx =−+ ; a) 10  y ;   б) 11 − y ;  в) 10  y . 

Задание 2. Среди непрерывно дифференцируемых на отрезке 

[a, b] функций найти экстремаль функционала, удовлетворяющую 

граничным условиям. Определить, включена ли найденная экстремаль 

в поле экстремалей (центральное  или  собственное): а) непосредст-

венно; б) с помощью условия Якоби. 

1) ( )dxyeуy x

 +=
1

0

2 2][F ;  eyy == )1(,1)0( ; 

2) dxeуy у

 =
1

0

2][F ;  4ln)1(,0)0( == yy ; 

3) ( )dxyуy
a

 +−=
0

22][F ; kaaayy == ,0,0)()0( ; 

4) ( )dxxуy  +=
2

0

22][F ;  3)2(,1)0( == yy ; 

5) 1)1( ,
4

1
)0(  ,)2(][ 2

1

0

=−=++=  yydxyyxyyF ; 

6) ( )dxхxyуy 
−

++=
1

1

22 12][F ;  0)1(,2)1( =−=− yy ; 

7) ( )dxуxуy
а

 +−=
0

22 93][F ;  0)()0( == аyy ; 

8) ( )dxуy  +=
1

0

2 1)(F ;  0)1()0( == yy . 
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Лабораторная работа № 9 

Достаточные условия экстремума функционала 
 

9.1. Основные теоретические сведения 

Достаточные условия Вейерштрасса. 

Требуется найти экстремаль, на которой достигает экстремума 

функционал  

                              =
1

0

),,()]([
х

х

dxyyxfxyF ,  (9.1) 

где  

                                        y(х0) = y0,   y(х1) = y1. (9.2) 

Функцией Вейерштрасса ),,,( урухЕ   называется функция, 

определяемая равенством 

      ),,()(),,(),,(),,,( рyxfрурyxfyyxfурухЕ р
−−−= , (9.3) 

где ),( yxpp =  – наклон поля экстремалей рассматриваемой 

вариационной задачи. 

Достаточные условия слабого экстремума. Кривая С достав-

ляет слабый экстремум функционалу (9.1) при граничных условиях 

(9.2), если: 

а) кривая С является экстремалью функционала, удовлетворяю-

щей граничным условиям (9.2); 

б) экстремаль С может быть включена в поле экстремалей 

(выполнено условие Якоби или усиленное условие Лежандра); 

в) функция Вейерштрасса сохраняет знак во всех точках (x, y)  

близких к экстремали С и для близких к ),( yxp значений y . 

Функционал ][yF  будет иметь максимум на С, если 0E , и 

минимум, если 0E . 

Достаточные условия сильного экстремума. Кривая С 

доставляет сильный экстремум функционалу (9.1), если:  

а) кривая С является экстремалью функционала, 

удовлетворяющей граничным условиям (9.2); 

б) экстремаль С может быть включена в поле экстремалей 

(выполнено условие Якоби или усиленное условие Лежандра); 

в) Функция Вейерштрасса сохраняет знак во всех точках (x, y), 

близких к экстремали С и для произвольных значений y . 

При 0E  будет максимум, а при 0E  минимум. 
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Достаточные условия Лежандра для функционала 

 =
1

0

),,()]([
х

х

dxyyxfxyF . 

Пусть экстремаль С включена в поле экстремалей. 

Если на экстремали С имеем 0yyf , то на кривой достигается 

слабый минимум, если 0yyf  на экстремали С, то на ней достигается 

слабый максимум.  

В том случае, когда 0),,( 
 yyxf yy  в точках ),( yx , близких к 

экстремали С при произвольных значениях y , то имеем сильный 

минимум; если 0),,( 
 yyxf yy , то имеем сильный максимум. 

 Эти условия называются усиленными условиями Лежандра. 

 

9.2. Примеры решения задач 

Пример 1. Исследовать на экстремум функционал 

2)1(,0)0(,)(][
1

0

3 ==+=  yydxyyyF . 

Решение. Так как  )( yff = , то экстремалями являются прямые 

линии 21 CxCy += . Граничным условиям удовлетворяет экстремаль 

xy 2= . Очевидно, что данная экстремаль может быть включена 

в центральное поле экстремалей  Cxy =    с центром в точке )0,0(O . 

Составим функцию Вейерштрасса: 

 ).2()()13)((),,,( 2233 pypyppyppyyypyxE +−=+−−−−+=  

Первый множитель функции Вейерштрасса всегда 

неотрицателен, а второй положителен при y  близких к 2=p , где 

2=p  угловой коэффициент экстремали xy 2= . Условия 

существования слабого минимума выполнены. Если же взять 

,4−y то 02 + py  и функция Вейерштрасса не сохраняет свой 

знак. Значит, сильного минимума нет. 

Пример 2. Исследовать на экстремум функционал  

 0)1(,0)0(,)
2

1
23(][

1

0

22 ==++=  yydxyyxyF . 

Решение. Уравнение Эйлера имеет вид 2=y . Экстремалями 

является параболы 21

2 CxCxy ++= . Граничным условиям 

удовлетворяет экстремаль xxy −= 2 .  
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Составляем уравнение Якоби: .0=u  21 CxCu +=  – общее 

решение уравнения Якоби. Из условия 0)0( =u   получаем, что 02 =C . 

Функция xCu 1=  при 01 C  нигде, кроме точки 0=x , в нуль не 

обращается. Это означает, что условие Якоби выполнено и экстремаль 

можно включить в центральное поле экстремалей, а именно в поле  

Cxxy += 2  с центром в точке )0;0(O . 

Функция Вейерштрасса имеет вид  

2)(
2

1
),,,( pyypyxE −=  

Для произвольного y  будет 0E , следовательно, функционал 

достигает сильного минимума. 
 

9.3. Задания для лабораторной работы 

Исследовать на экстремум следующие функционалы:  а) поль-

зуясь функцией Вейерштрасса; б) пользуясь условием Лежандра:
  

1) dxуyеy х

 







+=

1

0

22

2

1
][F ; 1)0( =y , 2)1( =y . 

2) ( )dxeуy у

 =
1

0

2][F ;  4ln)1(,0)0( == yy ; 

3) dx
у

х
y  










=

2

1
2

3

][F ; 1)0( =y , 4)2(,1)1( == уy ; 

4) 


=
а

у

dx
y

0

][F ; 0)0( =y , 0,0,)( = сaсаy ; 

5) ;1)2(,0)0(,)3(][
2

0

3 ==+=  yydxyyF  

6)  −=
2

0

22 )(][F



dxyyy ; 1)0( =y , 1)
2

( =


y ; 

7) 
−

+=
2

1

2 )1(][F dxyyxy ; 1)1( =−y , 4)2( =y ; 

8) 
−

+=
1

1

32 )(][F dxyyy ; 1)1( −=−y , 3)1( =y . 
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Лабораторная работа № 10 

Экстремали с угловыми точками 
 

10.1. Основные теоретические сведения 

Пусть функция f (x, y, y) имеет непрерывные частные по всем 

переменным до второго порядка включительно на множестве a  x  b,    

-< y, y < +. Стоит задача среди всех функций y (x)  C [a, b]  и 

удовлетворяющим граничным условиям 

                                       y (a) = A, y (b) =B, (10,1) 

найти ту функцию, на которой достигается слабый экстремум 

функционала 

                                 
 =
b

a

dxyyxfxyF ),,()]([ . (10,2) 

Предположим, что множество допустимых функций у (x) 

представляет из себя множество непрерывных функций, имеющих на 

[a, b] непрерывную производную всюду, за исключением конечного 

числа точек, в которых производная терпит разрыв первого рода, т.е  

у (x) – кусочно-гладкие функции. Если допустимая функция y (x) 

доставляет экстремум функционалу (10.2), то выполняются 

следующие условия:  

1) на промежутках, где производная  y(x) непрерывна, данная 

функция удовлетворяет уравнению Эйлера:  

                                          0=


−


yy
f

dx

d
f ;                   

2) в угловых точках  x1, …, xk  выполняются условия 

Вейерштрасса – Эрдмана: 

),,1(,
00

kiff
ii xxyxxy ==
+=−=  

),1(,)()(
00

kifyffyf
ii xxyxxy =−=−
+=−= . 

Замечание. Изломы экстремали возможны лишь в случае, если 

0=
yyf . 

 

10.2. Примеры решения задач 

Пример. Найти экстремали с угловой точкой для функционала 

 ==−=
2

0

22 1)2(,0)0(,)1(][ yydxyyyF . 
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Решение. Рассмотрим подынтегральную функцию   
22 )1(),,( −= yyyyxf .  Проверим, могут ли быть экстремали с 

угловыми точками.  Найдем производные функции ),,( yyxf  : 

yyyyyyyyyyf y
+−=−−=−+−=

 264)12)(1(2)1(2)1(2 2322 , 

21212 2 +−=
 yyf yy

. 

yyf 
   может обращаться в нуль и поэтому возможно наличие изломов 

экстремали. Так как подынтегральная функция зависит только от 

у ,то экстремалями являются прямые 21 СхСу += .  Положим 





+

+
=

.2при,

;0при,

143

121

ххСхС

ххСхС
у  

(х1 – возможная точка излома экстремали).  Из граничных условий 

находим С2 = 0, С4 = 1 – 2С3.            

Экстремали имеют вид  





+−


=

.2при,1)2(

;0при,

13

11

хххС

хххС
у  

Выпишем условия Вейерштрасса — Эрдмана: 

)12)(1(2 −−=
 yyyf y

,      )31)(1(2 yyyfyf y
−−=−  . 







−−=−−

−−=−−

+=−=

+=−=

0

2

0

2

00

11

11

)31)(1()31)(1(

)12)(1(2)12)(1(2

xxxx

xxxx

yyyyyy

yyyyyy
. 

Отсюда следуют варианты: 

а) y (x1 – 0) = y ( x1 + 0);  

б) y (x1 – 0) = 0,  y ( x1 + 0) = 1;  
в) y (x1 – 0) = 1,  y ( x1 + 0) = 0. 

В случае а) имеем гладкие экстремали y = C1 х + C2. Из 

граничных условий C2 = 0,  C1 = 
2

1
, т.е.  у = 

2

1
х – гладкая экстремаль. 

б) C1 = 0,  C2 = 1,   




−


=

.21при,1

;10при,0

хх

х
у  

Из условия непрерывности следует, что  x1 – 1 = 0,  x1= 1. 

в) C1 = 1,  C2 = 0,   







=

.2при,1

;0при,

1

1

хх

ххх
у  
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Из условия непрерывности x1= 1, следовательно,  







=

.21при,1

;10при,

х

хх
у  

Таким образом, в поставленной задаче имеются 3 экстремали: 

одна гладкая и две негладкие. 
 

10.3. Задания для лабораторной работы 

Задание 1. Найти экстремали с угловой точкой для 

функционала: 

1)  −=
2

0

22 )1(][ dxyyyF ,   5)2(,2)0( == yy ; 

2)   −=
2

0

22 )9(][ dxyyyF ,   5)2(,0)0( == yy ; 

3)   −=
2

0

22 )3(][ dxyyyF ,   4)2(,0)0( == yy ;  

4)  −=
2

0

22 )2(][ dxyyyF ,   1)2(,3)0( == yy ; 

5)  −=
2

0

22 )12(][ dxyyyF ,   0)2(,2)0( == yy ; 

6)  −=
2

0

22 )16(][ dxyyyF ,   3)2(,1)0( == yy ; 

7)  −=
2

0

22 )7(][ dxyyyF ,   2)2(,1)0( =−= yy ; 

8)  −=
2

0

22 )8(][ dxyyyF ,   2)2(,2)0( =−= yy . 

Задание 2. Найти экстремали с угловой точкой для 

функционала: 

1)  −=
2

0

24 )6(][ dxyyyF ,   0)2(,0)0( == yy ; 

2)  +−=
4

0

22 )1()1(][ dxyyyF ,   2)4(,0)0( == yy ; 

3) 
−

−=
1

1

22 )1(][ dxyyyF ,  1)1(,0)1( ==− yy ;  

4)  −=
3

0

22 )1(][ dxyyF ,   0)3()0( == yy ; 

5)  ++=
1

0

22 )2(][ dxyyyyyF ,  1)1(,0)0( == yy ; 

6)  −=
2

0

24 )8(][ dxyyyF ,   4)2(,0)0( == yy ; 

7)  −=
2

0

24 )10(][ dxyyyF ,   0)2(,2)0( == yy ; 

8)  −=
2

0

24 )12(][ dxyyyF ,   2)2(,0)0( == yy . 
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Лабораторная работа № 11 

Задачи с подвижными границами 
 

11.1. Основные теоретические сведения 
 

Рассмотрим функционал 

                                                 =
1

0

),,(][
x

x

dxyyxfyF ,   (11.1) 

определенный на гладких кривых y = y (x), концы которых A (x0, y0) и 

B (x1, y1) лежат на линиях  

                                             )(xy =  и )(xy = , (11.2) 

так что y0 = )( 0x  и y1 = )( 1x . Требуется найти экстремум 

функционала (11.1). 

Если кривая y = y (x) доставляет экстремум функционалу (11.1) 

при выполнении условий (11.2), то  

1) функция y = y (x) удовлетворяет уравнению Эйлера; 

2) выполняются условия трансверсальности  

 0))((
0

=−+ = xxyfyf  , 

                                          0))((
1

=−+ = xxyfyf  .     (11.3) 

Итак, для решения задачи с подвижными границами нужно: 

1) написать и решить соответствующее уравнение Эйлера. 

В результате получим семейство экстремалей y = y (x, C1, C2), 

зависящее от двух параметров C1 и C2. 

2) из условий трансверсальности (11.3) и условий 

 




=

=

)(),,(

),(),,(

1211

0210

xCCxy

xCCxy




  (11.4) 

определить постоянные 1C  и 2C   и абсциссы 0x  и 1x  точек A  и B ; 

3) вычислить экстремум функционала. 

Замечание 1. Если одна из граничных точек, например, A (x0, y0) 

закреплена, а вторая перемещается вдоль кривой )(xy = , так что 

y1 = )( 1x , то постоянные 1C  и 2C определяются из системы  





=

=

)(),,(

,)(

1211

00

xCCxy

yxy


 

Замечание 2. Если одна из граничных точек может 

перемещаться только по вертикальной прямой x = x1, то условие 

трансверсальности для этой точки принимает вид  0
1

=
=


xxyf . 

Замечание 2. Если одна из граничных точек может 

перемещаться только по горизонтальной прямой y = y1, то условие 

трансверсальности для этой точки принимает вид 0)(
1

=− = xxyfyf . 
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11.2. Примеры решения задач 

Пример 1.  Найти расстояние между параболой y = 4x2 и прямой  

y = 2x – 10. 

Решение. Задача сводится к нахождению экстремума 

функционала    +=
1

0

21][
x

x

dxyyF  при условии, что левый конец 

экстремали может перемещаться по кривой   y = 4x2 , а правый – по 

прямой   y = 2x – 10. 

Так как )(),,( yfyyxf = , то общее решение уравнения Эйлера 

имеет вид y = C1x + C2. 

 Условия трансверсальности (11.3): 

 














=














+

−
++

=














+

−
++

=

=

.0
1

)2(
1

,0
1

)8(
1

1

0

2

2

2

2

xx

xx

y

yy
y

y

yyx
y

 

Упростив эти уравнения, получим  






=+

=+

=

=

.0)21(

,0)81(

1

0

xx

xx

y

yx
 

Условия (11.4) имеют вид  




−=+

=+

.102

,4

1211

2

0201

xCxC

xCxC
  

Так как 1Cy = , то получим  

 








−=+

=+

=+

=+

.102

,4

.021

,081

1211

2

0201

1

10

xCxC

xCxC

C

Cx

 

Решением данной системы будут числа 
2

1
1 −=C ,  

8

3
2 =C ,  

4

1
0 =x ,  

25

8
31 =x . 

Значит, экстремалью функционала F [y] является прямая 

8

3

2

1
+−= xy , а расстояние между  данными линиями равно 

200

5307

4

1
1

25

8
3

4

1

2

=+=  dxl . 
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11.3. Задания для лабораторной работы 
 

Задание 1. Найти допустимые экстремали функционала F [y], 

если левая граничная точка (x0, y0) закреплена так, что y (0) = 0, 

а правая ),( 11 yx  перемещается по линии  )( 11 xy = : 

1) 
+

=
1

0

21
][

x

dx
y

y
yF , если 311 −= xy ; 

2)  =
1

0

2][
x

dxyyF , если y1 = x1 + 1 = 0;  

3)  +−=
1

0

2)2(][
x

dxyyyF , если 21 −=y ;  

4)  +=
1

0

21][
x

dxyyF , , если 111 =− yx ;  

5) 
+

=
1

0

21
][

x

dx
y

y
yF ,  , если (х1 − 9)2 + у1

2 = 9; 

6)  =
1

0

2][
x

dxyyF ,  если 12

1

2

1 =− xy ;  

7) 
+

=
1

0

21
][

x

dx
y

y
yF , если  у1 = х1 −5; 

8)  +−=
1

0

2 )1(][ dxyyyF ,   если x1 = 1.   

Задание 2. Найти допустимые экстремали в следующих задачах: 

1)  =
1

0

3][
x

dxyyF ,  y (0) = 0,  11 1)( xxy −= ;  

2)  +=
1

0

2 )(][
x

dxyyxyF ,  y (0) = 0,  1)( 1 =xy ; 

3)  +=
1

0

2 )(][ dxyyyF ,  0)1( =y ,  x0 = 0; 

4)  ++=
1

0

2)2(][
x

dxyyyxyyF ,  y (0) = 0; 3)(
1

=xy ; 

5)  =
1

0

2][
x

dxyyF ,  y (0) = 0,   02)()1( 1

2

1 =+− xyx ; 

6)  −=
4

0

22 )(][



dxyyyF ,  y (0) = 0,   если другая граничная точка 

может скользить по прямой 
4


=x ; 
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7)  −=
e

dxyxyyF
1

22 )2(][ ,  y (1) = e,   x1 = e; 

8)  ++=
1

0

2 )1(][
x

dxyyyyF ,  y (0) = 1, 3)( 1 −=xy . 

Задание 3. Найти кратчайшее расстояние 

1) от точки A (1, 0) до эллипса 3694 22 =+ yx ; 

2) между окружностью 122 =+ yx  и прямой x + y = 4; 

3) от точки )5,1(−A  до параболы x = y2; 

4) от точки )3,1(−A до прямой xy 31−= ; 

5) между прямой у = х и параболой у = х2; 

6) от точки A (1, 1) до эллипса 3694 22 =+ yx ; 

7) от точки )5,1(−A  до параболы y = x2;  

8) между окружностью 422 =+ yx  и прямой  x + y = 6. 

 

 

Лабораторная работа № 12 

Условный экстремум функционала 
 

12.1. Основные теоретические сведения 

Пусть 

 ,,1],,[)(),...,,(|)({ 1

1 nibaCxyyyyxyG in ===

 )}...,,()(),...,,()( 11

1

00

1 nn yybyyyay == . 

Рассмотрим на множестве G функционал  

  =
b

a
nn dxyyyyxfyF )...,,,...,,,(][ 11 .  (12.1) 

Будем считать, что функция f  в заданной области изменения своих 

переменных дифференцируема по каждой переменной нужное число 

раз. Стоит задача найти экстремум функционала (12.1) при условиях 

 0)...,,,( 1 =ni yyxf , nmmi = ,,1 .  (12.2) 

Данная задача называется задачей на условный экстремум с 

конечными связями. В механике они называются голономными.  

Предполагается, что уравнения (12.2) независимы, т.е. 

rang ,

...

...............

...

1

1

1

1

m

dx

df

dx

df

dx

df

dx

df

n

mm

n

=




















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а также связи (12.2) согласованы с граничными условиями. Последнее 

означает, что граничные точки должны удовлетворять уравнениям 

(12.2) при x = a и x = b. 

Известно, что если Gxy )(  удовлетворяет уравнениям связи 

(12.2) и дает экстремум функционалу (12.1), то существуют функции 

mixi ,1),( = , такие что вектор-функция )(xy  является экстремалью 

функционала 

                                = +=
=

b

a

b

a

m

i
ii dxyyxLdxfxfyФ ),,())((][

1

 .  (12.3) 

Функции )(xi   называют множителями Лагранжа, а функцию 


=

+=
m

i
ii yxfxyyxfyyxL

1

),()(),,(),,(   – функцией Лагранжа.  

Для того чтобы определить экстремум функционала (12.1) при 

условиях (12.2) нужно:  

1) записать систему уравнений Эйлера для функционала (12.3) 

 ),1(,0 niL
dx

d
L

ii yy ==−
 ; 

2) дополнить эту систему уравнениями связи (12.2); 

3) из полученной совокупности   уравнений найти )(xyi  и )(xi ; 

4) далее из граничных условий найти произвольные постоянные. 

Замечание. Рассмотренный метод нахождения условного 

экстремума функционала (1) справедлив и в случае 

дифференциальных связей  

0))(...,),(),(...,),(( 11 = xyxyxyxyf nni   ),,1( mi =  nm  . 

В механике такие связи называют неголономными. 
 

12.2. Примеры решения задач 

Пример 1. Найти экстремаль функционала 

dxyyyyyyF )(],[ 2

2

2

1

2

2

2

1

2

0
21

−−+= 



, 

удовлетворяющую граничным условиям 

  1)
2

(,1)
2

(.1)0(,1)0( 2121 −==−==


yyyy  

и уравнению связи    0cos221 =−− xyy . 

Решение. Составим функцию Лагранжа: 

 )cos2)(( 21

2

2

2

1

2

2

2

1 xyyxyyyyL −−+−−+=  . 

Запишем систему уравнений Эйлера и уравнение связи. Так как  

),(2 11
xyLy +=    ,2 11

yLy
−=

     ),(2 22
xyLy −=     ,2 21

yLy
−=

  
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то 

 








=−−

=+−

=++

.0cos2

,02)(2

,02)(2

21

22

11

xyy

yxy

yxy





 

Найдем общее решение системы. Складывая первые два 

уравнения системы, получаем  

.0)(2)(2 2121 =+++ yyyy  

Вводя обозначение )(21 xzyy =+ , имеем 0=+ zz . 

Характеристическое уравнение 012 =+k  имеет корни ik =2,1 . 

z xCxCt sincos)( 21 += ,   т.е.   xCxСyy sincos 2121 +=+ . 

Из уравнения связи получаем xyy cos221 =− . Cкладывая два 

последних уравнения, имеем 

,cos2sincos2 211 xxCxCy ++=  или xx
C

x
C

y cossin
2

cos
2

21
1 ++= . 

Тогда 

xxxxyy
CC

cossincoscos2
2212
21 −+=−= ,

 
+−+=+= xxCxCyyx cos2sincos22)( 2122  

0)cos2sincos( 21 =+−−+ xxCxC . 

Определим произвольные постоянные из граничных условий: 

 










==

=+=

.1
2

)
2

(

,11
2

)0(

2
1

1
1

C
y

C
y


 

Отсюда 2,0 21 == CC , xxy cossin1 += , xxy cossin2 −= . 

 

12.3. Задания для лабораторной работы 

Задание 1. Найти экстремали функционала F [y1, y2], 

удовлетворяющие указанным ниже граничным условиям и 

уравнениям связи. 

1) dxyyyyyyF )2(],[ 2

221

2

1

1

0
21

++= ,  1)0()0( 21 == yy ,  ,)1(1 ey =   

e
y

1
)1(2 = , условие связи: 021 =+−− − xx eeyy ;   

2) dxyyyyF  ++=
1

0

2

2

2

121 )1],[ , 1)1()0( 21 == yy ,  ,2)1(1 =y   

1)0(2 =y , условие связи: 032 21 =−− xyy ; 



49 

3) dxyyyyF  ++=
1

0

2

2

2

121 )1],[ , 1)1()0( 21 −== yy ,  ,0)1(1 =y   

1)0(2 =y , условие связи: 021 =++ yyx ; 

4) dxyyyyF  +=
1

0

2

2

2

121 )(],[ , 1)1()0( 11 −== yy , ,0)0(2 =y   

1)1(2 =y , условие связи: 012 2

21 =++−+ xxyy ;   

5) dxyyyyF  ++=
1

0

2

2

2

121 )1(],[ , 0)1()0()0( 221 === yyy , ,2)1(1 =y  

условие связи: 02 2

21 =−+ xyy ;  

6) dxxyyyyF  ++=
1

0

22

2

2

121 )(],[ , 2)1()0( 21 == yy , ,1)0()1( 21 == yy  

условие связи: 032 21 =+− xyy ; 

7) dxxyyyyyyF  −−−+=
2

0

2

2

2

1

2

2

2

121 )cos(],[



, 1)
2

()0()0( 121 ===


yyy , 

,1)
2

(2 −=


y  условие связи: 0sin221 =−− xyy ; 

8) dxyyyyyyF  −−+=
2

0

2

2

2

1

2

2

2

121 )(],[



, 1)
2

()0()0( 121 ===


yyy , 

,1)
2

(2 −=


y  условие связи: 0cos221 =−− xyy . 

Задание 2.  

1) найти кратчайшее расстояние между точками А(1, 0, −1) и  

В(0, −1, 1), лежащими на поверхности  x + y + z = 0; 

2) найти кратчайшее расстояние между точками А(1, 0, 1) и  

В(0, 1, 1), лежащими на поверхности x + y + z = 2; 

3) найти кратчайшее расстояние между точками А(1,−1, 0) и  

В(2, 1, −1), лежащими на поверхности 15x − 7y + z = 22; 

4) найти кратчайшее расстояние между точками А(1, 0,−4) и  

В(0, 1,−3), лежащими на поверхности 2x + 3y – z = 6; 

5) Найти кратчайшее расстояние между точками А(2, 0, 1) и  

В(0, 2, 1), лежащими на поверхности x + y + 2z = 4; 

6) Найти кратчайшее расстояние между точками А(1, 0, 2) и  

В(0, −1, 3), лежащими на поверхности 3x − 2y + z = 5; 

7) Найти кратчайшее расстояние между точками А(2, 0, 1) и  

В(0,−4, 3), лежащими на поверхности 2x +y + 4z = 8; 

8) Найти кратчайшее расстояние между точками А (1, 0, 
3

8
− ),  

B (0, 3, 5− ),  лежащими на поверхности   4x−y−3z=12. 

 



50 

Лабораторная работа № 13  

Изопериметрическая задача 
 

13.1. Основные теоретические сведения 

Пусть  задан  функционал 

                               =],...,[ 1 nyyF  
b

a
nn dxyyyyxf )',...,',,...,,( 11  (13.1) 

с граничными условиями 

                         0)( jj yay = ,  )1()( jj yby =   ),1( ni = . (13.2) 

Стоит задача найти экстремум функционала (13.1) с 

граничными условиями (13.2) при дополнительных условиях 

           i

b

a
nni

Cdxyyyyxf = )',...,',,...,,( 11 , ),1( mi = . (13.3) 

Задача (13.1)–(13.3) называется изопериметрической задачей. 

Запишем функцию Лагранжа 
+= )',...,',,...,,(),...,,',...,',,...,,( 11111 nnmnn yyyyxfyyyyxL   

+
=

m

i
nnii yyyyxf

1
11 )',...,',,...,,( , 

где множители Лагранжа λi ),1( mi =  являются произвольными 

действительными числами. 

Известно, что если функции, )(...,),(),( 21 xyxyxy n  доставляют 

экстремум функционалу (13.1) при условиях (13.2) и (13.3), то 

существуют числа ),1( mii =  (множители Лагранжа), при которых эти 

функции удовлетворяют системе уравнений Эйлера 

0)( =−
jj yy

L
dx

d
L ,  ),1( nj = . 

Для нахождения произвольных постоянных и множителей 

Лагранжа пользуются граничными условиями (13.2) и условиями (13.3). 
 

13.2. Примеры решения задач 

Пример. Найти минимум функционала dxxyyF )('][
0

2
=


, при 

условиях 1)0( =y , 0)( =y ,  =
 

a

xdxy
2

sin . 

Решение.  Запишем функцию Лагранжа xyyL sin'2 += .  

Тогда xL y sin' = , '.2' ' yL y =  Уравнение Эйлера имеет вид   

0''2sin =− yx  или xy sin
2

''


= . Получаем,  что 
1

cos
2

' Cxy +−=


, 

.sin
2

21
CxCxy ++−=


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Для определения множителя Лагранжа воспользуемся условием  

.
2

sin
0

 =
 

xdxy  Имеем  
2

)sinsinsin
2

(
0

21

2 

=++− dxxCxxCx . 

Вычислив интеграл, получаем 
2

2
4

21





=++− CC . 

Из граничных условий имеем 





=+

=

,0

,1

21

2

CC

C


                          








−=

=

.
1

,1

2

2


C

C

 

Тогда  ,
2

21
4





=+−−        ,

2
1

4





−=      






)2(2 −
= . 

Итак, функционал может достигать экстремума на линии 

.1sin
2

)( +−
−

=


 x
xxy  

 

13.3. Задания для лабораторной работы 

Найти функции, на которых может достигаться экстремум 

функционала ],...,[ 1 nyyF .  

Задание 1. 

1) =
1

0

2'][ dxyyF , 1)0( =y , 6)1( =y ,  =
1

0

3)( dxxy ; 

2) =


0

sin][ xdxyyF , 0)0( =y ,  =)(y ,  =
 

0

2

2

3
' dxy ; 

3) =
1

0

2'][ dxyyF , 0)0( =y , 5)1( =y ,  =
1

0

1dxxy ; 

4)  −=
2

0

22 )'(][



dxyyyF , 0)0( =y , 0)
2

( =


y ,  =
2

0

1sin



xdxy ; 

5) =
1

0

2'][ dxyyF , 0)1()0( == yy ,  =
1

0

1ydx ,  =
1

0

0dxxy ; 

6)  −=
1

0
2121 )(],[ dxyyxyyF , 0)1()0()0( 221 === yyy , 2)1(1 =y , 

 −=
1

0
21

5

4
'' dxyy ; 

7)  =
1

0
2121 ],[ dxyyyyF , 1)1()0()0( 121 === yyy , 1)1(2 =y , 

 =
1

0
1 0dxxy ,    =

1

0
2 0dxxy ; 
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8)  =
1

0
2121 ],[ dxyyyyF , 0)1()0()0( 121 === yyy , 1)1(2 =y , 

 =
1

0
1 1dxy ,  =

1

0
2 0dxy . 

Задание 2.  

1)  +=
−

1

1

21][ dxyyyF , 0)1( =−y , 0)1( =y ,  =+
−

1

1

2 51 dxу ; 

2) =
1

0

2'][ dxyyF , 2)0( =y , 14)1( −=y ,  −=
1

0 2

3
ydx ,  −=

1

0

2dxхy ; 

3)  −=


0

22 )'(][ dxуyyF , 0)0( =y , 0)( =y ,  =


0

1cos xdxy ; 

4) =


0

2'][ dxyyF , 2)0( =y , 0)( =y ,  =
 

0 2
cos xdxy , 

 +=



0

2sin xdxy ; 

5)  −−+=
1

0

22 )44(],[ dxzzxzyzyF , 0)0()0( == zy , 1)1( =y , 

1)1( =z  при условии  =−−
1

0

22 2( dxzyxy ; 

6)  =
1

0

2][ dxyyF , 0)0( =y , 
4

1
)1( =y  при условии  =−

1

0

2 0)( dxyy ; 

7)  +=
1

0

22 )(][ dxyxyF , 0)0( =y , 0)1( =y  при условии  =
1

0

2 2dxy ; 

8)  =
1

0

2][ dxyyV , 1)0( =y , 6)1( =y  при условии  =
1

0

3ydx . 

 

Л И Т Е Р А Т У Р А 
 

1. Карташев, А.П. Обыкновенные дифференциальные уравнения 
и основы вариационного исчисления / А.П. Карташев, Б.Л. Рождественский. — 
Москва: Наука, 1980. — 287 с. 

2. Краснов, М.Л. Вариационное исчисление / М.Л. Краснов, 
Г.И. Макаренко, А.И. Киселев. — Москва: Наука, 1973. — 191 с. 

3. Толпегин, О.А. Математическое программирование. Вариационное 
исчисление: учебное пособие для вузов / О.А. Толпегин. — Москва: ЮРАЙТ, 
2023. — 233 с. 

4. Сурин, Т.Л. Основы вариационного исчисления: упражнения 
и задания / Т.Л. Сурин, Ж.В. Иванова. — Витебск: ВГУ имени П.М. Машерова, 
2018. — 40 с. 

5. Эльсгольц, Л.Э. Дифференциальные уравнения и вариационное 
исчисление / Л.Э. Эльсгольц. — 5-е изд. — Москва: Едиториал УРСС,  
2002. — 319 с. 

 


