О теории фиттинговых функторов конечных групп

Е.А. Витько

Учреждение образования «Витебский государственный университет им. П.М. Машерова»

В определениях и обозначениях мы следуем [1].

Будем проводить все исследования в некотором непустом классе конечных групп μ , замкнутом относительно операций S, Q, N₀.

Одни из первых результатов, относящиеся к теории функторов, были получены Барнесом, Кегелем [2] и Зудброком [3]. В указанных работах изучались понятия силовского функтора и функтора Гашюца. Понятие фиттингова функтора в общем случае было введено Бедлеманом, Брюстером и Хауком в работе [4], в которой впервые фиттинговы функторы использовались для построения классов Фиттинга. В частности, была определена конструкция класса L_{x} f всех тех групп, в которых f-подгруппа имеет π' -индекс, и доказано, что класс L_{π} f является классом Фиттинга для любого фиттингова функтора f. Галледжи [5] в терминах класса L. f описаны радикалы групп для классов Фиттинга, заданных посредством фиттинговых функторов. Вместе с тем функторный подход и его приложения к описанию радикалов ограничивались лишь случаем, когда универсум u = S - класс всех конечных разрешимых групп. В связи с этим актуальна задача расширения указанных результатов на случай классов частично разрешимых или произвольных конечных групп. Реализации такой задачи и посвящена настоящая работа.

Предварительные сведения. Вначале мы приведем определения некоторых известных ранее понятий и утверждения, которые мы будем использовать.

Напомним что, классом Фиттинга называется класс \mp , замкнутый относительно нормальных подгрупп и произведений нормальных \mp -подгрупп. Пусть \mp – непустой класс Фиттинга, подгруппа G_{\mp} группы G называется ее \mp -радикалом, если она является максимальной из нормальных \mp -подгрупп группы G.

Пусть \digamma – класс Фиттинга, подгруппа H группы G называется \digamma -инъектором, если для каждой субнормальной подгруппы K группы G пересечение $H \cap K$ является \digamma -максимальной подгруппой в K.

Если $\pi(G)$ — множество всех простых делителей порядка группы G, то множество $\pi(F)$ определяется как объединение всех таких $\pi(G)$, что $G \in F$.

Лемма 1.1 [6]. Для любого класса Фиттинга \mp в π -разрешимой группе $\pi = \pi(\mathsf{F})$ существуют \mp -инъекторы и любые два из них сопряжены.

Адрес для корреспонденции: г. Витебск, ул. 2-я Заречная, д. 2, кор. 1, кв. 59, e-mail: <u>alenkavit@tut.by</u> – Витько Е.А.

Подгруппа H называется холловой π -подгруппой, если порядок |H| есть π -число, а индекс |G:H| есть π -число.

Лемма 1.2 [7]. Пусть G — π-разрешимая группа, тогда холловы π-подгруппы в группе G существуют, и любые две холловы π-подгруппы группы G сопряжены между собой.

Пусть $\mu = s^{\pi}$ – класс всех π -разрешимых групп, π – класс Фиттинга, π – множество простых чисел, G_{π} – холлова π -подгруппа группы G, тогда ввиду лемм 1.1 и 1.2 непосредственной проверкой можно установить, что следующие классы групп являются классами Фиттинга.

1) для произвольного множества простых чисел т классы

$$\mathcal{K}_{\pi}(\mathsf{F}) = (G \in \mathsf{S}^{\pi} : G_{\pi} \in \mathsf{F}),$$

 $\mathcal{R}_{\pi}(\mathsf{F}) = (G \in \mathsf{S}^{\pi} : G_{\pi} \subseteq G_{\mathsf{F}});$

2) в случае, когда $\pi = \pi \ \mathsf{F}$, классы групп

$$L_{\pi}(\mathsf{F}) = (G \in \mathsf{S}^{\pi} : \big| G : V \big| - \pi$$
´-число для всех $V \in \mathsf{Inj}_{\mathsf{F}}(G)$); $L'_{\pi}(\mathsf{F}) = (G \in \mathsf{S}^{\pi} : G_{\pi} \leq V \,\,$ для некоторого $V \in \mathsf{Inj}_{\mathsf{F}}(G)$).

Лемма 1.3 [6].. Пусть \digamma – класс Фиттинга, V – \digamma -инъектор π -разрешимой $\pi = \pi(F)$ аруппы G. Если $V \le A \le G$, то $V - \digamma$ -инъектор подгруппы A.

Функторный метод построения классов Фиттинга. Пусть f(G) — некоторая система подгрупп группы G. Если $\beta: G \to \beta$ G — изоморфизм, то через β f(G) обозначим множество β $X \mid X \in f$ G всех образов в β G подгрупп из f(G). Если N — подгруппа группы G, то через $f(G) \cap N$ обозначим множество $X \cap N \mid X \in f(G)$.

Следуя [4], введем

Определение 2.1. а) Пусть $G \in U$, отображение f, которое каждой группе G ставит в соответствие некоторое множество ее подгрупп f(G), называется фиттинговым функтором, когда выполняются следующие условия:

- (1) если $\beta: G \to \beta$ G изоморфизм, то β $f(G) = f \beta G$;
- (2) если $N \triangleleft G$, то $f G \cap N = f N$.
- б) Фиттингов функтор называется сопряженным, если для каждой группы G, множество f(G) есть класс сопряженных подгрупп.

Примеры. 1) Пусть \digamma – класс Фиттинга, $Rad_F G = G_F$, тогда Rad_F является сопряженным фиттинговым функтором. Если $F = S_\pi$, то фиттингов функтор Rad_F будем обозначать через Rad_π .

- 2) Пусть U= S^{π} . Если $Hall_{\pi}(G) = \{G_{\pi} : G_{\pi} \text{холлова } \pi$ -подгруппа группы $G\}$, то ввиду леммы 1.1 $Hall_{\pi}$ является сопряженным фиттинговым функтором.
 - 3) Пусть \digamma класс Фиттинга, $\pi = \pi$ F и класс U= S^π . Если

$$Inj_{\epsilon}(G) = \{X : X - \digamma$$
-инъектор группы $G\}$,

то вследствие леммы 1.2 Inj_F является сопряженным фиттинговым функтором.

Лемма 2.2. Пусть f и g – фиттинговы функторы, положим

$$f\circ g$$
 $(G)=\{X\colon X\in f(Y)$ для некоторой подгруппы $Y\in g(G)\}$,

тогда

1) $f \circ g$ — фиттингов функтор;

2) если f и g — сопряженные фиттинговы функторы, то $f \circ g$ — сопряженный фиттингов функтор.

Определение 2.3. Пусть f — фиттингов функтор, π — множество простых чисел, тогда

$$L_{\pi} f = (G \in U : |G : X| - \pi'$$
-число для всех $X \in f G$).

Если $\pi = \mathbf{P}$ — множество всех простых чисел, то класс L_{π} f будем обозначать через L f .

Теорема 2.4. Для любого множества простых чисел π и любого фиттингова функтора f класс L_{π} f является классом Фиттинга.

Данная теорема позволяет выделять семейства классов Фиттинга при конкретных значениях функтора f.

Примеры. Пусть $\mu = S^{\pi}$, класс F – класс Фиттинга, π – множество простых чисел.

- 1. Пусть сопряженный фиттингов функтор $f = \operatorname{Rad}_{\mathsf{F}} \circ \operatorname{Hall}_{\pi}$, тогда класс $L_{\pi}(f)$ совпадает с классом $K_{\pi}(\mathsf{F})$ всех групп, в которых холлова π -подгруппа является F -группой.
- 2. Если фиттингов функтор $f = \text{Rad}_{\mathsf{F}}$, то $L_{\pi}(f) = R_{\pi}(\mathsf{F})$ класс групп, в которых холлова π -подгруппа содержится в F -радикале группы.
- 3. В случае, когда фиттингов функтор $f=\operatorname{Inj}_{\mathsf{F}}$ и $\pi=\pi$ F , тогда класс $L_{\pi}(f)$ совпадает с классом $L_{\pi}(\mathsf{F})$ класс всех тех групп, в которых F -инъектор имеет p ў-индекс.
- 4. Если сопряженный фиттингов функтор $f = \operatorname{Rad}_{\pi} \circ \operatorname{Inj}_{\mathsf{F}}$ и $\pi = \pi$ F , то класс $L_{\pi}(f) = L'_{\pi}(\mathsf{F})$ класс всех тех групп, в которых холлова π -подгруппа является нормальной подгруппой некоторого \digamma -инъектора.

Опишем свойства класса $L_{\pi} f$.

Класс Фиттинга = называется π -насыщенным, если выполняется равенство $FE_{\pi'} = F$, где $E_{\pi'} -$ класс всех π' -групп.

Теорема 2.5. Пусть f — фиттингов функтор, π — множество простых чисел, тогда

- класс L_{_}(f) является π-насыщенным классом Фиттинга;
- 2) справедливо равенство $L_{\pi}(f) = \bigcap_{\substack{p \in \pi}} L_p(f)$.

Следующая теорема описывает в терминах произведения классов Фиттинга класс $L_{\pi}(f)$ для случая, когда $f = \mathsf{Rad}_{\mathsf{F}}$.

Теорема 2.6. Пусть $U=S^\pi$, тогда для любого класса Фиттинга \mp и любого множества простых чисел π класс L_π $Rad_F=FS^\pi_{\pi'}$.

Теоремы 2.7 и 2.8 описывают фиттинговы функторы Rad_F и Inj_F.

Теорема 2.7. Если f — фиттингов функтор такой, что |f|G|=1 для любой группы $G \in U$, то $f = \operatorname{Rad}_{L(f)}$. Обратно, если F — класс Фиттинга, то $F = L \operatorname{Rad}_F$.

Пусть \digamma – класс Фиттинга, тогда с учетом леммы 1.3 в классе $U = S^{\pi \ F}$ справедлива

Теорема 2.8. Пусть f — сопряженный фиттингов функтор такой, что выполняется следующее условие:

(*) Если $G \in U$, $X \in f(G)$, $X \le U \le G$, то $X \in f(U)$.

Тогда $f=\operatorname{Inj}_{L\, F}$. Обратно, если F — класс Фиттинга, то условие (*) выполняется для $f=\operatorname{Inj}_{F}$ и класс F=L Inj_{F} .

Радикалы и функторы. Следующая теорема представляет собой описание радикалов классов Фиттинга, определяемых посредством фиттинговых функторов.

Теорема 3.1. Пусть $U=S^\pi$, f — фиттингов функтор такой, что для любой группы G выполняется равенство $|X_\pi|=|Y_\pi|$ всякий раз, когда X_π , $Y_\pi\in Hall_\pi\circ f$ (G). Пусть $X\in f(G)$ и X_π , G_π — холловы π -подгруппы групп X и G такие, что $X_\pi\leq G_\pi$. Тогда если $C=\mathrm{Core}_{G_\pi}$ X_π , то

1)
$$G_{\pi} \cap G_{L(f)} = C$$
;

2) если
$$K/\langle C^G \rangle = O_{\pi'} G/\langle C^G \rangle$$
 , то $K = G_{L,(f)}$.

Следствие 3.2. Пусть группа G, фиттингов функтор f, холловы π -подгруппы X_{π} , G_{π} удовлетворяют условиям теоремы 3.1, тогда следующие свойства эквивалентны:

- 1) X_{π} холлова π -подгруппа некоторой нормальной подгруппы группы G;
- 2) X_{π} нормальная подгруппа группы G_{π} ;
- 3) $X_{\pi} \leq G_{L(f)}$;
- 4) X_{π} холлова π -подгруппа группы $G_{L(f)}$.

При конкретных значениях фиттингова функтора для классов $K_{\pi}(\mathsf{F}),\ L_{\pi}(\mathsf{F})$ и $L'_{\pi}(\mathsf{F})$ получим

Следствие 3.3. Пусть $U = S^{\pi}$, пусть $F - \kappa$ ласс Фиттинга, $\pi - \kappa$ множество простых чисел, $G_{\pi} - \kappa$ холлова π -подгруппа группы G.

1) Если
$$C = G_{\pi}$$
, то $G_{\pi} \cap G_{K,(F)} = G_{\pi}$ и $G_{K,(F)} / \langle C^G \rangle = O_{\pi}$ $G / \langle C^G \rangle$.

- 2) Если $\pi=\pi$ F , V- \mp -инъектор группы G и $C=\mathrm{Core}_{G}\ V_{\pi}$, то
- 2.1) $G_{\pi} \cap G_{L_{\pi}(F)} = C \ u \ G_{L_{\pi}(F)} / \langle C^{G} \rangle = O_{\pi'} \ G / \langle C^{G} \rangle$;
- 2.2) $G_{\pi} \cap G_{L'(F)} = C \ u \ G_{L'(F)} / \langle C^G \rangle = O_{\pi'} \ G / \langle C^G \rangle$.

ЛИТЕРАТУРА

- Doerk, K. Finite Soluble Groups / K. Doerk, T. Hawkes. Berlin–New York: Walter de Gruyter, 1992.
- Barnes, D.W. Gaschütz functors on finite soluble groups/ D.W. Barnes, O.H. Kegel // Math. Z. – 1966. – Vol. 94. – Z. 134–142.
- 3. **Sudbrock, W.** Sylowfunktionen in endlichen Gruppen / O.H. Kegel // Rend. Sem. math. Univ. Padova 1966. Vol. 36. Z. 158–184.
- Beidleman, J.C. Fittingfunktoren in endlichen auflösbaren Gruppen I / J.C. Beidleman, B. Brewster, P. Hauck // Math. Z. – 1983. – Vol. 182. – Z. 359–384.
- Gallego, M.P. The radical of the Fitting class by a Fitting functor and a set of primes / M.P. Gallego // Arch. Math. (Basel) – 1987. – Vol. 48. – P. 36–39.
- 6. **Шеметков, Л.А.** О подгруппах π-разрешимых групп / Л.А. Шеметков // Конечные группы. Минск: Наука и техника, 1975. С. 207–212.

7. **Чунихин, С.А.** Подгруппы конечных групп / С.А. Чунихин. – Минск: Наука и техника, 1964. – 168 с.

S U M M A R Y

The radicals of a finite π -soluble group with respect to the Fitting classes $K_{\pi}(\mathsf{F})$, $L_{\pi}(\mathsf{F})$ is described.

Поступила в редакцию 16.03.2010