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СМЕШАННАЯ ЗАДАЧА  
ДЛЯ МОДЕЛЬНОГО ТЕЛЕГРАФНОГО УРАВНЕНИЯ  

С ДВУМЯ СКОРОСТЯМИ  1( , )a x t  И 2 ( , )a x t   
ПРИ НЕХАРАКТЕРИСТИЧЕСКОЙ КОСОЙ ПРОИЗВОДНОЙ 

НА КОНЦЕ ПОЛУОГРАНИЧЕННОЙ СТРУНЫ. I 
 

Ф.Е. Ломовцев 
Белорусский государственный университет 

 
Исследуется корректность по Адамару и находятся формулы классических (дважды непрерывно дифференцируемых) 

решений смешанной задачи впервые для двухскоростного неоднородного модельного телеграфного уравнения при неха-
рактеристической нестационарной косой производной на конце полуограниченной струны.  

Цель статьи — разработка метода неявных характеристик для вывода полного, окончательного и неулучшаемого 
критерия корректности по Адамару и вычисления явных формул классических решений нехарактеристической смешан-
ной задачи в случае неоднородного модельного телеграфного уравнения с двумя переменными скоростями волн. 

Материал и методы. Материалом служит линейная смешанная задача для двухскоростного неоднородного модель-
ного телеграфного уравнения колебаний полуограниченной струны при зависящих от времени коэффициентах нехарак-
теристических первых частных производных в граничном режиме. Разработан метод неявных характеристик. 

Результаты и их обсуждение. В двух частях настоящего исследования доказана глобальная теорема корректности 
смешаннной задачи для двухскоростного модельного телеграфного уравнения с переменными коэффициентами при 
начальных условиях и нехарактеристической косой производной граничного режима в первой четверти плоскости.  
Глобальной теоремой корректности называются теоремы, содержащие необходимые и достаточные условия на данные 
смешанной задачи для однозначной и устойчивой всюду ее разрешимости во множестве дважды непрерывно дифферен-
цируемых функций. В первой части статьи вычислены ее явные решения, доказана их дважды непрерывная дифференци-
руемость вне критической характеристики и непрерывная дифференцируемость на критической характеристике. 

Во второй части исследования будет доказана непрерывность их вторых производных на критической характеристике. 
Заключение. Таким образом, автором установлены критерий корректности и всюду, кроме критической характери-

стики, дважды непрерывная дифференцируемость решений смешанной задачи при нехарактеристической нестационар-
ной косой производной на конце полуограниченной струны. 

Ключевые слова: двухскоростное модельное телеграфное уравнение, переменные коэффициенты, метод неявных  
характеристик, нехарактеристическая косая производная, критерий корректности. 
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For the first time, Hadamard correctness is investigated and formulas for classical (twice continuously differentiable) solutions of 

a mixed problem for a two-velocity inhomogeneous model telegraph equation with a noncharacteristic non-stationary oblique 
derivative at the end of a semi-bounded string are sought.  

The aim of the work is to develop an implicit characteristics method for deriving a complete, final and unimprovable criterion for 
Hadamard correctness and calculating explicit formulas for classical solutions of a noncharacteristic mixed problem in the case of an 
inhomogeneous model telegraph equation with two variable wave velocities. 



М А Т Э М А Т Ы К А 

Material and methods. The material is a linear mixed problem for a two-velocity inhomogeneous model telegraph equation of a 
semi-bounded string oscillations with time-dependent coefficients of noncharacteristic first partial derivatives in the boundary regime. 
An implicit characteristics method is developed. 

Findings and their discussion. In the two parts of the paper, a global correctness theorem is proved for a mixed problem for a 
two-speed model telegraph equation with variable coefficients at initial conditions and a non-characteristic oblique derivative of the 
boundary regime in the first quadrant of the plane. By a global correctness theorem, we mean theorems containing necessary and 
sufficient conditions on the data of a mixed problem for its denotable and everywhere stable solvability in the set of twice continuously 
differentiable functions. In the first part of the paper, its explicit solutions are calculated, their twice continuous differentiability 
outside the critical characteristic and continuous differentiability on the critical characteristic are proved. In the second part of the 
paper, the continuity of their second derivatives on the critical characteristic will be proved. 

Conclusion. In the first part of the article, a correctness criterion and everywhere, except for the critical characteristic, twice 
continuous differentiability of solutions to the mixed problem with a noncharacteristic nonstationary oblique derivative at the end of 
a semibounded string are established. 

Key words: two-velocity model telegraph equation, variable coefficients, implicit characteristics method, noncharacteristic 
oblique derivative, correctness criterion. 

 
 первой части настоящей статьи для завершения доказательства глобальной теоремы корректно-
сти нехарактеристической смешанной задачи для неоднородного модельного телеграфного урав-

нения со специальными переменными коэффициентами в первой четверти плоскости остается обосно-
вать только непрерывность вторых частных производных ее решений на критической характеристике те-
леграфного уравнения. Новым методом неявных характеристик выводятся формулы ее единственных 
и устойчивых классических (дважды непрерывно дифференцируемых) решений и установлен критерий 
корректности по Адамару для однозначной и устойчивой везде разрешимости. Нехарактеристичность 
косой производной граничного режима на конце полуограниченной струны означает, что в каждый мо-
мент времени колебаний направление косой производной граничного условия не совпадает с направ-
лением критической характеристики, т.е. проходящей через начало координат и строго возрастающей 
характеристики модельного телеграфного уравнения. Критерий корректности состоит из требований 
гладкости на правую часть уравнения, начальные данные и граничное данное и двух условий согласова-
ния граничного режима с начальными условиями и правой частью уравнения. Необходимость инте-
гральных требований гладкости на непрерывную правую часть двухскоростного модельного телеграф-
ного уравнения обоснована методом неявных характеристик и методом корректировки пробных ре-
шений в классические решения с помощью корректирующей задачи Гурса в [1]. Метод неявных характе-
ристик для модельного двухскоростного телеграфного уравнения основан на двенадцати тождествах об-
ращения двух неявных функций характеристик модельного телеграфного уравнения и их четырех обрат-
ных функций. Впервые метод неявных характеристик был предложен в [2] для односкоростного модель-
ного телеграфного уравнения. В [3] этим методом был вычислен общий интеграл классических решений 
неоднородного односкоростного модельного телеграфного уравнения в первой четверти плоскости. 
Единственность классических решений обеспечена способом их поиска методом неявных характери-
стик из всех дважды непрерывно дифференцируемых решений уравнения. Устойчивость классических 
решений вытекает из формул этих решений.  

Всюду разрешимость первой смешанной задачи для односкоростного общего телеграфного урав-
нения в первой четверти плоскости была установлена обобщением известного метода продолжения 
по параметру Шаудера и теорем повышения гладкости сильных решений из глобальной теоремы кор-
ректности для односкоростного модельного телеграфного уравнения в первой четверти плоскости. 
Методом неявных характеристик также были вычислены явные формулы классических решений пер-
вой смешанной задачи для односкоростного модельного телеграфного уравнения в первой четверти 
плоскости и потом методом вспомогательных смешанных задач для полуограниченной струны из 
[4] были получены явные формулы единственных и устойчивых классических решений и критерий кор-
ректности по Адамару первой смешанной задачи для этого уравнения в полуполосе плоскости в [5]. 
Сначала методом компенсации граничного режима правой частью волнового уравнения выведены 
обобщенные формулы Римана единственных и устойчивых классических решений первой смешанной 
задачи для односкоростного общего телеграфного уравнения в первой четверти плоскости [6]. Необ-
ходимость интегральных требований гладкости на непрерывную правую часть односкоростного об-
щего телеграфного уравнения также доказывается методом неявных характеристик и методом кор-
ректировки пробных решений в классические решения с помощью корректирующей задачи Гурса. 
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В случае односкоростного неоднородного модельного телеграфного уравнения его пробное решение 
с модулем пространственной переменной в правой части уравнения под двойным интегралом явля-
ется классическим и поэтому может не корректироваться. Затем методом вспомогательных смешан-
ных задач для полуограниченной струны получены обобщенные формулы Римана единственных и 
устойчивых классических решений и критерий корректности по Адамару первой смешанной задачи 
для односкоростного общего телеграфного уравнения в полуполосе плоскости в [7]. В [8; 9] и заключи-
тельном отчете [10] аналогично решена и изучена корректность второй смешанной задачи для одно-
скоростных модельного и общего телеграфных уравнений в четверти и полуполосе плоскости. 

Результаты настоящей работы будут использованы для вывода явных формул и формул Римана 
классических решений и доказательства теорем корректности аналогичной нехарактеристической 
смешанной задачи соответственно для двухскоростных модельного и общего телеграфных уравнений 
в полуполосе плоскости методом вспомогательных смешанных задач для полуограниченной 
струны. В нашей теореме 1 формула решения (15) задачи Коши для модельного телеграфного урав-
нения не является формулой Даламбера. В отечественной и зарубежной литературе нет других работ 
c явными классическими решениями и критериями корректности первой, второй и нашей нехаракте-
ристической смешанной задачи для двухскоростного общего телеграфного уравнения с переменными 
коэффициентами. Невозможно построить теорию корректной разрешимости с необходимыми и до-
статочными условиями гладкости и согласования входных данных всех смешанных задач для волно-
вых уравнений и, в частности, нашей смешанной задачи их сведением к интегральным уравнениям 
аналогично задачам Дирихле и Неймана для уравнения Лапласа. 

Материал и методы. В четверти плоскости [0, [ [0, [G = +  +  решается смешанная задача 

( )1 2 1 2( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )tt xt xxt u u x t a x t a x t u x t a x t a x t u x t + − − −  
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где исходные данные  смешанной задачи  , , ,f     — заданные вещественные функции своих пере-

менных x  и ,t  коэффициенты уравнения 
(0)

3 3( , ) 0,i ia x t a− −  ( , ) [0, [ [0, [,x t G = +  +  
2

3 ( ),ia C G−   

1, 2,i =  — заданные вещественные функции переменных x  и ,t   коэффициенты граничного условия 

, ,   — заданные вещественные функции переменной .t  Независимые переменные ,x  t  и коли-

чество этих переменных в нижних индексах функций обозначают соответствующие частные производ-
ные и порядки этих частных производных. 

Двухскоростное телеграфное уравнение ( )1 2 1 2( , ) ( , ) ( , ) 0tt xt xxu x t a a u x t a a u x t+ − − =
 
с постоянными 

коэффициентами 
1 0,a   

2 0a   моделирует волновые процессы в движующейся среде, которая ока-

зывает сопротивление распространению волн. С помощью физико-геометрической интерпретации из 
учебника [11, глава II, параграф 2, раздел 2, с. 57–58] показывается, что результатом служит суперпо-
зиция двух встречных волн, распространяющихся со скоростями  

1a  и  
2 .a  

Пусть ( )kC   — множество k  раз непрерывно дифференцируемых функций на подмножестве 
2 ,R ] , [,R = − +  и 

0 ( ) ( ).C C =   Уравнение (1) имеет характеристические уравнения [1] 

     3( 1) ( , ) , 1, 2, 0,i

idx a x t dt i t−= − =               (4) 

и общие интегралы ( , ) , , 1, 2.i i ig x t C C R i=  =   

Если коэффициенты 
3 ia −

 строго положительны, т.е. (0)

3 3( , ) 0,i ia x t a− −   ( , ) ,x t G  то переменная t  

на характеристиках 
1 1 1( , ) , ,g x t C C R=   строго убывает, а на характеристиках 

2 2 2( , ) , ,g x t C C R=   

строго возрастает вместе с ростом .x  Поэтому неявные функции ( , ) , 0, 0,i i iy g x t C x t= =    обладают 

строго монотонными неявными обратными функциями { , }, 0,i ix h y t t=   ( )[ , ], 0,i

it h x y x=   1, 2.i =  

По определению обратных отображений на G
 верны тождества обращения [1]: 

ig ( { , }, ) , 0,i i ih y t t y t=    { ( , ), } , , 1,2,i ih g x t t x x R i=  =          (5) 

ig ( )( , [ , ]) , ,i

i ix h x y y x R=    ( )[ , ( , )] , 0, 1,2,i

ih x g x t t t i=  =                              (6) 
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( ){ , [ , ]} , ,i

i i ih y h x y x x R=    ( )[ { , }, ] , 0, 1, 2.i

i i ih h y t y t t i=  =                              (7) 

В правых частях тождеств (5)–(7) вместе с взаимообратными функциями исключаются переменные, 
повторяющиеся дважды в левых частях, если даже в левых частях этих тождеств повторяется дважды 

лишь одно из возможных значений этих переменных. Если коэффициенты (0)

3 3( , ) 0,i ia x t a− −   
( , ) ,x t G 2

3 ( ),ia C G−   то функции ,ig ,ih ( )ih дважды непрерывно дифференцируемы по , , ,ix t y

1, 2,i =  на G
 [1].   

Определение 1. Классическим решением смешанной задачи (1)–(3) называется функция 
2 ( ),u С G  удовлетворяющая уравнению (1) в обычном смысле на ,G

 а начальным условиям (2) и 

граничному режиму (3) в смысле значений пределов соответствующих дифференциальных выра-

жений от функции ( , )u x t  во внутренних точках ( , ) ,x t G  стремящихся к граничным точкам ( , )x t  

из (2) и (3) при ,x x→ .t t→  

Благодаря модулю переменной x  правой части f  и коэффициентов 
1,a  

2a  двухскоростного мо-

дельного телеграфного уравнения (1) под двойным интегралом в его пробном обобщенном решении 

из [1; формула (8)] в формулах (4)–(7) эти и другие функции можно продолжить четно по x  с положи-

тельных 0x   на отрицательные 0x   согласно нашему определению 1. По определению 1 классиче-
ские решения удовлетворяют уравнению во внутренних точках, а начальным и граничным условиям 

в смысле соответствующих пределов внутренних точек ( , ) .x t G  

Найти классические решения и критерий (необходимые и достаточные условия) корректности по 
Адамару (существования, единственности решения и его устойчивости по исходным данным 

, , ,f    )  смешанной задачи (1)–(3) в G
 с нехарактеристической косой производной.  

Определение 2. Косая производная граничного условия (3) для 0t   и смешанная задача (1)–(3) 

в G
соответственно называются нехарактеристическими, если 

1(0, ) ( ) ( ), 0,a t t t t    в гранич-

ном режиме (3). Характеристика 
2 2( , ) (0,0)g x t g=  называется критической уравнения (1) в первой 

четверти плоскости .G
  

Из определения 1 классических решений смешанной задачи (1)–(3) в G  и ее постановки непосред-

ственно вытекают очевидные необходимые (обязательные) требования гладкости 
2 1 1( ), [0, [, [0, [, [0, [.f C G C C C    +  +  +                     (8) 

Ниже будут установлены дополнительные необходимые и достаточные требования гладкости на .f  

Положив 0t =  в граничном режиме (3), в силу начальных условий (2) при 0x =  находим необходимое 
первое условие согласования: 

(0) (0) (0) (0) (0) (0) (0).      + + =                                                (9) 

В первой производной по t  от граничного режима (3) полагаем 0t =  и в силу начальных условий 

(2) при 0x =  находим необходимое второе условие согласования 

0 0
'(0) (0) '(0) (0) '(0) (0) (0) (0) (0) (0) (0)tt x t

u          = =
 + + + + + =     

( )2 1'(0) (0) '(0) (0) '(0) (0) (0) (0) (0) (0) (0)[ (0,0) (0,0) (0,0) '(0)f a a            = + + + + + + − +  

( )1 2 2 2 1 2(0,0) (0,0) ''(0) ( ) (0,0) / (0,0) (0) (0,0)( ) (0,0) '(0)] '(0),t xa a a a a a   + + + =             (10) 

так как из уравнения (1) мы имеем  

( )0 0 2 1 1 20 0
(0,0) (0,0) (0,0) '(0) (0,0) (0,0) ''(0)tt x tt tt x

u u f a a a a = == =
= = + − + +  

( )2 2 1 2( ) (0,0) / (0,0) (0) (0,0)( ) (0,0) '(0).t xa a a a + +  

Мы обозначаем количеством штрихов над функциями одной переменной соответствующие порядки 
их обыкновенных производных по этим переменным.  

Критическая характеристика 
2 2( , ) (0,0)g x t g=  делит четверть плоскости G

 на два множества 

2 2{( , ) : ( , ) (0,0)},G x t G g x t g− =   2 2{( , ) : ( , ) (0,0)}.G x t G g x t g+ =    

Ниже теорема 1 использует вычисленные методом корректировки в [1] классические решения  
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( ) 

2 1 1 1

1
11 1 2 2

( , ) { ( , ), } ( , )

1 20 ( , )( 1) ( , ), ( , ) ,

( , )
( , ) exp ( , )

( , ) ( , )
i

g x t h g x t g x t

i

gh g g x t g x t

f
F x t E ds d d
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 
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   
+−

   
 = + 

+    
  

  

1 1 1

2 2 2 1

{ ( , ), } ( , )

1 2( , ) { ( , ), } ( , )

( , )
exp ( , ) , 1, 2,

( , ) ( , )

h g x t g x tt

g x t h g x t g

f
E ds d d i

a a



  

 
   

   

   
 + = 

+    
  

            

(11) 

где с подынтегральной функцией по длине ds  дуги в показателе экспоненты 
( ) ( )

( )

2

2 1 2 2 1 2

2

1 2 1

/ /
( , )

( , ) ( , ) ( , )

a a a a a a
E

a a g

 



 
     

−
=
 +   

интегралы не берутся от функций 
1 2( , ), ( , ), ( , )f x t a x t a x t  для  0.x   Для непрерывной правой части 

( )f C G  неоднородное уравнение (1) имеет частное классическое решение (11) на G  из [1], рав-

ное 
1F  при 1i =  в G−

и 
2F  при 2i =  в G+  c необходимой и достаточной гладкостью (13), (14) следую-

щей теоремы 1 в силу следствия 3 статьи [1] при 0 =  и 2, =  т.е. при 1. = =  

Результаты и их обсуждение. Новым методом неявных характеристик доказана следующая 

Теорема 1. Пусть коэффициенты (0)

3 3( , ) 0,i ia x t a− −  ( , ) [0, [ [0, [,x t G = +  + 2

3 ( ),ia C G−   

1, 2,i = , , 1[0, [,C  + 1(0, ) ( ) ( ), 0,a t t t t     а также коэффициент (0) 0 =  в (3) или  

1 2 1 2 1 2(0,0) (0,0), ( ) (0,0) ( ) (0,0), ( ) (0,0) ( ) (0,0).t t x xa a a a a a= = =                            (12) 

Тогда для существования единственных и устойчивых классических решений 2 ( )u С G  сме-

шанной задачи (1)–(3) в G
необходимо и достаточно гладкости (8),  

1 
1

0

( { ( , ), } , ) ( ), 1, 2,

t

i if h g x t d C G i    =                   (13) 

2 2 2

1
22

{ ( , ), ( , )}

2 2 2
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( , ( , )) ( { ( , ), }, )
i

h g x t g x t t

g x tg x t

f g x t d f h g x t d    
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− −   

( ) ( )
2 ( , )
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1 1 2 2

0

( 1) ( , ), ( , ) , , ( ), 1, 2,

g x t

if h g g x t g x t d C G i  +

− −  =                               (14) 

и условий согласования (9), (10). Классическими решениями 2 ( )u С G  задачи (1)–(3) являются  

2 2 1 2 2( , ) ( { ( , ), 0}) ( { ( , ), 0},0)u x t h g x t F h g x t− = − +  

1 1

2 2

{ ( , ), 0}
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где функции 1
ˆ ( ),F   2

ˆ ( )F   взяты из (37), интегралы ( , ), 1,8,kA x t k =  в сумме (32) являются слагае-

мыми первой частной производной 
2( )tF  по t  от 

2F  из (30) и интегрирующий множитель  

1

10

(0, ) ( )
( ) exp

(0, ) ( ) ( )

t
a

t d
a

  
=  

−  


  
 

    
  

уравнения (34) из доказательства теоремы 1. 

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Обязательность требований гладкости (8) и условий 
согласования (9), (10) на входные данные ,f , ,    установлена нами перед формулировкой тео-

ремы 1. Там же говорится, что обязательность гладкости (13), (14) доказана методом корректировки 
пробных решений в классические решения в теоремах 1 и 3 статьи [1]. 

Д о с т а т о ч н о с т ь. Наличие частного классического решения (11) на G  неоднородного урав-

нения (1) сводит вычисление общего интеграла всех классических решений уравнения (1) к вычисле-
нию общего интеграла классических решений однородного уравнения (1) на .G  Отсюда на G

легко 

находим общий интеграл неоднородного уравнения (1) 

1 1 2 2( , ) ( ( , )) ( ( , )) ( , ), ( , ) ,u x t f g x t f g x t F x t x t G= + +                                         (17) 

где функция 
1F F=  на ,G−  2F F=  на G+  и 1,f  2f  — любые дважды непрерывно дифференцируемые 

вещественные функции переменных ,z y  вида 

1 1 2 2( ) ( ) ( (0,0)),f z f z f g= + 2 2 2 2( ) ( ) ( (0,0)).f y f y f g= −                                        (18)  

В действительности множество классических решений на G  в общем интеграле (17) не меняется, по-

тому что после подстановки функций (18) в (17) постоянная 
2 2( (0,0))f g  сокращается. В статье [12, фор-

мула (16)] этот простой и эффективный прием, существенно упрощающий вычисление решений систем 
дифференциальных уравнений, назван методом включения значений решений в общие интегралы 
уравнений с частными производными.  

Сначала мы найдем выражение формального решения u−
 на G−

 смешанной задачи (1)–(3) на  .G−
  

Решением этой задачи (1)–(3) на G−
 является решение задачи Коши (1), (2) на G−

. Подставляем общий 

интеграл (17) на G−  в начальные условия (2) и для 0x   получаем систему уравнений 

1 1 2 2 1

1 1 2 2
1 2 1

1 20 0

( ,0) ( ( ,0)) ( ( ,0)) ( ,0) ( ),

( ( , )) ( ( , ))
( ,0) ( ) ( ) ( ) ( ,0) ( ).t t t t

t t

u x f g x f g x F x x

f g x t f g x t
u x g g F x x

g g





= =

= + + =


     
= + + =    

     

              (19)  

В этой системе делаем невырожденную замену переменных  

1 2( , ), ( , )g x t g x t = =                        (20) 

с якобианом ( , ) 0x t t xJ x t   = −    в ,G
 так как (0)

3 3( , ) 0,i ia x t a− −  1, 2,i =  в .G
 Полные дифферен-

циалы от характеристик ( , ) , , 1, 2,i i ig x t C C R i=  =  равны нулю. Поэтому из равенств (4) имеем 

3( ) ( ) [( ) ( 1) ( , )( ) ] 0, ( , ) ,i

i i x i t i t i i xdg g dx g dt g a x t g dt x t G−= + = + −   1, 2,i =  
и, следовательно, 

1

3( ) ( 1) ( , )( ) , ( , ) , 1, 2.i

i t i i xg a x t g x t G i+

−= −  =                                        (21) 

Первое уравнение системы (19) дифференцируем по ,x  с помощью равенств (21) производные 

по x  преобразуем в производные по ,t  делаем замену переменных (20) и в силу коммутируемости 

операции дифференцирования по x  и взятия следа при 0t =  получаем эквивалентную систему 

( ) ( )

( ) ( )

1 2 0 1

2 1 1 2 0 1

( ) ( ) '( ) ( ) ( ,0),

( ) ( ) ( ) ( ) ( ,0).

t x
x x
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=

=

 + = −
  


  − = −
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                                   (22)  

Первое уравнение этой системы, умноженное на 
1( ,0),a x  суммируем со вторым уравнением, полу-

ченную сумму делим на 
1 2( ,0) ( ,0),a x a x+  результат интегрируем по x  от  0  до x  и находим  

1 1 1 1
1 1 1 1

1 20

( ,0) '( ) ( ) ( ,0)( ) ( ,0) ( ) ( ,0)
( ( ,0)) , .

( ,0) ( ,0)

x

ta a F F
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

 

+ − −
= + 

+            (23) 
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Из интеграла (23) при 
1 1( ,0)y g x=  и, следовательно, при 

1 1{ ,0}x h y=  в силу существования обрат-

ной функции к функции 
1g  и первого тождества обращения из (5) при 1,i =  0t =  для системы урав-

нений (22) мы имеем одно из ее решений  
1 1{ ,0}

1 1 1 1
1 1 1

1 20

( ,0) '( ) ( ) ( ,0)( ) ( ,0) ( ) ( ,0)
( ) .

( ,0) ( ,0)
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 

+ − −
= +

+                         (24) 

Тогда из первого уравнения системы (19) для системы (22) легко находим второе решение  

2 2 1( ( ,0)) ( ) ( ,0)f g x x F x= − − 1 1 1 1
1

1 20

( ,0) '( ) ( ) ( ,0)( ) ( ,0) ( ) ( ,0)
.

( ,0) ( ,0)

x

ta a F F
d C

a a

       


 
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+  

В нем делаем замену переменной 
2 2( ,0)y g x=  и в силу существования обратной функции 

2 2{ ,0}x h y=  

к функции 
2g  и первого тождества обращения из (5) при 2,i = 0t =  для системы уравнений (22) выво-

дим второе ее решение 

2 2 2 2 1 2 2( ) ( { ,0}) ( { ,0},0)f y h y F h y= − −  
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Подставляем формальные решения (24) и (25) системы (22) соответственно при ( , ), 1, 2,i iy g x t i= =  
в общий интеграл (17) и получаем формальное решение (15) смешанной задачи (1)–(3) на G−

 из тео-

ремы 1. 

Теперь мы будем искать формальное решение u+
 смешанной задачи (1)–(3) на G+

 как решение за-

дачи Пикара для уравнения (1) с равенством функций (17) и (15) на критической характеристике 

2 2( , ) (0,0)g x t g=  и граничным режимом (3) при 0.x =   

У неявной функции 
2 2( , )y g x t=  при 

2 2(0,0)y g=  очевидно существует обратная функция 

2 2{ (0,0), }.x h g t=  Разность общего интеграла (17) из G+  и уже известного решения (15) из замыкания G−  
на пересечении ,G G+ −  т.е. на характеристике 

2 2( , ) (0,0),g x t g=  должна быть нулевой  
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потому что  2 2( (0,0)) 0f g =   ввиду (18)  и  
2 2{ (0,0),0} 0h g =  в силу второго тождества обращения из (5) 

при 2,i =  0.x =  Отсюда выражаем функцию  
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(26) 

где слагаемые 
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2 22 1 { (0,0), }[ ( , ) ( , )] x h g tF x t F x t =− =
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В разности 
2 1( , ) ( , )F x t F x t−  сокращаются вторые интегралы частных решений 

1F   и  
2F  из (11). 

Для общего интеграла (17) из (26) при 
1 1 2 2( { (0,0), }, )z g h g t t=  находим первую функцию  
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потому что  
1 1 1 1 2 2 2 2{ , } { ( { (0,0), }, ), } { (0,0), }h z t h g h g t t t h g t= =  по второму тождеству из (5) при 1.i =

     Вычисляем первые частные производные функции 
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(31)

     
так как 

1 1 2 2 2 2{ ( ( , ), ( , )), ( , )} ( , ),h g g x t g x t g x t g x t− =−  
1 1 1 1 1( , ) ( { ( , ), }, ) ( , )g g h g x t g x t   = =  и 

1( , )g   =

1 1 1 2 2 1 2 2( { ( ( , ), ( , )), }, ) ( ( , ), ( , ))g h g g x t g x t g g x t g x t = − = −  по второму тождеству обращения из (5) при 

1i =  соответственно в нижних пределах интегрирования от функций ( , )f    и ( , ).E    

Чтобы применить коммутируемость дифференцирования 
2F  по t  и взятия следа при 0x =  на ,G+

 

мы выразим первую производную по x  от решения 
2F  из (11) через производную по t  от 

2F  и сумму 

слагаемых четного порядка следования в этой производной 
2( )tF  на .G+

 Первую частную производную 
2( )tF  по t  от 

2F  на G+  из (30) условно запишем в виде суммы 
 

2 1 2 3 4 5 6 7 8( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),tF x t A x t A x t A x t A x t A x t A x t A x t A x t= + − − − + − −         (32) 

где ( , ), 1,8,kA x t k =  —  интегралы этой производной, перед которыми знаки соответствуют знакам ин-

тегралов в (30). Первая производная 
2( )xF  по x  от 

2F  на G+  из (31) условно записывается в виде  
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Тогда справедливо тождество  
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 
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 
 

в правой части которого сократились слагаемые нечетного порядка следования из 
2( ) .xF  Отсюда 

легко выводится представление производной 
2( )xF  по x  через производную 

2( )tF  по t  

1 2
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Итак, подставляем общий интеграл (17) с функциями 1f  и 2f  из (18) в граничный режим (3), преоб-

разуя производные ( ( , )) /i if g x t x   в производные ( ( , )) / , 1, 2,i if g x t t i  =  с помощью равенств 
1

3( ) ( 1) ( ) / ( , ), 1, 2,i

i x i t ig g a x t i+

− − =
  

из (21) и используя запись (33), получаем тождество 
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После деления этого тождества на коэффициент 
1 1[ (0, ) ( ) ( )] / (0, )a t t t a t −  для функции 2 2( (0, ))f g t  

мы выводим обыкновенное дифференциальное уравнение  



М А Т Э М А Т Ы К А 

2 2 1 1
2 2

1 1

( (0, )) (0, ) ( ) (0, ) ( )
( (0, ))

(0, ) ( ) ( ) (0, ) ( ) ( )

f g t a t t a t t
f g t

t a t t t a t t t

 

   


+ = −

 − −
 

1 1 1 1 1
1 1 2 2

2 1 1

(0, )[ (0, ) ( ) ( )] ( (0, )) (0, ) ( )
[ ( (0, )) (0, )] ( ) (0, )

(0, )[ (0, ) ( ) ( )] (0, ) ( ) ( )
t

a t a t t t f g t a t t
f g t F t F t

a t a t t t t a t t t

  

   

+ 
− − + − −

−  −
 

1 2
2 4 6 8

2 1

[ (0, ) (0, )] ( )
[ ](0, ),

(0, )[ (0, ) ( ) ( )]

a t a t t
A A A A t

a t a t t t



 

+
− − + −

−
                                     (34) 

в правой части которого функция 1 1( (0, ))f g t  известна в (29). Умножаем это дифференциальное урав-

нение на интегрирующий множитель 1
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  интегрируем результат 

умножения по  t  от  0   до  t  и после деления на  ( )t  для уравнения (34) имеем решение  
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где постоянная 2 0C =  в силу второго равенства из (18) при 0.t =  
Здесь полагаем 

2 2(0, )z g t=  и, тем самым, (2)

2 2[0, ] (0, )t h z g t= =  и находим для общего интеграла 

(17) вторую функцию 
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в которой согласно формуле (29) функции 
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Подставляем функции (29) при 
1 1( , )z g x t=  и (36) при 

2 2( , )z g x t=  в общий интеграл (17) и получаем 

формальное решение u+
 вида (16) на G+

 из теоремы 1. После этих подстановок функций (29) и (36) 

в (17) функция 
2F  из (17) сокращается с 

2F  из разности 
1 2( , ) ( , )F x t F x t−  при 

1 1{ , }x h z t=  и 
1 1( , )z g x t=  в 

(29), так как 
1 1{ ( , ), }h g x t t x=  по  второму тождеству обращения из (5) при 1.i =   

Убедимся в дважды непрерывной дифференцируемости функций u−
 на G−

 и u+
 на .G+

 Гладкости 

коэффициентов 2

3 ( ),ia C G−   1, 2,i =  , , 1[0, [,C  +  характеристических функций 
( ) 2, , ,i

i ig h h C  1, 2,i =  и данных , ,    из (8), очевидно, достаточно для дважды непрерывной диф-

ференцируемости всех слагаемых, которые их содержат в функциях (15) на G−
 и (16) на .G+

 В силу 

теорем 1 и 3 работы [1] гладкости ( )f C G  из (8) и гладкости (13),  (14) также достаточно для дважды 
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непрерывной дифференцируемости остальных слагаемых функций (15) на G−
 и (16) на .G+

 Дважды  

непрерывно дифференцируемые функции (15) и (16), очевидно, поточечно удовлетворяют неодно-
родному уравнению (1) соответственно в G−

 и ,G+
 так как они имеют структуру общего интеграла (17) 

его классических решений.  
Для ( )f C G  с гладкостью (13),  (14) дважды непрерывная дифференцируемость решений 

1F   и 

2F  из (11) неоднородного уравнения (1) не только, соответственно, в G−
 и ,G+

 а также на критической 

характеристике 
2 2( , ) (0,0)g x t g=  вытекает из следствия 3 работы [1] методом корректировки и их два-

жды непрерывно дифференцируемой стыковки на характеристике 
2 2( , ) (0,0).g x t g=  Поэтому остается 

проверить дважды непрерывную дифференцируемость на характеристике 
2 2( , ) (0,0)g x t g=  решений 

u−
 при 

1 0F =  и u+
 при 

2 0,F =  т.е. решений u−
 из (15) и u+

 из (16) однородного уравнения (1) при 

( , ) 0f x t =  в .G
 

Вычисляем первую производную по t  разности функций (15) в G−  и (16) в  G+
 при 0f =  

2 2

2 2 2 2 1 2 2

2 1 2 { ( , ), 0}

( { ( , ), 0}) { ( , ), 0} ( ,0) '( ) ( ) { ( , ), 0}

( ,0) ( ,0)
h g x t

u u d h g x t h g x t a h g x t

t t dh t a a t


     

 
− +

=

   + 
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   + 
 

(2)
2[0, ( , )]

1 1 2
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1 1

1 1 1
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1 1{ (0, ),0}

1 1

1 1 20
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(0, ) ( ) ( ) ( ,0) ( ,0)
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d d x t
a a a


       

  
      

 + 
− +   − +    

                     (38) 

Дифференцируя один раз по t  как сложную функцию, используем дифференциальные уравнения 
характеристик (21) и находим тождества 

1

3

{ ( , ), 0} { ( , ), 0} { ( , ), 0}
( ) ( 1) ( , ) ( )

i i i i i ii

i t i i x

i i

h g x t h g x t h g x t
g a x t g

t g g

+

−

  
= = − =

    

1

3

{ ( , ), 0}
( 1) ( , ) , , 0, 1,2.

i ii

i

h g x t
a x t x t i

x

+

−


= −  =

                                     
(39)

 
В силу вторых формул обращения из (5) при 1, 2, 0i t= =  получаем значение производной  

0

{ ( , ), 0}
1, 0, 1, 2,

i i

t

h g x t
x i

x
=


=  =


                                               (40) 

и, следовательно, из (39) имеем тождества 

1

3

0

{ ( , ), 0}
( 1) ( ,0), 0, 1, 2,

i i i

i

t

h g x t
a x x i

t

+

−

=


= −  =


                                    (41) 

так как в правых частях тождеств (39) взятие следа при 0t =  перестановочно с дифференцированием 
по .x  Ввиду второй формулы обращения из (6) при 2, 0i x= =  из (2)

2[0, (0, )]h g t t=  выводим  
(2)

2

0

[0, ( , )]
1, 0,

x

h g x t
t

t
=


= 


                                                     (42) 

потому что здесь взятие следа при 0x =  перестановочно с дифференцированием по .t  
В тождестве (38) полагаем 

2 2( , ) (0,0),g x t g=  т.е. 0,x t= =  и на основе тождеств (41) при 1, 2,i =  

0,x =  значения (42) при 0t =  и первого условия согласования (9) приходим к равенствам 

2 2
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М А Т Э М А Т Ы К А 
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так как { (0,0), 0} 0i ih g =  ввиду вторых формул обращения из (5) для 1, 2, 0,i x t= = =  

(2)

2[0, (0,0)] 0t h g= =  в силу вторых формул обращения из (6) для 2, 0i x t= = =  и интегрирующий 

множитель (0) 1. =   

Находим первую производную по x  разности функций (15) в G−  и (16) в G+
 при 0f =  

2 2

2 2 2 2 1 2 2

2 1 2 { ( , ), 0}

( { ( , ), 0}) { ( , ), 0} ( ,0) '( ) ( ) { ( , ), 0}

( ,0) ( ,0)
h g x t

u u d h g x t h g x t a h g x t

x x dh x a a x


     

 
− +

=

   + 
− = − −

   + 
 

     

(2)
2[0, ( , )]

1 1 2

(2)

2 1 2 10

(0, ) ( ) (0, )[ (0, ) ( ) ( )]1
( )

( [0, ( , )]) (0, ) ( ) ( ) (0, )[ (0, ) ( ) ( )]

h g x t
a a a

x h g x t a a a

        
 

           

  +
− −  
 − − 


 

   1 1

1 1 1

1 2 { (0, ),0}

( ,0) '( ) ( ) { (0, ),0}

( ,0) ( ,0)
h g

a h g

a a
 

     

  
=

+ 
 −

+ 
 

1 1{ (0, ),0}

1 1

1 1 20

(0, ) ( ) ( ,0) '( ) ( )
(0) , , 0.

(0, ) ( ) ( ) ( ,0) ( ,0)

h g
a a

d d x t
a a a


       

  
      

 + 
− +   − +    

                (44) 

Дифференцируем один раз по x  и ввиду уравнений (21) при 2i =  приходим к равенствам  
(2) (2)

2 2
2

2

[0, ( , )] [0, ( , )]
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h g x t h g x t
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Согласно значению (42) из равенств (45) находим значения производной 
(2)

2
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[0, ( , )] 1
, 0.

(0, )
x

h g x t
t

x a t
=


= − 


                                                   (46) 

Из значения (40) при 2,i = 0,x =  тождества (41) при 1,i = 0,x = значения (46) при 0t =  и первого 

условия согласования (9) из тождества (44) при 
2 2( , ) (0,0),g x t g=  т.е. 0,x t= =  имеем равенства 

2 2

1 1

1 2 1( , ) (0,0)

(0,0) (0) (0) (0,0) (0)
(0)

(0,0) (0,0) (0,0) (0) (0)
g x t g

u u a a

x x a a a

  


 
− +

=

   + 
− = − − −   + −  

 

 

1

1
[ (0) (0) (0) (0) (0) (0) (0)] 0.

(0,0) (0) (0)a
      
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Во второй части настоящей статьи для завершения доказательства теоремы 1 остается только убе-
диться в непрерывности вторых частных производных от решений (15) и (16) на критической характе-

ристике 
2 2( , ) (0,0).g x t g=  Доказательство теоремы 1 будет завершено в следующей статье.  

Заключение. В данной работе установлен критерий корректности, найдены явные единственные 
устойчивые решения и доказана их дважды непрерывная дифференцируемость вне критической ха-
рактеристики и непрерывная дифференцируемость на критической характеристике. Критерий кор-
ректности состоит из необходимых и достаточных требований гладкости и двух условий согласования 
начальных данных, граничного данного и правой части уравнения. Устойчивость классических 

2 2
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решений по начальным данным, граничному данному и правой части уравнения следует из выведен-
ных формул. Разработан метод неявных характеристик вывода критериев корректности по Адамару 
с вычислением явных формул классических решений нехарактеристической смешанной задачи для 
двухскоростного модельного телеграфного уравнения.  
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