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К рассмотрению автономных систем дифференциальных уравнений приводят многие задачи астрономии, физики, 
химии и других областей естествознания, в которых требуется изучить развитие того или иного процесса во времени. 
При этом полезно выяснить особенности решений таких систем — поведение интегральных кривых в окрестности  
состояний равновесия, устойчивость состояний равновесия, влияние параметров, что позволяет глубже понять  
динамику данных процессов.  

Цель статьи — качественное исследование системы дифференциальных уравнений с квадратичными правыми 
частями: нахождение состояний равновесия системы, определение их характера в зависимости от значений пара-

метра , построение качественной картины поведения интегральных кривых в круге Пуанкаре. 
Материал и методы. Авторами использованы методы, разработанные А. Пуанкаре и А.М. Ляпуновым для определе-

ния характера состояний равновесия и поведения траекторий систем дифференциальных уравнений.  
Результаты и их обсуждение. Рассматривается система дифференциальных уравнений 
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Проводится качественное исследование данной системы. 

Заключение.  В работе найдены состояния равновесия системы (1) в конечной части плоскости и на бесконечности, 

определен их тип для значений параметра  >
13

18
.  Для указанных значений параметра проведено полное качественное 

исследование. 

Ключевые слова: качественное исследование, автономная система, траектории, состояния равновесия,  характер 
состояний равновесия. 
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Many problems in astronomy, physics, chemistry, and other areas of natural science in which it is necessary to study the 

development of a particular process over time lead to the consideration of autonomous systems of differential equations. In this case, 
it is often useful to find out the features of the solutions of such systems: the behavior of integral curves in the vicinity of equilibrium 
states, the stability of equilibrium states, the influence of parameters, which allows a deeper understanding of the dynamics of the 
processes under study. 

The purpose of the article is a qualitative study of a system of differential equations with quadratic right-hand sides: finding the 

equilibrium states of the system, identifying their nature depending on the values of the parameter , constructing a qualitative 
picture of the behavior of integral curves in the Poincaré circle. 

Material and methods. The work used methods developed by A. Poincaré and A.M. Lyapunov to determine the nature 
of equilibrium states and the behavior of trajectories of systems of differential equations. 

Findings and their discussion. A system of differential equations is considered 
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A qualitative study of this system is carried out. 
Conclusion. In the work, the equilibrium states of system (1) in the finite part of the plane and at infinity are found, their type 

is determined for the parameter values  >
13

18
. A full qualitative study was carried out for the specified parameter values. 

Key words: qualitative research, autonomous system, trajectories, equilibrium states, nature of equilibrium states. 

 
 данной работе проводится качественное исследование системы дифференциальных уравнений  
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где  — произвольный действительный параметр, x = x (t),  y = y (t). Так как правая часть системы (1) не 
зависит явно от t, то такая система является автономной. 

К рассмотрению автономных систем приводят многие задачи астрономии, физики, химии и дру-
гих областей естествознания, в которых требуется изучить развитие того или иного процесса во вре-
мени. Нахождение решений данных систем в виде элементарных функций или в квадратурах в боль-
шинстве случаев невозможно. Многие численные методы позволяют найти решение с любой степе-
нью точности в течение конечного промежутка времени. Однако для прикладных задач часто важно 
знать поведение решений на неограниченных временных интервалах. Например, необходимо опре-
делить, в каком направлении происходит движение материальной точки на плоскости или в про-
странстве, останется ли данная точка с течением времени в конечной части плоскости или уйдет 
в бесконечность. Такими вопросами занимается качественная теория дифференциальных уравне-
ний. Первые работы в области качественного исследования принадлежат А.  Пуанкаре. Дальнейшее 
развитие идеи Пуанкаре получили в работах Дж.Д. Биркгофа, И. Бендиксона, А.М. Ляпунова, 
Л.С. Понтрягина и др. 

Цель статьи — качественное исследование системы (1): нахождение состояний равновесия системы 
в конечной части плоскости и на бесконечности, определение их характера в зависимости от значений 

параметра , построение качественной картины поведения интегральных кривых в круге Пуанкаре. 
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Материал и методы. В работе использованы методы, разработанные А. Пуанкаре и А.М. Ляпуно-
вым для определения характера состояний равновесия и поведения траекторий систем дифференци-
альных уравнений.  

Результаты и их обсуждение. Проведем качественное исследование системы (1). Для определения 
координат состояний равновесия этой системы найдем решения системы уравнений 
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При 
3

2
  получим следующие решения системы (2): 
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Количество состояний равновесия системы (1) зависит от значений параметра α: 

при   >
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Значения  =
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 происходит слияние точек А2 и А3,  

поэтому система (1) имеет три состояния равновесия: точку О  (0, 0), точку А1 
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Найдем состояния равновесия системы (1) на бесконечности. Для этого с помощью преобразований 

Пуанкаре  x =
z

1
,   y = 

z

u
,  t = z   приведем данную систему к виду  
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При z = 0 получаем следующие решения системы (3):  u1 =
3

18131 −+−
, u2 =

3

18131 −−−
.  

Очевидно, что на оси z = 0 при  <
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13
 у системы (3) есть два состояния равновесия: точки  
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яние равновесия системы (3), которое получается при слиянии точек М и N.  При   > 
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13
 на оси z = 0 

у системы (3) нет точек покоя. 

С помощью преобразований x =
z

v
,   y = 

z

1
,  t = z   исследуем поведение траекторий системы (1) 

на положительном конце оси ОY.  В этом случае система (1) приводится к виду 
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Очевидно, что точка D (0, 0) есть состояние равновесия системы (4).  
При этом будем считать, что если системы (3) или (4), а следовательно, и  система (1), имеют  

бесконечно удаленное состояние равновесия на конце какой-либо полупрямой y = kx (x > 0), то на 
конце полупрямой y = kx (x < 0) также есть состояние равновесия данной системы. Кроме того, так как 
правые части данных систем являются многочленами второго порядка, то состояния равновесия, ле-
жащие на противоположных концах прямой  y = kx, имеют один и тот же характер, но направление 
траекторий в их окрестности будет противоположным [1].  

Таким образом, бесконечно удаленными  состояниями равновесия системы (1) 

при  < 
18

13
 являются точки M1 и М2, лежащие на концах прямой y = u1x, где u1  =

3

18131 −+−
;  

N1 и N2,  лежащие на концах прямой y = u2 x, где u2  =
3

18131 −−−
; D1 и D2, лежащие на концах оси OY;   

при  = 
18

13
 точки М1 и М1  — на концах прямой y =  

3

1
−  x,  D1 и D2 — на концах оси  OY; 

при    >
18

13
 точки D1  и  D2,  расположенные на концах оси OY.  

Кроме того в [2] доказано, что данная система имеет частный алгебраический интеграл вида 
 

4(3 – 2)х3 + 18y2 + 9(3 – 2)x – 12y – 3 = 0. 
 

В приложениях часто возникает вопрос: как меняется поведение интегральных кривых при измене-

нии параметров системы? Для системы (1) рассмотрим этот вопрос в случае  







+ ,

18

13
, когда  

у системы есть только две бесконечно удаленные точки покоя D1 и D2, лежащие на диаметрально  
противоположных концах оси  OY.   
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Тип точек D1 и D2 определяется из системы (4) с помощью характеристического уравнения 
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Так как корни данного уравнения 1 = −3, 2 = −2, то система (4), а значит, и система (1), на положи-
тельном конце оси OY имеет устойчивый узел D1. Соответственно на отрицательном конце этой оси 
система (1) имеет неустойчивый узел  D2. 

Пусть  
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 — состояния равновесия системы (1) в конечной части плоскости. 

Тип этих точек определяется с помощью характеристического уравнения 
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где  
x

P


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= x
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8
+ 2y,  
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P




= 2 + 2y,   

x

Q


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= αx + 

3

4
(3α – 2)x + 2y,  

y

Q




= 1 + 2x + 6y. Частные производные 

функций P (x, y) и Q (x, y) находятся в исследуемых точках.  

В точке О  корни уравнения (5): 1,2 = 
2

811 +
.  Так как при  = 

50

37
 корни уравнения (5) действи-

тельные и имеют разные знаки, то точка О является седлом. В точке А1: 1,2 =
3

32
2

−
− . Очевидно, 

что в точке  А1 корни характеристического уравнения (5) комплексные и имеют отрицательную дей-

ствительную часть. Следовательно, точка А1 — устойчивый фокус. В точке A2: 1  0,96;  2  2,57. Так 

как оба корня положительные, то точка A2 есть неустойчивый узел. В точке A3: 1  3,44;  2  −  1,38. 
Корни имеют разные знаки, следовательно, точка А3 — седло.  

Угловые коэффициенты касательных к  сепаратрисам седла О  в бесконечно малой окрестности 

этого состояния равновесия находятся из уравнения 2k2 – k – 0,74 = 0.  Тогда  k1 =
10

1735 −
,  

k2 = .
10

1735+
 Для -сепаратрис данного седла имеются следующие возможности. Одна из них может 

выходить только из бесконечно удаленного неустойчивого узла D2. Вторая сепаратриса может стре-

миться к точке О, выходя из неустойчивого узла A2 или из седла А3, являясь его -сепаратрисой, но в 
последнем случае она пересекала бы траектории системы, выходящие из узла A2, что невозможно. 

Анализируя поле направлений системы (1), приходим к выводу, что -сепаратрисы седла О стремятся 

к началу координат под углами  arctg k1  и  + arctg k1, где  k1 =
10

1735 −
, и  выходят из неустойчивых 

узлов D2 и  A2. -сепаратрисы выходят из начала координат под углами arctg k2  и  + arctg k2, где  

k2 = .
10

1735+
 При этом одна -сепаратриса стремится к бесконечно удаленному устойчивому узлу D1, 

вторая — к устойчивому фокусу А1.  
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В этом случае поведение сепаратрис седла А3 определяется однозначно. Одна из -сепаратрис дан-

ного седла стремится к устойчивому фокусу А1, вторая — к устойчивому узлу D1, -сепаратрисы стре-
мятся к А3, выходя из неустойчивых узлов D2 и A2. 

Качественная картина поведения траекторий системы (1) в круге Пуанкаре топологически эквива-
лентна картине, изображенной на рис. 1.  

 

Рис. 1. Поведение траекторий системы (1) в круге Пуанкаре при  = 
37

50
 

 

Пусть  =
4

3
.  В этом случае на бесконечности система (1) имеет устойчивый узел D1 на положитель-

ном конце оси ОY и неустойчивый узел D2 на отрицательном конце этой оси. 
В конечной части плоскости у системы три состояния равновесия, характер которых определяется 

из уравнения (5). Так же как и в предыдущем случае, точка О  (0, 0) является седлом, точка 

А1 







−−

3

1
,

2

1
 — устойчивым фокусом. Точка А2 








−

2

3
,3  — сложным состоянием равновесия, так как 

для этой точки один из корней уравнения (5) равен нулю: 1 = 3, 2 = 0.  
Определим характер сложного состояния равновесия А2 методом, изложенным в [1]. Для этого  

с помощью преобразований   = 2x + 8y + 6,   = 5x + 8y − 3 приведем систему (1) к каноническому виду 
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1
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
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

Q
dt

d

P
dt

d

 (6) 

Данное преобразование переводит точку А2  в точку O (0, 0) — сложное состояние равновесия  

системы (6), при этом точка А2 того же типа, что и точка  O . 

Так как при  = 0,  = 0 функция 3 + 
2

Q (, )  0, а 



(3 + 

2
Q (, )) = 3  0, то существует функ-

ция  =  (), не равная тождественно нулю, которая является решением уравнения 

                                                                     3 + 
2

Q (, ) = 0.  (7) 
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D2 
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A2 
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Пусть функция  () = 0 + 1 + 2 2+ 3 3+ … . Так как  (0) = 0,   (0) = 0, то для данного ряда 

0 = 1 = 0. Подставим  () в уравнение (7),  получим 

                                                               () = 
24

1
−  2+ 

1728

1
 3+ … . (8) 

Рассмотрим функцию () = 2
P (,  ()) = 

72

7
2

432

43
−  3+ … . По теореме 2 [1, гл. 4, с. 87]  

состояние равновесия O системы (6) является седло-узлом. Окрестность такого состояния равно-
весия делится на три сектора. Один из секторов имеет бесконечное число траекторий, выходящих 

из точки O  (или входящих в точку O ), и называется узловым или параболическим. Траектории 
двух других секторов гиперболического вида. Эти сектора называются седловыми или гиперболи-
ческими. Из данной теоремы также следует, что параболический сектор является неустойчивым. 
Поведение траекторий системы (1) в окрестности точки А2 будет аналогично поведению траекто-

рий системы (6) в окрестности точки O . Эта точка получается в случае слияния неустойчивого  

узла А2 и седла А3 при 
4

3
→  слева. 

Одна из -сепаратрис точки А2, отделяющих узловой сектор, входит в устойчивый узел D1, ле-

жащий на положительном конце оси OY. Для второй  -сепаратрисы имеется две возможности: 

она или стремится к устойчивому фокусу А1, или к седлу О и является -сепаратрисой этого состо-
яния равновесия. Рассматривая поле направлений системы в окрестности точки А2, приходим к вы-

воду, что имеет место первый  случай. -сепаратриса точки А2 может выходить только из неустой-
чивого узла D2. 

Поведение сепаратрис седла О определяется однозначно: -сепаратрисы седла О стремятся 

к началу координат под углами  arctg k1  и  + arctg k1, где k1 =
4

71−
 и  выходят из неустойчивых узлов 

D2 и  A2; -сепаратрисы выходят из начала координат под углами arctg k2 и  + arctg k2, где k2 =
4

71+
 

и одна из них стремится к устойчивому фокусу А1, вторая — к устойчивому узлу D1. 
Качественная картина поведения траекторий системы (1) в круге Пуанкаре топологически эквива-

лентна картине, изображенной на рис. 2.  
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O 

Рис. 3. Поведение траекторий системы  (1)  

в круге Пуанкаре при  >  

D1 
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O 

Рис. 2. Поведение траекторий системы  (1) 

 в круге Пуанкаре при   =  
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М А Т Э М А Т Ы К А 

Пусть  >
4

3
. Тогда система (1) в конечной части плоскости имеет два состояния равновесия: О  (0, 0)  

и  А1 







−−

3

1
,

2

1
.  

В точке О  корни уравнения (5): 1,2 = 
2

811 +
.  Так как   >

4

3
, то 1 > 0, 2 < 0, следовательно, 

точка О — седло. В точке А1: 1,2 =
3

32
2

−
− . Очевидно, что в точке  А1 корни характеристического 

уравнения (5) комплексные, следовательно, точка А1 — устойчивый фокус.  

В бесконечной части плоскости система (1) имеет две точки покоя на диаметрально противополож-
ных концах оси ОY:  устойчивый узел  D1 и неустойчивый узел  D2.  

Угловые коэффициенты касательных к сепаратрисам седла О находим из уравнения 2k2 – k –  = 0. 

Получаем: k1 =
4

811 ++
, k2 = .

4

811 +−
 -сепаратрисы седла О могут выходить только из неустой-

чивого бесконечно удаленного узла D2, -сепаратрисы седла стремятся к устойчивому фокусу А1 
и устойчивому бесконечно удаленному узлу D1. Рассматривая поле направлений системы на коорди-

натных осях и на прямых y =
3

1
− ,  x =

2

1
− , заключаем, что -сепаратрисы в окрестности точки О лежат 

во второй и четвертой координатных четвертях, а  -сепаратрисы — в первой и третьей координатных 
четвертях. Поведение интегральных кривых системы (1) в круге Пуанкаре определяется однозначно. 
Качественная картина поведения траекторий системы в круге Пуанкаре топологически эквивалентна 
картине, изображенной на рис. 3. 

Заключение. В работе рассмотрена автономная система второго порядка, с квадратичными пра-

выми частями, зависящими от действительного параметра . Найдены состояния равновесия данной 
системы в конечной части плоскости и на бесконечности, определен их тип для значений параметра 

 >
18

13
.  Для указанных значений параметра проведено полное качественное исследование. 
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