Министерство образования Республики Беларусь УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ П.М. МАШЕРОВА» (ВГУ ИМЕНИ П.М. МАШЕРОВА)

УДК 512.542:512.56 Рег.№ 20230466	
	УТВЕРЖДАЮ
	Проректор по научной работе профессор
	Е.Я. Аршанский " "20 г.

О Т Ч Е Т О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

РЕШЕТКИ КЛАССОВ КОНЕЧНЫХ ГРУПП

(заключительный) Грант аспирантов, докторантов и студентов

Министерства образования Республики Беларусь

Ответственный исполнитель НИР, аспирант	 И.И. Стаселько
Научный руководитель	 Н.Н. Воробьев
Нормоконтроль	Т.В. Харкевич

РЕФЕРАТ

Отчет 31 с., 1 кн., 63 источника.

КОНЕЧНАЯ ГРУППА, КЛАСС ФИТТИНГА, ПОЛНАЯ РЕШЕТКА КЛАССОВ ФИТТИНГА, ФУНКЦИЯ ХАРТЛИ, АЛГЕБРАИЧЕСКАЯ РЕШЕТКА, МОДУЛЯРНАЯ РЕШЕТКА, ИНДУКТИВНАЯ РЕШЕТКА

Объектом исследования являются n-кратно ω -композиционные классы Фиттинга, σ -локальные классы Фиттинга.

Цель работы — разработка новых решеточных методов в теории классов конечных групп и их применение в изучении свойств решеток n-кратно ω -композиционных и σ -локальных классов Фиттинга.

Методы исследования – используются методы теории классов конечных групп, а также методы общей теории решеток.

Работа выполнена на базе кафедры математики учреждения образования «Витебский государственный университет имени П.М. Машерова».

Полученные результаты и их новизна — доказана полнота решетки всех кратно ω -композиционных классов Фиттинга, найдены новые серии алгебраических решеток всех n-кратно ω -композиционных классов Фиттинга, найдены достаточные условия модулярного равенства для семейств n-кратно ω -композиционных классов Фиттинга, предложено описание минимальной σ -функции Хартли порожденного (тотально) σ -локального класса Фиттинга, выявлены новые серии индуктивных решеток σ -локальных классов Фиттинга. Все результаты являются новыми.

Область применения результатов — полученные результаты могут быть использованы при изучении структуры классов Фиттинга и их классификации для исследований, проводимых в Белорусском государственном университете, Гомельском, Витебском, Брестском, Полоцком государственных университетах; Университете Науки и Технологий Китая, Яньнанском университете; университетах Памплоны, Сарагоссы и Валенсии (Испания), Тюбингенском университете (Германия). Все исследования проводятся в рамках задания «Арифметические и решеточные методы исследования алгебр мальцевских многообразий с условиями конечности» ГПНИ «Конвергенция—2025» (Рег.№ 20210495), подпрограмма «Математические модели и методы».

Итоги внедрения результатов НИР — результаты главы 3 внедрены в учебный процесс кафедры математики при чтении спецкурсов по теории классов групп для студентов математических специальностей, а также для написания курсовых, дипломных проектов и магистерских диссертаций.

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В настоящем отчёте о НИР применяют следующие термины с соответствующими определениями:

Все рассматриваемые группы конечны. В определениях мы следуем [1–21]. В настоящем отчете о НИР применяют следующие термины с соответствующими определениями:

Термин	Определение
Абелева группа	Группу называют абелевой, если операция, определенная на
	множестве G , коммутативна, т. е.
	$(\forall a, b \in G) (a * b = b * a)$
Алгебраическая решетка	Такая полная решетка, что любой ее элемент является
	решеточным объединением компактных элементов
Гомоморф, или класс	Класс \mathfrak{X} называется замкнутым относительно фактор-групп
групп, замкнутый	или гомоморфом, если выполняется требование:
относительно фактор-	если $G \in \mathfrak{X}$ и $N \lhd G$, то $G/N \in \mathfrak{X}$
групп	
Группа	Непустое множество G элементов произвольной природы
	называется группой, если выполняются следующие аксиомы:
	1) На множестве G определена бинарная алгебраическая
	операция «*», т. е.
	$(\forall a, b \in G)$ упорядоченной паре (a, b) ставится в соответствие
	единственное
	$(c = a * b \in G)$
	2) Операция «*» ассоциативна, т. е.
	$(\forall a, b, c \in G) (a * (b * c) = (a * b) * c)$
	3) Существует нейтральный элемент относительно операции
	«*», т. е.
	$(\forall a \in G) (\exists e \in G) (a * e = e * a = a)$
	4) Для каждого элемента G существует симметричный ему
	такой, что под действием операции мы получаем нейтральный
	элемент.
	$(\forall a \in G) (\exists a' \in G) (a * a' = a' * a = e)$

Термин	Определение
<i>p</i> -Группа	Группа, порядок которой есть степень простого числа р
σ-Взаимно простые	Целые числа n и m называются σ - e заимно простыми, если $\sigma(n)$
целые числа	$\bigcap \sigma(m) = \emptyset$
π-Замкнутая группа	Конечная группа с нормальной π-холловской подгруппой
	называется π-замкнутой
c_{ω}^{n} -Значная ω -компо-	ω -Композиционная H -функция f называется c^n_ω -значной, если
зиционная H -функция	все ее значения принадлежат решетке c^n_ω
l_{σ}^{∞} -Значная H_{σ} -функция	H_{σ} -Функция f называется l_{σ} -значной, если каждое ее непустое
	значение принадлежит решетке l_σ
Изоморфизм групп	Две группы G и G_1 называются изоморфными, если существует
	биекция $f: G \to G_1$ такая, что $f(ab) = f(a)f(b)$ для всех $a, b \in G$.
	Для обозначения изоморфизма используется запись $G \simeq G_1$
Индуктивная решетка	Полная решетка Θ^{σ_l} называется <i>индуктивной</i> , если для
классов Фиттинга	произвольной совокупности классов Фиттинга $\{\mathfrak{F}_j=LR_{\sigma}(f_j)\mid$
	$j \in J$ }, где f_j является внутренней H_σ -функцией класса
	Фиттинга $\mathfrak{F}_j \in \Theta^{\sigma_l}$, имеет место
	$V_{\Theta}^{\sigma_l}(\mathfrak{F}_j \mid j \in J) = LR_{\sigma}(V_{\Theta}(f_j \mid j \in J))$
Класс групп	Множество групп, которое вместе с каждой своей группой
	содержит все ей изоморфные группы
Класс Фиттинга	Класс групп У, замкнутый относительно нормальных подгрупп
	и произведений нормальных §-подгрупп
Коммутант	Подгруппа, порожденная коммутаторами всех элементов
	группы G , называется коммутантом группы G и обозначается
	через G' . Таким образом,
	$G' = < [a, b] \mid a, b \in G>$
Коммутатор	Коммутатором элементов а и b называют элемент
	$a^{-1}b^{-1}ab$, который обозначают через $[a,b]$. Ясно, что
	ab = ba[a, b]
Комонолитическая	Такая группа G , в которой имеется нормальная подгруппа M
группа (комонолит	(комонолит группы G), что G/M — простая группа и любая
группы)	собственная нормальная подгруппа N группы G содержится в
	M

Термин	Определение
Компактный элемент	Такой элемент c полной решетки L , что для любого
	подмножества $X \subseteq L$ из неравенства $c \leq \sup_L X$ вытекает
	существование такого конечного подмножества $X_0 \subseteq X$, что $c \le 1$
	$\sup_{L} X_0$.
Композиционный ряд	Субнормальный ряд $(A_i)_{i=0,,a}$ конечной группы G называется
группы	композиционным, если подгруппа A_{i-1} является максимальной
	нормальной подгруппой в A_i , $i = 1,, a$
Конечная группа	Если G – конечное множество, являющееся группой, то G
	называют конечной группой
% -корадикал группы	Пусть \mathfrak{F} – формация и G – группа. Пересечение всех
	нормальных подгрупп группы G , фактор-группы по которым
	принадлежат \mathfrak{F} , обозначим через $G^{\mathfrak{F}}$ и называется
	\mathfrak{F} -корадикалом группы G
Максимальная подгруп-	Собственная подгруппа M неединичной группы G называется
па	максимальной подгруппой, если М не содержится ни в какой
	другой подгруппе, отличной от всей группы G , т. е. если из
	условия $M \leq H \leq G$ следует, что $M = H$ или $H = G$. Для
	максимальной подгруппы M используется запись $M < \cdot G$
Минимальная	Минимальной нормальной подгруппой группы G называют
нормальная подгруппа	такую нормальную подгруппу N , что $N \neq E$ и в N нет
	нетривиальных нормальных подгрупп группы G
Модулярная решетка	Решетка L называется <i>модулярной</i> , если для любых $x, y, z \in L$
	имеет место импликация $x \le y \Rightarrow x \lor (y \land z) = y \land (x \lor z)$,
	называемая модулярным законом
Нильпотентная группа	Группа называется нильпотентной, если все ее силовские
	подгруппы нормальны
Нормальная подгруппа	Подгруппа H называется нормальной подгруппой группы G ,
группы	если $xH = Hx$ для всех $x \in G$. Запись $H \triangleleft G$ читается: « $H -$
	нормальная подгруппа группы G ».
Нормальный ряд группы	Ряд $(A_i)_{i=0,,a}$ называется <i>нормальным</i> , если $A_i \triangleleft G$ для всех i
π-Подгруппа	Подгруппа H группы G называется π -nodгруппой, если $ H $ есть
	π-число

Термин	Определение
σ_i -Подгруппа	Подгруппа, порядок которой является σ_i -числом
Полная решетка классов	Такая непустая совокупность классов групп, что пересечение
Θ	любой совокупности классов из Ө снова принадлежит Ө, и во
	множестве Θ имеется такой класс \mathfrak{F} , что $\mathfrak{H} \subseteq \mathfrak{F}$ для любого
	другого класса $\mathfrak{H} \in \Theta$
Порядок группы	Число $ G $ элементов в G
Примарная группа	Примарной называют группу, которая является р-группой для
	некоторого простого р
Произведение групп	Произведение AB определяется как множество элементов ab,
	где $a \in A$, $b \in B$. Если $AB = G$, то говорят, что группа G
	является $npouзведением$ своих подгрупп A и B . В этом случае
	каждый элемент $g \in G$ представим в виде $g = ab$, где $a \in A, b \in A$
	B
Прямое произведение	Произведение $G = AB$ называется $npsmыm$, если подгруппы A и
	B нормальны в G и $A \cap B = E$. Запись $G = A \times B$ означает, что
	группа G является прямым произведением своих подгрупп A,B
ж -Радикал группы	Пусть \mathfrak{X} – класс Фиттинга. Произведение всех нормальных
	\mathfrak{X} -подгрупп группы G называется \mathfrak{X} -радикалом группы G и
	обозначается через $G_{\mathfrak{X}}$. Ясно, что \mathfrak{X} -радикал $G_{\mathfrak{X}}$ является
	наибольшей нормальной подгруппой группы G , содержащейся
	в Х
Разбиение множества	Разбиением множества А называется такое семейство его
	непустых подмножеств, что каждый элемент множества A
	входит в точности в один член семейства
Разрешимая группа	Для любой неединичной группы G можно построить цепочку
	коммутантов
	$G \ge G' \ge G'' \ge \dots \ge G^{(i)} \ge G^{(i+1)} \ge \dots$
	Если существует номер n такой, что $G^{(n)}=E$, то группа G
	называется разрешимой
Решетка	Решеткой называется частично упорядоченное множество, в
	котором каждое двухэлементное подмножество обладает как
	точной верхней, так и точной нижней гранью

Термин	Определение
Ряд группы	Цепочка подгрупп
	$E = A_0 < A_1 < \dots < A_{i-1} < A_i < \dots < A_{a-1} < A_a = G$
	называется $pядом$ длины a неединичной группы G и
	обозначается через $(A_i)_{i=0,,a}$
Силовская р-подгруппа	Силовской p -подгруппой конечной группы G называют такую
	p-подгруппу, индекс которой не делится на p
Субнормальный ряд	Ряд $(A_i)_{i=0,,a}$ называется <i>субнормальным</i> , если $A_{i-1} \triangleleft A_i$ для
группы	BCEX i
Фактор-группа	Группа \bar{G} называется ϕ актор-группой группы G по подгруппе
	H и обозначается через G/H
Формация	Формацией называется класс групп, замкнутый относительно
	факторгрупп и подпрямых произведений
π-Холлова подгруппа	Подгруппа H называется π -холловой подгруппой, если $ H $ есть
	π -число, а индекс $ G:H $ есть π' -число
Циклическая подгруппа	Зафиксируем в группе G элемент a . Пересечение всех
	подгрупп группы G , содержащих элемент a , назовем
	циклической подгруппой, порожденной элементом а, и
	обозначим через $\langle a \rangle$. Таким образом, $\langle a \rangle = \bigcap_{a \in H} \subseteq_G H$
Цоколь	Uоколем группы G называется подгруппа, являющаяся
	произведением всех минимальных нормальных подгрупп
	группы G . Цоколь группы G обозначают через $SocG$. Таким
	образом, $SocG = \prod_{N \cdot \lhd G} N$
π-Число	Зафиксируем множество простых чисел π . Если $\pi(m) \subseteq \pi$, то
	число m называется π -числом
<i>σ</i> _i -Число	Натуральное число называется σ_{i} -числом, если все его простые
	делители принадлежат σ_i

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

В настоящем отчете о НИР применяют следующие сокращения и обозначения (в обозначениях мы следуем [1–21]):

 \mathbb{P} — множество всех простых чисел;

p, q, m — некоторые простые числа;

 ω — некоторое непустое множество простых чисел;

 ω' $-\mathbb{P}\setminus\omega;$

G — группа;

|G| — порядок группы G;

 $\pi(G)$ — множество всех различных простых делителей порядка

группы G;

e — единичный элемент группы G;

– единичная подгруппа, единичная группа;

 $H \le G$ — H является подгруппой группы G;

H < G — H является собственной подгруппой группы G;

 $H \triangleleft G$ — H является собственной нормальной подгруппой

группы G;

 $H ext{ ≤ } G$ — H является нормальной подгруппой группы G;

 $H \triangleleft \triangleleft G$ — H является субнормальной подгруппой группы G;

|G:H| — индекс подгруппы H в группе G;

 $A \times B$ — прямое произведение подгрупп A и B;

 $A^{x} = x^{-1}Ax$ — множество, сопряженное с множеством A посредством

элемента x;

G/N — факторгруппа группы G по подгруппе N;

 σ — произвольное разбиение множества всех простых чисел;

 $\sigma(G)$ — множество вида $\{\sigma_i \mid \sigma_i \cap \pi(G) \neq \emptyset\};$

 $O_{\sigma_i}(G)$ — наибольшая нормальная σ_i -подгруппа группы G;

 $O_{\sigma'_i,\sigma_i}(G)$ — наибольшая нормальная σ'_i -замкнутая подгруппа группы G;

 $K \times N$ — прямое произведение групп K и N;

 $A \simeq B$ — группы A и B изоморфны;

 \mathfrak{X} — класс групп;

(1) – класс всех единичных групп;

 Ф − пустой класс групп и пустое множество;

б – класс всех конечных групп;

 \mathfrak{S} - класс всех конечных разрешимых групп; \mathfrak{G}_{Π} – класс всех П-групп; - класс всех таких групп, все главные *p*-факторы которых центральны; \mathfrak{G}_{cp} \mathfrak{G}_{σ_i} – класс всех σ_i -групп; – класс всех σ'_i -групп; $\mathfrak{G}_{\sigma'}$ \mathfrak{S}_{ω} – класс всех разрешимых ω -групп; \mathfrak{S}_{σ_i} – класс всех разрешимых σ_i -групп; $\mathfrak{S}_{\sigma'_i}$ – класс всех разрешимых σ'_i -групп; $E(\mathfrak{T})$ - класс всех групп, чьи композиционные факторы принадлежат классу простых групп \mathfrak{T} ; $\mathcal{K}(G)$ - класс всех простых групп, изоморфных композиционным факторам группы G; $-\bigcup_{G\in\mathfrak{X}}\mathcal{K}(G);$ $\mathcal{K}(\mathfrak{X})$ – класс всех простых абелевых групп A таких, что $A \cong H/K$, для $Com(\mathfrak{X})$ некоторого композиционного фактора H/K группы $G \in \mathfrak{X}$; $R^{\omega}(G) = G^{\mathfrak{S}_{\omega}}$ $-\mathfrak{S}_{\omega}$ -корадикал группы G; $C_p(G)=G^{\mathfrak{G}_{cp}}$ $-\mathfrak{G}_{cp}$ -корадикал группы G; $F^{\sigma_i}(G) = G^{\mathfrak{G}_{\sigma_i}\mathfrak{G}_{\sigma_i'}}$ $-\mathfrak{G}_{\sigma_{i}}\mathfrak{G}_{\sigma_{i}'}$ -корадикал группы G; c_{ω}^{n} – совокупность всех n-кратно ω -композиционных классов Фиттинга; - совокупность всех n-кратно σ -локальных классов Фиттинга; l_{σ} - совокупность всех тотально σ -локальных классов Фиттинга; $fit(\mathfrak{X})$ - пересечение всех классов Фиттинга, содержащих совокупность групп \mathfrak{X} ; c_{ω}^{n} fit(\mathfrak{X}) – пересечение всех n-кратно ω -композиционных классов Фиттинга, содержащих совокупность групп Х; l_{σ} fit(\mathfrak{X}) – пересечение всех тех классов Фиттинга из l_{σ} , которые содержат совокупность групп \mathfrak{X} ; l_{σ}^{∞} fit(\mathfrak{X}) – пересечение всех тех классов Фиттинга из l_{σ}^{∞} , которые содержат совокупность групп \mathfrak{X} ; - $\bigcup_{G \in \mathfrak{X}} \sigma(G)$; $\sigma(\mathfrak{X})$ Θ^{σ_l} – совокупность всех классов Фиттинга, имеющих σ -локальное Θ-значное задание;

 $\begin{array}{lll} \operatorname{Supp}(f) & -\operatorname{множество} \left\{ a \in \omega \cup \left\{ \omega' \right\} \mid f(a) \neq \emptyset \right\}; \\ \mathfrak{M} \vee_{\Theta} \mathfrak{H} & -\operatorname{класc} \Phi \operatorname{иттингa} \Theta \operatorname{fit}(\mathfrak{M} \cup \mathfrak{H}); \\ \vee_{\omega}(\mathfrak{F}_{i} \mid i \in I) & -\operatorname{класc} \Phi \operatorname{иттингa} c_{\omega}^{n} \operatorname{fit}(\bigcup_{i \in I} \mathfrak{F}_{i}); \\ \vee_{\Theta}(\mathfrak{F}_{j} \mid j \in J) & -\operatorname{класc} \Phi \operatorname{иттингa} \Theta \operatorname{fit}(\bigcup_{j \in j} \mathfrak{F}_{j}); \\ f_{1} \vee_{\Theta} f_{2} & -\operatorname{такая} H\text{-функция} f, \ \operatorname{чтo} f(p) = \Theta \operatorname{fit}(f_{1}(p) \cup f_{2}(p)) \ \operatorname{для} \ \operatorname{Bcex} p \in \omega; \\ \vee_{\Theta}(f_{j} \mid j \in J) & -\operatorname{такая} H\text{-функция} f, \ \operatorname{чтo} f(p) = \Theta \operatorname{fit}(\bigcup_{j \in j} f_{j}(p)) \ \operatorname{для} \ \operatorname{Bcex} p \in \omega; \\ f_{1} \vee_{\Theta} f_{2} & -\operatorname{такая} H\text{-функция} f, \ \operatorname{чтo} f(\sigma_{i}) = \Theta \operatorname{fit}(f_{1}(\sigma_{i}) \cup f_{2}(\sigma_{i})) \ \operatorname{для} \ \operatorname{Bcex} \sigma_{i} \in \sigma; \end{array}$

 $V_{\Theta}(f_j \mid j \in J)$ — такая H_{σ} -функция f, что $f(\sigma_i) = \Theta \mathrm{fit}(\bigcup_{j \in j} f_j(\sigma_i))$ для всех $\sigma_i \in \sigma$;

СОДЕРЖАНИЕ

ВВЕДЕНИЕОшибка! Закладка не определена.
1 Полнота решетки всех кратно ω -композиционных классов Фиттинга Ошибка! Закладка не опр
1.1 Вспомогательные результатыОшибка! Закладка не определена.
1.2 Доказательство основного результатаОшибка! Закладка не определена.
2 Алгебраичность и модулярность решетки всех кратно ω -композиционных классов Фиттинга
2.1 Вспомогательные результатыОшибка! Закладка не определена.
$2.2~{ m A}$ лгебраичность решетки всех кратно ω -композиционных классов Фиттинга ${ m O}$ шибка! Закла
2.3 Достаточные условия модулярного равенства для семейств n -кратно ω -композиционных классов Фиттинга
3 Решетки классов Фиттинга, заданных разбиениями множеств простых чиселОшибка! Закладка
3.1 Основные результатыОшибка! Закладка не определена.
Заключение Ошибка! Закладка не определена.
Список использованных источников

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Шеметков, Л.А. Формации конечных групп / Л.А. Шеметков. М.: Наука. Гл. ред. физ.-матем. лит., 1978. 272 с. (Соврем. алгебра).
- 2 Шеметков, Л.А. Формации алгебраических систем / Л.А. Шеметков, А.Н. Скиба. М.: Наука. Гл. ред. физ.-матем. лит., 1989. 256 с. (Соврем. алгебра).
- 3 Doerk K. Finite soluble groups / K. Doerk, T. Hawkes. Berlin-New York : Walter de Gruyter & Co., 1992. 891 p. (De Gruyter Expo. Math., vol. 4).
- 4 Скиба, А.Н. Алгебра формаций. / А.Н. Скиба. Минск: Беларуская навука, 1997. 240 с.
- 5 Guo, Wenbin. The Theory of Classes of Groups / Wenbin Guo. Beijing–New York–Dordrecht–Boston–London : Science Press / Kluwer Academic Publishers, 2000. 261 p. (Mathematics and Its Applications ; vol. 505).
- 6 Ballester-Bolinches, A. Classes of Finite Groups / A. Ballester-Bolinches, L.M. Ezquerro. Dordrecht : Springer, 2006. 385 p. (Mathematics and Its Applications ; vol. 584).
- 7 Монахов, В.С. Введение в теорию конечных групп и их классов: Учебное пособие / В.С. Монахов. Мн.: Выш. шк., 2006. 207 с.
- 8 Guo, Wenbin. Structure Theory for Canonical Classes of Finite Groups / Wenbin Guo. Berlin : Springer, 2015. 359 p.
- 9 Скиба, А.Н. Кратно *ω*-локальные формации и классы Фиттинга конечных групп / А.Н. Скиба, Л.А. Шеметков // Матем. труды. 1999. Т.2, № 2. С. 114—147.
- 10 Скиба, А.Н. Кратно \mathfrak{L} -композиционные формации конечных групп / А.Н. Скиба, Л.А. Шеметков // Украинский матем. журн. 2000. Т. 52, № 6. С. 783–797.
- 11 Ведерников, В.А. Ω -расслоенные формации и классы Фиттинга конечных групп / В.А. Ведерников, М.М. Сорокина // Дискретная математика. 2001. Т. 13, вып. 3. С. 125—144.
- 12 Артамонов, В.А. Общая алгебра. Т. 2 / В.А. Артамонов, В.Н. Салий, Л.А. Скорняков [и др.] // под общ. ред. Л.А. Скорнякова. М.: Наука, 1991.-280 с.
 - 13 Ван дер Варден, Б.Л. Алгебра / Б.Л. ван дер Варден. M.: Мир, 1975. 649 с.
- 14 Виленкин, Н.Я. Популярная комбинаторика / Н.Я. Виленкин. М.: Наука, 1975. 208 с.
- 15 Воробьев, Н.Н. Алгебра классов конечных групп: монография / Н.Н. Воробьев. – Витебск: ВГУ имени П.М. Машерова, 2012. – 322 с.

- Chi, Z. On one application of the theory of *n*-multiply σ -local formations of finite groups / Z. Chi, V.G. Safonov, A.N. Skiba // Problems of Physics, Mathematics and Technics. 2018. \mathbb{N}_2 2 (35). P. 85–88.
- 17 Chi, Z. On *n*-multiply σ -local formations of finite groups / Z. Chi, V.G. Safonov, A.N. Skiba // Comm. Algebra. 2019. Vol. 47, N_2 3. P. 957–968.
- 18 Guo, W. On σ -local Fitting classes / W. Guo, Li Zhang, N.T. Vorob'ev // J. Algebra. 2020. V. 546. P. 116–129.
- 19 Skiba, A.N. On one generalization of local formations / Проблемы физики, математики и техники. 2018. вып. 1. С. 79–82.
- Yang, N. On the modularity property of the lattice of partially composition Fitting classes / N. Yang, N.N. Vorob'ev, A.R. Filimonova // Rend. Semin. Mat. Univ. Padova. 2021. Vol. 146. P. 43–55.
- 21 Чи, Ч. О Σ_t^{σ} -замкнутых классах конечных групп / Ч. Чи, А.Н. Скиба // Укр. мат. журн. 2019. Т. 70, № 12. С. 1707—1716.
- 22 Скиба, А.Н. О локальных формациях длины 5 / А.Н. Скиба // Арифметическое и подгрупповое строение конечных групп : труды Гомельского семинара / Ин-т математика АН БССР ; под ред. М.И. Салука. Минск : Наука и техника, 1986. С. 135–149.
- 23 Ballester-Bolinches, A. On lattices of *p*-local formations of finite groups / A. Ballester-Bolinches, L.A. Shemetkov // Math. Nachr. 1997. Vol. 186. P. 57–65.
- Reifferscheid, S. A note on subgroup-closed Fitting classes of finite soluble groups / S. Reifferscheid // J. Group Theory. -2003. Vol. 6, N₂ 3. P. 331-345.
- 25 Safonov, V.G. On a question of the theory of totally saturated formations of finite groups / V.G. Safonov // Algebra Colloquium. − 2008. − Vol. 15, № 1. − P. 119–128.
- 26 Safonov, V.G. On modularity of the lattice of totally saturated formations of finite groups / V.G. Safonov // Comm. Algebra. 2007. Vol. 35, № 11. P. 3495–3502.
- 27 Шабалина, И.П. О решетке τ -замкнутых n-кратно ω -локальных формаций конечных групп / И.П. Шабалина // Весці НАН Беларусі. Сер. фір. матэм. навук. 2003. № 1. С. 28—30.
- 28 Щербина, В.В. О подрешетках решетки частично тотально насыщенных формаций конечных групп / В.В. Щербина, В.Г. Сафонов // Научн. ведомости БелГУ. Сер. Матем. и Физика. 2019. Т. 51, № 1. С. 64–87.
- 29 Щербина, В.В. О некоторых свойствах решетки частично тотально насыщенных формаций конечных групп / В.В. Щербина, В.Г. Сафонов // Научн. ведомости БелГУ. Сер. Матем. и Физика. -2019. Т. 51, № 2. С. 227–244.

- 30 Shemetkov, L.A. On lattices of formations of finite groups / L.A. Shemetkov, A.N. Skiba, N.N. Vorob'ev // Algebra Colloquium. 2010. Vol. 17, № 4. P. 557–564.
- 31 Shemetkov, L.A. On laws of lattices of partially saturated formations / L.A. Shemetkov, A.N. Skiba, N.N. Vorob'ev // Asian–European Journal of Mathematics. 2009. Vol. 2, № 1. P. 155–169.
- 32 Tsarev, A.A. On the lattice of all totally composition formations of finite groups / A.A. Tsarev // Ric. Mat. 2019. Vol. 68, № 2. P. 693–698.
- Tsarev, A.A. Lattices of composition formations of finite groups and the laws / A.A. Tsarev, N.N. Vorob'ev // J. Algebra and Appl. 2018. Vol. 17, № 5. P. 1850084–1–1850084–17.
- 34 Tsarev, A.A. On a question of the theory of partially composition formations / A.A. Tsarev, N.N. Vorob'ev // Algebra Colloquium. 2014. Vol. 21, № 3. P. 437–447.
- 35 Воробьев, Н.Н. О дистрибутивности решетки разрешимых тотально локальных классов Фиттинга / Н.Н. Воробьев, А.Н. Скиба // Матем. заметки. 2000. Т. 67, вып. 5. С. 662–673.
- 36 Воробьев, Н.Н. Тождества решеток частично композиционных формаций / Н.Н. Воробьев, А.Н. Скиба, А.А. Царев // Сибирский матем. журн. 2011. Т. 22, № 5. С. 1011–1024.
- 37 Воробьев, Н.Н. О модулярности решетки τ -замкнутых n-кратно ω -композиционных формаций / Н.Н. Воробьев, А.А. Царев // Украинский матем. журн. − 2010. Т. 62, № 4. С. 453–463.
- 38 Жизневский, П.А. О модулярности и индуктивности решетки всех т-замкнутых n-кратно ω -композиционных формаций конечных групп / П.А. Жизневский // Известия Гомельского гос. ун-та им. Ф. Скорины. 2010. № 1 (58). С. 185–191.
- 39 The Kourovka Notebook. Unsolved Problems in Group Theory. 20th edition / Sobolev Inst. Math.; editors: Khukhro E.I, Mazurov V.D. Novosibirsk: Sobolev Inst. Math. 2022. 269 p.
- 40 Tsarev, A.A. Algebraic lattices of partially saturated formations of finite groups / A.A. Tsarev // Afr. Mat. 2020. Vol. 31, № 3–4. P. 701–707.
- 41 Сафонов, В.Г. Об алгебраичности решетки τ -замкнутых тотально насыщенных формаций / В.Г. Сафонов // Алгебра и логика. 2006. Т. 45, № 5. С. 620—626.
- 42 Шабалина, И.П. Алгебраичность решетки τ -замкнутых n-кратно ω -локальных формаций / И.П. Шабалина // Известия Гомельского гос. ун-та им. Ф. Скорины. Вопросы алгебры—18. 2002. № 5 (14). С. 59—67.

- 43 Щербина, В.В. Алгебраичность решетки τ -замкнутых тотально ω -насыщенных формаций конечных групп / В.В. Щербина // Уфимск. матем. журн. − 2020. Т. 12, № 1. С. 83–91.
- 44 Tsarev, A.A. Algebraic lattices of solvably saturated formations and their applications / A.A. Tsarev // Bol. Soc. Mat. Mex., III − Vol. 26, № 3. − P. 1003−1014.
- 45 Щербина, В.В. О двух задачах теории частично тотально композиционных формаций конечных групп / В.В. Щербина // Прикл. матем. & физика. 2020. Т. 52, № 1. С. 18–32.
- 46 Камозина, О.В. О неоднопорожденных кратно ω -веерных классах Фиттинга конечных групп / О.В. Камозина // Матем. заметки. 2006. Т. 79, вып. 3. С. 396–408.
- 47 Камозина, О.В. Алгебраические решетки кратно Ω-расслоенных классов Фиттинга / О.В. Камозина // Дискретная математика. 2006. Т. 18, вып. 2. С. 139–145.
- 48 Воробьев, Н.Н. Об индуктивных решетках формаций и классов Фиттинга / Н.Н. Воробьев // Докл. НАН Беларуси. 2000. Т. 44, № 3. С. 21–24.
- 49 Tsarev, A.A. Inductive lattices of totally composition formations / A.A. Tsarev // Rev. Colomb. Mat. 2018. V. 52, № 2. P. 161–169.
- 50 Воробьев, Н.Н. Отделимые решетки кратно σ -локальных формаций / Н.Н. Воробьев, И.И. Стаселько, А. Ходжагулыев // Сибирский матем. журн. − 2021. − Т. 62, № 4. − С. 721–735.
- Safonova, I.N. On σ -inductive lattices of n-multiply σ -local formations of finite groups / I.N. Safonova // Journal of Algebra and Its Appl. 2022. P. 2450017. https://doi.org/10.1142/S0219498824500178.
- 52 Воробьев, Н.Н. Об одном вопросе теории локальных классов конечных групп / Н.Н. Воробьев // Вопросы алгебры. Гомель : изд-во Гомельского гос. ун-та, 1999. Вып. 14. С. 132–140.
- 53 Ведерников, В.А. ω-Веерные формации и классы Фиттинга конечных групп / В.А. Ведерников, М.М. Сорокина // Матем. заметки. 2002. Т. 71, вып. 1. С. 43–60.
- 54 Скачкова, Ю.А. Решетки Ω -расслоенных формаций / Ю.А. Скачкова // Дискретная математика. 2002. Т. 14, № 2. С. 85—94.
- 55 Еловикова, Ю.А. Свойства решетки всех кратно Ω -канонических формаций / Ю.А. Еловикова // Дискретная математика. 2006. Т. 18, вып. 2. С. 146–158.
- 56 Камозина, О.В. Индуктивные решетки кратно Ω-расслоенных классов Фиттинга / О.В. Камозина // Вестник Брянского государственного университета. Точные и естественные науки. 2015. Т. 26, № 3. С. 366–369.

- 57 Щербина, В.В. О двух задачах теории частично тотально композиционных формаций конечных групп / В.В. Щербина // Прикл. матем. & физика. 2020. Т. 52, № 1. С. 18–32.
- 58 Каморников, С.Ф. О корадикалах субнормальных подгрупп /
 С.Ф. Каморников, Л.А. Шеметков // Алгебра и логика. 1995. Т. 34, № 5. С. 493–513.
- 59 Ян., Н. О модулярности и алгебраичности решетки кратно ω -композиционных классов Фиттинга / Н. Ян, Н.Н. Воробьев, И.И. Стаселько // Известия вузов. Математика. 2023. № 4. С. 76–88.
- 60 Стаселько, И.И. О минимальной σ-функции Хартли порожденного σ-локального класса Фиттинга / И.И. Стаселько // XVII Машеровские чтения: материалы междунар. науч.-практ. конф. студентов, аспирантов и молодых ученых, Витебск, 20 октября 2023 г. : в 2 т. / Витеб. гос. ун-т ; редкол.: Е.Я. Аршанский (гл. ред.) [и др.] Витебск : ВГУ имени П.М. Машерова, 2023. Т. 1. С. 33–34.
- 61 Воробьев, Н.Н. О минимальной локальной функции Хартли порожденного тотально σ-локального класса Фиттинга / Н.Н. Воробьев, И.И. Стаселько // Наука образованию, производству, экономике [Электронный ресурс]: материалы 75 Региональной научно-практической конференции преподавателей, научных сотрудников и аспирантов, Витебск, 3 марта 2023 г. Витеб. гос. ун-т; редкол.: Е.Я. Аршанский (гл. ред.) [и др.] Витебск : ВГУ имени П.М. Машерова, 2023. Режимы доступа : https://rep.vsu.by/handle/123456789/1230; https://conf.vsu.by/?p=1140. С. 29–31.
- 62 Воробьев, Н.Н. Индуктивные решетки *σ*-локальных классов Фиттинга / Н.Н. Воробьев, И.И. Стаселько //Алгебра, теория чисел, дискретная геометрия и многомасштабное моделирование: Современные проблемы, приложения и проблемы истории : Материалы XXII Международной конференции, посвященной 120-летию со дня рождения академика А.Н. Колмогорова и 60-летию со дня открытия школы-интерната № 18 при Московском университете, Тула, 26–29 сентября 2023 года / Тул. гос. пед. ун-т им. Л.Н. Толстого ; редкол.: В.Н. Чубариков [и др.]. Тула, 2023. С. 44–46.
- 63 Акт о внедрении результатов НИОКР в учебный процесс учреждения образования «Витебский государственный университет имени П.М. Машерова». Авторы: И.И. Стаселько по теме: «Индуктивные решетки σ-локальных классов Фиттинга конечных групп» от 1 ноября 2023 года.