Министерство образования Республики Беларусь УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ П.М. МАШЕРОВА» (ВГУ ИМЕНИ П.М. МАШЕРОВА)

УДК 512.542 (047.31)	
Рег.№ 20230508	

УТ	BI	$\mathbf{E}\mathbf{P}$	ЖДА	Ю			
Пр	op	ек	тор п	о науч	чной р	або	те,
про	офо	ec	cop				
				_Е.Я.	Арша	нсі	кий
"	,	"_			20_		Γ.

О Т Ч Е Т О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

ИНЪЕКТОРЫ КОНЕЧНЫХ ГРУПП

(заключительный) Грант аспирантов, докторантов и студентов Министерства образования Республики Беларусь

Ответственный исполнитель,		
аспирант		
		Е. Д. Волков
Нормоконтроль		Т.В. Харкевич

РЕФЕРАТ

Отчет 15 с., 1 кн., 25 источников, 1 прил.

 σ -РАЗРЕШИМАЯ ГРУППА, КЛАСС ФИТТИНГА, σ -КЛАСС ХАРТЛИ, ИНЪЕКТОР, СОПРЯЖЕННОСТЬ

Объект исследования – классы Фиттинга, определяемые локально разбиениями множеств простых чисел и инъекторы для таких классов.

Цель работы — развитие обобщенного локального метода и его применение при исследовании радикалов и структурных свойств инъекторов в теории классов Фиттинга.

Методы исследования — σ -метод исследования классов Фиттинга, где σ — разбиение множества простых чисел; методы теории конечных групп и их классов, в частности, методы локализации в теории классов Фиттинга

Полученные результаты и их новизна — доказано существование и сопряженность \mathfrak{H} инъекторов в σ -разрешимой группе G и описана их характеризация в терминах радикалов, доказано существование и сопряженность \mathfrak{H} -инъекторов для случая, когда σ -класс Хартли определен постоянной H_{σ} -функцией и группа G в общем случае не является σ -разрешимой. Все результаты являются новыми.

Область применения результатов — материалы, результаты и выводы данного исследования могут быть рекомендованы к широкому применению в исследованиях по теории групп, проводимых в Белорусском, Витебском, Гомельском, Брестском, Московском государственном университете, Брянском университете имени И. Г. Петровского, а также институтах математики НАН Беларуси, СО РАН, Школе математических наук Университета Науки и Технологий Китая, Цзяннаньском университете, Тюбингенском университете (Германия), Наваррском университете (Испания). Полученные результаты исследований могут быть внедрены в учебный процесс кафедры математики учреждения образования «ВГУ имени П.М. Машерова» при чтении спецкурсов по теории классов групп для студентов математических специальностей, а также для написания курсовых, дипломных проектов и магистерских диссертаций.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	Ошибка! Закладка не определена.
1 σ-Классы Хартли и их свойства	Ошибка! Закладка не определена.
2 Существование и сопряженность инъекторов в с	σ-разрешимых группах и их
характеризация	Ошибка! Закладка не определена.
3 Инъекторы в П-скованных группах	Ошибка! Закладка не определена.
ЗАКЛЮЧЕНИЕ	Ошибка! Закладка не определена.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	·6
ПРИЛОЖЕНИЕ А	S

ПЕРЕЧЕНЬ ОПРЕДЕЛЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

В настоящем отчёте о НИР применяют следующие термины с соответствующими определениями:

Все рассматриваемые в работе группы предполагаются конечными. В терминологии и обозначениях мы следуем [1].

 \mathbb{N} – множество всех натуральных чисел;

 \mathbb{P} – множество всех простых чисел;

p, q, r – простые числа;

1 – единичный элемент и единичная группа;

 π – некоторое множество простых чисел;

 π' – дополнение некоторого множества простых чисел π во множестве всех простых чисел \mathbb{P} , т. е. $\pi' = \mathbb{P} \setminus \pi$;

 $\pi(n)$ – множество всех простых чисел, делящих натуральное число n;

 π -число n − такое натуральное число n, что $\pi(n) \subseteq \pi$;

|G| – порядок группы G;

 $\pi(G)$ – множество всех различных простых делителей порядка группы G;

 $\sigma = \{\sigma_i : i \in I\}$ – некоторое разбиение \mathbb{P} , т.е. $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ и $\sigma_i \cap \sigma_i = \emptyset$ для всех $i \neq j$;

 $\sigma(n) = \{\sigma_i : \sigma_i \cap \pi(n) \neq \emptyset\};$

 $\sigma(G) = \sigma(|G|)$;

 $F_{\sigma}(G)$ — σ -фиттингова подгруппа G, т.е. произведение всех нормальных σ -нильпотентных подгрупп группы G;

 $C_G(H)$ – централизатор подгруппы H в группе G;

 $A \times B$ – прямое произведение групп A и B;

Группу G называют:

 π -группой, если G – группа, для которой $\pi(G) \subseteq \pi$;

нильпотентной, если все её силовские подгруппы нормальны;

pазpеuимoй, если существует такой главный ряд группы $G=G_t\supseteq G_{t-1}\supseteq \cdots \supseteq G_0=1$

= 1, в котором каждый главный фактор – элементарная абелева примарная группа;

 σ -примарной, если G является σ_i -группой для некоторого $\sigma_i \in \sigma$;

 σ -нильпотентной, если $G=G_1\times G_2\times \ldots \times G_n$ для некоторых σ -примарных групп $G_1,G_2,\ldots,G_n;$

 σ -разрешимой, если каждый главный фактор G σ -примарен.

 $\mathit{Класс\ групп}$ — совокупность групп, содержащая вместе с каждой своей группой G и все ей изоморфные группы.

Напомним следующие общепринятые обозначения классов групп:

- \mathfrak{F} , \mathfrak{H} и др. классы групп;
- \mathfrak{E} класс всех групп;
- \mathfrak{N} класс всех нильпотентных групп;
- \mathfrak{N}_{σ} класс всех σ -нильпотентных групп;
- \mathfrak{S}_{π} класс всех разрешимых π -групп;
- $\mathfrak{S}_{\pi'}$ класс всех разрешимых π' -групп;
- \mathfrak{S}_{σ} класс всех σ -разрешимых групп;
- Ø пустой класс групп и пустое множество;
- (1) класс всех единичных групп;

Класс Фиттинга — класс групп §, замкнутый относительно взятия подгрупп и произведений нормальных §-подгрупп.

 $G_{\mathfrak{F}}$ — \mathfrak{F} -радикал группы G, т. е. произведение всех нормальных \mathfrak{F} -подгрупп группы G, где \mathfrak{F} — непустой класс Фиттинга.

 $V-\mathfrak{F}$ -инъектор группы G, если $V\leq G$ и для каждой субнормальной подгруппы K группы G пересечение $V\cap K$ является \mathfrak{F} -максимальной подгруппой группы K.

Если ${\mathfrak F}$ – непустой класс Фиттинга, то группу G называют ${\mathfrak F}$ -скованной, если ${\mathcal C}_G(G_{\mathfrak F}) \leq G_{\mathfrak F}.$

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Doerk, K. Finite soluble groups / K. Doerk, T. Hawkes. Berlin; New York: Walter de Gruyter, 1992. 891 p.
- 2. Ballester-Bolinches, A. Classes of Finite Groups / A. Ballester-Bolinches, L. M. Ezquerro. Dordrecht: Springer, 2006. 385 p.
- 3. Шеметков, Л. А. Формации конечных групп / Л. А. Шеметков. М. : Наука, $1978.-272~\mathrm{c}.$
- 4. Skiba, A. N. A generalization of a Hall theorem / A.N. Skiba // J. Algebra and Appl. 2015. Vol. 15, № 5. P. 21–36.
- 5. Skiba, A. N. On σ -subnormal and σ -permutable subgroups of finite groups / A. N. Skiba // J. Algebra. 2015. Vol. 436. P. 1–16.
- 6. Skiba, A.N. Some characterizations of finite σ -soluble $P\sigma T$ -groups / A. N. Skiba // J. Algebra. -2018. Vol. 495. P. 114–129.
- 7. Skiba, A. N. On sublattices of the subgroup lattice defined by formation Fitting sets / A. N. Skiba // J. Algebra. 2020. Vol. 550. P. 69–85.
- 8. Ballester-Bolinches, A. Finite Groups with σ -Subnormal Schmidt Subgroups / A. Ballester-Bolinches, S.F. Kamornikov, X. Yi // Bull. Malays. Math. Sci. Soc. -2022. Vol. 45. P. 2431–2440.
- 9. Ferrara, M. σ -Subnormality in locally finite groups / M. Ferrara, M. Trombetti // J. Algebra. 2023. Vol. 614 (15). P. 867–897.
- 10. Sylow, M. L. Theoremes sur les groupes de substitutions / M. L. Sylow // Math. Ann. 1872. Vol. 5. P. 584–594.
- 11. Hall, P. A note on soluble groups / P. Hall // J. London Math. Soc. 1928. Vol. 3. P. 98–105.
- 12. Fischer, B. Injektoren endlicher auflösbarer Gruppen / B. Fischer, W. Gaschütz, B. Hartley // Math. Z. 1967. Bd. 102. P. 337–339.
- 13. Anderson, W. Injectors in finite solvable groups / W. Anderson // J. Algebra. 1975. № 36. P. 333–338.
- 14. Шеметков, Л. А. О подгруппах π -разрешимых групп / Л. А. Шеметков // В кн.: Конечные группы. Минск: Наука и техника, 1975. С. 207–212.
- 15. Монахов, В.С. Существование разрешимых инъекторов в конечных группах /
 В. С. Монахов // Докл. АН Беларуси. 1992. Т. 36, № 6. С. 494–496.
- 16. Liu, Y. Description of F-injectors of Finite Soluble Groups / Y. Liu, W. Guo, N. T. Vorob'ev // Math. Sci. Res. J. 2008. Vol. 12, № 1. P. 17–22.

- 17. Yang, N. On *F*-injectors of Fitting set of a finite group / N. Yang, W. Guo, N. T. Vorob'ev // Comm. in Algebra. 2018. Vol. 46, № 1. P. 217–229.
- 18. Guo, W. On injectors of finite soluble groups / W. Guo, N. T. Vorob'ev // Comm. in Algebra. 2008. Vol. 36. P. 3200–3208.
- 19. Forster, P. Nilpotent injectors in finite groups / P. Forster // Bull. Austral. Math. Soc. 1985. Vol. 32, № 4. P. 293–297.
- 20. Blessenohl, D. Fittingklassen endlicher Gruppen in denen gewisse Haupfaktoren einfach sind / D. Blessenohl, H. Laue // J. Algebra. 1979. № 56. P. 516–532.
- 21. Guo, W. On σ -local Fitting classes / W. Guo, L. Zhang, N.T. Vorob'ev // J. Algebra. 2020. Vol. 542, N 15. P. 116–129.
- 22. Шеметков, Л.А. Некоторые свойства инъекторов в конечных группах / Л. А. Шеметков // Изв. Гомельск. гос. ун-та им. Ф. Скорины. Вопросы алгебры. 1999. № 1 (15). С. 5-13.
- 23. Shemetkov, L.A. Injectors in finite groups / L.A. Shemetkov // Izvestija Gomel'skogo gos. un-ta im. F. Skoriny. Voprosy algebry. 2000. № 3 (16). P. 186–187.
- 24. Hartley, B. On Fischer's dualization of formation theory / B. Hartley // Proc. London Math. Soc. 1969. Vol. 3, № 2. P. 193–207.
- 25. Fisher B. Klassen konjugierter Untergruppen in endlichen auflösbaren Grouppen / B. Fisher. Habilitationsschreft, Universität Frankfurt am Mainz, 1966.

ПРИЛОЖЕНИЕ А

Перечень публикаций исполнителя НИР

Статьи в научных журналах

- 1. Воробьев, Н. Т. Инъекторы конечных *σ*-разрешимых групп / Н. Т. Воробьев, Е. Д. Волкова // Проблемы физики, математики и техники. 2023. № 1 (54). С. 75–84.
- 2. Волкова, Е. Д. О существовании и сопряженности инъекторов в конечных группа / Е. Д. Волвока // Веснік Віцебскага дзяржаўнага універсітэта імя П.М. Машэрава. 2023. № 2 (119). С. 12-17.

Материалы конференций

3. Воробьев, Н.Т. О проблеме существования и сопряженности инъекторов π-разрешимых конечных групп / Н. Т. Воробьев, Е. Д. Волкова // Наука — образованию, производству, экономике: материалы 75-й Региональной научно-практической конференции преподавателей, научных сотрудников и аспирантов, Витебск, 3 марта 2023 г / Витеб. гос. ун-т; редкол.: Е. Я. Аршанский (гл. ред.) [и др.]. — Витебск: ВГУ имени П. М. Машерова, 2023. — С. 31—33.

Тезисы докладов

4. Волкова, Е.Д. О характеризации инъекторов в конечной группе / Е. Д. Волкова // XXII Международная конференция «Алгебра, теория чисел, дискретная геометрия и многомасштабное моделирование: современные проблемы, приложения и проблемы истории», посвященная 120-летию со дня рождения академика А. Н. Колмогорова и 60-летию со дня открытия школы-интерната №18 при Московском университете, Тула, 26–29 сентября 2023 г. – С. 47-49.