а также основной сервер GoPhish и почтовый клиент Thunderbird. Для запуска индивидуально настраивается фишинговая компания в сервисе GoPhish, добавляются группы пользователей и соответственно заполняются пользователи, редактируется шаблон сообщения в зависимости от потребностей пользователя. Также имеется возможность просматривать в результатах компании рассылки открывал пользователь письмо или нет, путём добавления специального трекера в письмо. Ещё одним пунктом настраивается страница перенаправления пользователя по ссылке в письме и указываются данные отправителя. Остаётся только запустить компанию из раздела «Campaigns». Заполняем созданными данными каждое поле. В поле «URL» указывается IP-адрес и порт IIS сервера, который был также развёрнут на виртуальной машине рядом с GoPhish сервером. Нужен он для того, чтобы html-файл вебстраницы, на которую будет перенаправлен пользователь по ссылке из письма был доступен во всей локальной сети. Выбираем также дату и время отправки и запускаем кампанию. При переходе по ссылке из письма пользователь увидит специальное сообщение.

Заключение. В работе подробно изучена современная социальная инженерия, проанализированы основные типы атак и способы их реализации, составлена сравнительная таблица атак. Был разработан тренировочный стенд для проверки уровня осведомлённости сотрудников и предотвращения атак, связанных с социальной инженерией. Все разработанные материалы были реализованы в организации РУП «Витебскэнерго» и результаты показали, что разработанная методика действительно является эффективной для повышения уровня осведомлённости сотрудников организации.

1. Нестеров, С. А. Информационная безопасность: учебник и практикум для акад.бакалавриата / С. А. Нестеров. -

Санкт-Петербургский политехнический университет Петра Великого. – Москва : Юрайт, 2018. – 321 с. 2. Зарудный, В. В. Организация системы удалённого доступа / В. В. Зарудный ; науч. рук. Кашевич И. Ф. // XVIII Машеровские чтения: материалы междунар. научн.-практ. конф. студентов, аспирантов и молодых ученых, Витебск, 25 октября 2024 г. : в 2 т. – Витебск : ВГУ имени П.М. Машерова, 2024. – Т. 1. – С. 28–30. – URL: https://rep.vsu.by/handle/123456789/44682 (дата обращения: 15.09.2025).

3. Васильева, Н. А. Методы защиты сотрудников от фишинговых атак: роль тренингов и образования / Н. А. Васильева. – М. : РУДН, 2020. – 220 с.

О ПРОИЗВЕДЕНИИ о-МНОЖЕСТВА ФИШЕРА И о-КЛАССА ФИШЕРА

Китаров Д.А.,

магистрант ВГУ имени П.М. Машерова, г. Витебск, Республика Беларусь Научный руководитель – Воробьёв Н.Т., доктор физ.-мат. наук, профессор

Класс Фиттинга, класс Фишера, σ-класс Фишера, σ-множество Фишера, произведение классов и множеств.

Keywords. Fitting class, Fisher class, Fisher set, σ-Fisher class, σ-Fisher set, product Fisher classes and Fisher sets.

Все рассматриваемые группы конечны. В терминологии и обозначениях следуем [1]. Классом Фиттинга называют класс групп \S , замкнутый относительно нормальных подгрупп и произведений нормальных %-подгрупп. Классом Фишера называется класс Фиттинга \mathfrak{F} конечных групп G, который удовлетворяет условию: если $G \in \mathfrak{F}$ и H- подгруппа группы G, которая содержит нормальную подгруппу K группы G такую, что H/Kявляется p-группой для некоторого простого числа p, то $H \in \mathcal{F}$. Известно, что произведение множества Фиттинга и класса Фиттинга даёт множество Фиттинга [2], а произведение множества Фишера и класса Фишера – множество Фишера [3]. В связи с этим актуальна задача о том, является ли произведение σ -множества Фишера $\mathcal F$ группы Gи σ -класса Фишера \Re – σ -множеством Фишера группы G. Решение указанной задачи – основная цель настоящей работы.

Материал и методы. Мы будем использовать σ-метод предложенный А. Н. Скибой [4] для построения о-множества Фишера и о-класса Фишера суть которого заключается в следующем. Напомним, что σ - некоторое разбиение множества всех простых чисел \mathbb{P} , т.е. $\sigma = \{\sigma_i : i \in I\}$, где $\mathbb{P} = \bigcup_{i \in I} \sigma_i$, $\sigma_i \cap \sigma_i = \emptyset$, для всех $i \neq j$, то будем обозначать символом \mathfrak{N}_{σ_i} – класс всех нильпотентных σ_i -групп.

Напомним, что непустое множество \mathcal{F} подгрупп группы G называется множеством Фиттинга группы G [1], если выполняются следующие три условия:

- (1) если $T \leq S \in \mathcal{F}$, то $T \in \mathcal{F}$;
- (2) если $S, T \in \mathcal{F}$ и $S, T \subseteq ST$, то $ST \in \mathcal{F}$;
- (3) если $S \in \mathcal{F}$ и $x \in G$, то $S^x \in \mathcal{F}$.

Если \S – непустой класс Фиттинга, то для любой группы G существует наибольшая из нормальных \S -подгрупп G. Ее называют \S -радикалом G и обозначают G_{\S} .

Пусть \mathcal{F} – множество Фиттинга группы G и \mathfrak{X} – класс Фиттинга. Множество $\mathcal{F} \odot \mathfrak{X} = (H \leq G \colon H/H_{\mathcal{F}} \in \mathfrak{X})$ подгрупп группы G называется произведением множества Фиттинга группы G и класса Фиттинга. В работе [3] было доказано, что произведение $\mathcal{F} \odot \mathfrak{X}$ является множеством Фиттинга группы G.

Результаты и их обсуждение.

Определение 1. Класс Фиттинга \mathfrak{F} назовем σ -классом Фишера, если из условия $G \in \mathfrak{F}$, $K \leq G$, $K \leq H \leq G$ и $H/K \in \mathfrak{N}_{\sigma_i}$ для некоторого $\sigma \in \sigma_i$ всегда следует, что $H \in \mathfrak{F}$.

В случае, если $\sigma = \sigma^1 = \{\{2\}, \{3\}, \{5\}, ...\}, \mathcal{F}$ называют классом Фишера [5].

Аналогично введем определение σ -множества Фишера группы G.

Определение 2. σ -Множеством Фишера группы G называется множество Фиттинга \mathcal{F} группы G, которое удовлетворяет следующему свойству: если $L \leq G$, $L \leq K \leq H$, $K \leq L \in \mathcal{F}$ и H/K является нильпотентной σ_i -группой L/K для некоторого $i \in I$, следует $H \in \mathcal{F}$.

В случае, если $\sigma = \sigma^1 = \{\{2\}, \{3\}, \{5\}...\}$, $\mathcal F$ называют множеством Фишера [1].

Основной результат работы следующая

Теорема. Пусть \mathcal{F} – σ -множество Фишера группы G и \mathfrak{H} – σ -класс Фишера, то произведение $\mathcal{F} \odot \mathfrak{H}$ является σ -множеством Фишера группы G.

В случае, если $\sigma = \sigma^1 = \{\{2\}, \{3\}, \{5\}...\}$, мы получаем результат Н. Т. Воробьева и А. С. Войткевич, который приведем в качестве следствия.

Следствие [3]. Если \mathcal{F} – множество Фишера группы G и \mathfrak{X} – класс Фишера, то произведение $\mathcal{F} \odot \mathfrak{X}$ является множеством Фишера группы G.

Заключение. В работе описывается новый метод построения σ-множеств Фишера конечной группы посредством произведения σ-множества Фишера и σ-класса Фишера.

- 1. Doerk, K. Finite soluble groups / K. Doerk, T. Hawkes. Berlin New York: Walter de Gruyter, 1992. 891 p.
- 2. Vorob'ev, N. T. On \S -injectors of Fitting set of a finite group / N. T. Vorob'ev, Nanying Yang, W. Guo // Com. in Algebra. 2018. Vol. 46, N^o 1. P. 217–229.
- 3. Воробьев, Н. Т. О произведении множества Фишера конечной группы и класса Фишера / Н. Т. Воробьев, А. С. Войткевич // Веснік Віцебскага дзяржаўнага ўніверсітэта. 2019. № 3. С. 38-41.
- 4. Skiba, Å.N. On σ -properties of Finite groups I / A.N. Skiba // Problems of Physics, Mathematics and Technics. 2014. N^2 4 (21). P. 89–96.
- 5. Hartley, B. On Fischer's dualization of formation theory / B. Hartley // Proc. London Math. Soc. − 1969. − Vol. 3, № 2. − P. 193–207.

МЕТОДИКА РАЗРАБОТКИ ВЕКТОРНОЙ ФОРМЫ ЛОГОТИПА ФАКУЛЬТЕТА МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ВГУ ИМЕНИ П.М. МАШЕРОВА

Костянко Д.А.,

студент 3 курса ВГУ имени П.М. Машерова, г. Витебск, Республика Беларусь Научный руководитель – Буевич Т.В., канд. техн. наук, доцент

Ключевые слова. Векторная графика, логотип, брендинг, Adobe Illustrator, ретроспективная векторизация.

Keywords. Vector graphics, logo, branding, Adobe Illustrator, retrospective vectorization.

В условиях цифровой трансформации образования визуальная идентичность высшего учебного заведения становится ключевым элементом его коммуникационной стратегии. Логотип как основной носитель идентичности должен соответствовать высоким стандартам качества, функциональности и адаптивности к различным медиаканалам.