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1. Introduction

In this paper we consider the initial boundary value problem for a system of semilinear

parabolic equations with absorption and nonlinear nonlocal boundary conditions:

ur = Au+vP —au”, v = Av+u? — b, re, t>0,

e S{<z5(:107yﬂt)u””‘(yﬂt) dy, x €00, t>0, N
el S{w(a@yyﬂt)’v”(yﬂﬁ) dy, red, >0,

u(z,0) = uog(z), v(z,0) =vo(x), x €,
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where a, b, p, r, ¢, s, m, n are positive numbers, Q is a bounded domain in RN for N > 1
with smooth boundary 0}, v is the unit outward normal vector on 0f2.
Throughout this paper we suppose the following conditions:

P2, y,1) € C(9Q x Q x [0, +00)),  @(x,y,1) = 0;
P(x,y,t) € C(O2 x QA x [0, +00)),  (x,y,t) > 0;
Uo (:E) e (), w(x) e Cl(@), uo(m) >0, wvo(r) >0 in Q;

/¢x% g dy, 20 /wx%)%(mywaﬁ

Let Q7 = Q x (0,T), St =00 x (0,7T), FT:STUQ x {0}, T'> 0.

DEFINITION 1. We say that a pair of nonnegative functions (u(x,t), v(x,t)) is a subsolution
of (1) in Qr, if u,v € C*Y(Qr)NCH(Qr UTr) and

ur < Au+vP —au”, v < Av 4 uf — bod, (x,t) € Qr,

Dol ) < Jol@y, 0 u" (1) dy, (2,t) € St,

o (2)
Bu(.t) f'(/] X y: ( 7t) dy7 (:E7t) S ST:

(LE,O) % Uo (LE), (LE,O) < ’U()(iE), re Q:

a pair of nonnegative functions (u(x,t),v(x,t)) is a supersolution of (1) in Qr, if u,v €
C?3HQr)NCH(QrUT'r) and it satisfies (2) in the reverse order. We say that (u(z,t),v(z,1))
is a solution of problem (1) in Q7 if (u(x,t),v(x,t)) is both a subsolution and a supersolution
of (1) in Q7.

DEFINITION 2. We say that a solution (Umax(2,t), Umax(2,t)) of (1) in Qr is a maximal
solution if for any other solution (u(z,t),v(xz,t)) of (1) in Q7 the inequalities u(x,t) <
Umax (T, 1), v(x, 1) < vmax(, ) are satisfied for (x,t) € Q.

A lot of articles have been devoted to the investigation of initial boundary value problems
for parabolic equations and systems with nonlocal boundary conditions (see, for example,
[1-22] and the references therein). In particular, the problem (1) with a = b = 0 was considered
in [11]. Initial boundary value problem (1) with ¢ = b = 0 and Dirichlet nonlocal boundary
conditions was studied in [5]. The authors of [23] investigated the existence of global solutions
for (1) with zero Dirichlet boundary condition. Blow-up problem for (1) with nonlinear local
Neumann boundary conditions was investigated in [24, 25].

This paper is organized as follows. In the next section we prove the existence of a local
solution. A comparison principle and the uniqueness of solutions of (1) are established
in Section 3.

2. Local Existence

Let {£;} be decreasing to 0 sequence such that 0 < gy < 1, € N. For ¢ = g; let ug(x)
and vo-(x) be the functions with the following properties:

uos (), vo- () € CHQ),  woe(x) =2, wvo(x) > ¢

UOEZ(m) > ,U’OEjy Ung(m) > UOE]' fOI“ £i > 8]7
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0 < upe(x) —uo(r) <22, 0 < voe(x) —vo() < 26

/qsxy, Y () dy, /wxy, 0 (y) dy for = € 0.

(’9u05 aUOE (x)

Since the nonlinearities in (1), the Lipschitz condition may not be satisfied, and thus we
need to consider the following auxiliary problem:

=Au+vP —au” + ag”, ref), t>0,
= Av+uf — bv® + b, ref, t>0,
8““ = [ 9@, " (w, 0 dy, v €9, >0, )
—fwx,y, "(y,t) dy, x €0, >0,
Q
u(x,0) = up=(x), v(x,0) =vo(x), r €1,

where ¢ = ;. The notion of a solution (u.,v.) for problem (3) in Q7 can be defined in a similar
way as in Definition 1.

Theorem 1. Problem (3) has a unique solution in Qr for small values of T.

<1 We start the proof with the construction of a subsolution and a supersolution of (3)
in Qr for some T'. Let supg uop:(2) < M, supg vo-(x) < M, where M > 1. Denote

KmaX< sup @(x,y,t), sup w(wyyyt)>

oO0NxQT oxXQT

and introduce an auxiliary function ((x) with the following properties:

o) € 2@, infp() >1, it 20 5 / max (¢"(), ") dy, (4

where K = Kmax (M™ !, M" ') max (1,exp(m — 1),exp(n — 1)). Let «, B be positive
constants such that ag — 5 = 6p — a and

a> sup (Ag;ig) + MP~Lexp(D)pP~ L (x) + a) : (5)

Ap(x)
p()

It is easy to see that ag — 5 > 0 for pg > 1 and ag — 8 < 0 for pg < 1. Obviously, (g,£) is
a subsolution of (3) in Q7 for any 7" Let us show that

f@,1) = Mexp(at) p(x), g(x,t) = Mexp(Bt) p(x)

B = sup ( + M Lexp(D)p?(x) + b) .
Q

is a supersolution of (3) in Qr for T" < min (;, 5> age 5) if pg > 1, and for 7" < min (é, %)

if pg < 1. Indeed, by (5) we have

Je(@,t) = Af(x, ) — g"(x, 1) + af (2,1) —ag’
= aM exp(at)p(x) — Ap(x)M exp(at) — MP exp(Bpt)p? (x) + aM" explart)p” (x) — as”

> M explat)p(a) (a - Aﬁg) P exp((Bp — )y (@) — ) >0
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for (x,t) € Qr. Using (4), we obtain

of (z,t)
ov

= Mexplaty 28 2 aresplam0 K [ @)y > [ oty 000 dy
Q Q

for (x,t) € St. In a similar way we show that

gi(w,t) — Ag(a,t) — f9 2, 1) + bg*(w,t) —be® 2 0 for (x,t) € Qr,
(’99 ) /1/1 x,y,t)g" (y,t)dy for (x,t) € St.

And we have ug- () < f(x,0), vo-(2) < g(a,0) for x € Q, which implies that (f(x,t), g(x,t))
is a supersolution of (3) in Q.
To prove the existence of a solution of (3) in Q7 for some T let us define a set

_ {(hl(x,t),hg(w,t)) € C(Qr) x C(Qr) :
e < hi(a,1) < fa,t), e < ha(z,t) < g(w,1), ha(x,0) = uos(2), ha(z,0) = Uog(m)}'

Obviously, B is a nonempty convex subset of C'(Qr) x C(Qr). Now we consider the following
problem

uy = Au +vP —au” + ag”, (x,t) € Qr,
= Av+uf — bv® + be®, (x,t) € Qr,
5 = [ oy t) sy, ) dy, (2,1) € Sr, (6)
Q
& — [(x,y,t) s3(y, t) dy, (x,t) € St,
Q
u(x,0) = ups(x), v(x,0) = vo(x), r €1,

where (51, 82) € B. Problem (6) has a classical solution, which is bounded in Q7 for some T
(see, for example, [26]). Let A be a map such that A(si,s2) = (u,v). Denote the set of
functions v as U and the set of functions v as V. In order to show that A has a fixed point
in B we verify that A is a continuous mapping from B into itself such that AB is relatively
compact. Since (g, €) is a subsolution of (6) in Q7 and (f(x,t), g(x, 1)) is a supersolution of (6)
in @7 we have that A maps B into itself thanks to a comparison principle for (6) which can
be proved in a similar way as Theorem 3 below.

Let G(x,t;&,7) denote the Green function for the heat equation given by uy — Au =
0 for z € £, t > 0 with homogeneous Neumann boundary condition. The Green function has
the following properties (see [27, 28|):

Gx,t;¢6,7) 20, x,€Q, 0< 71 <L, (7)
/G(x,t;g,r)dﬁl, e 0<T <t (8)
t
sup//G(w,t;ﬁ,T)ngdT<)\\/t—s, 0<t—s<oao, (9)
Q
s 00

for s > 0, A > 0 and small ¢ > 0.
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It is well known that (u(x,t),v(x,t)) is a solution of (6) in Q7 if and only if

t

u(z, ) / G, 1, O () dy + / / Gla,ty,7) (W (5, 7) — a (y,7) + ae”) dydr
0 Q

(10)
" / [c@nien) ( [ o6 s dy) S dr,
0 80 Q
v(x,t) = /G(w,t;y, Voe (Y dy+//G(w,t;y,T)(uq(y,T) — by, 7) + b)) dy dr
Q 0 Q
(11)
" / [ ctatsen) ( [ otennsiw.n) dy) ASe dr
0 80 Q

for (x,t) € Qr.

We claim that A is a continuous map. In fact let {(s1k, s2r)} be a sequence in B converging
to (s1,$2) € B in C(Q7) x C(Q1). Denote (ug, vi) = A(s1x, S2x). Then by (7), (10), (11) we
have

|u—uk|+|v—fuk|<//G@c,t;y,r)wp—v’,z|dydr+//a<x,t;y,r>|uq—uzmydr

t

t
+a//G(:v,t;y,T)|uT —u2|dyd7'+b//G(w,t;y,rﬂvs —vp| dy dr
00

0 O
t
+sup 7 — 73| / / Gla,t;6,7) ( / ¢<£,y,r>dy) dSe dr
@r 0 80 O
t
+sup|s§—s§k|//a<x,t;£, (/wﬁy, dy) 0
@r 0 80

< (sup u — ug| + Sup v —vkl)
T

+s55|sT—s7z|j/G<x,t;£, (/¢£y, dy) S

0 o0

t
+sup|s§—s§k|//a<x,t;£, (/wﬁy, dy) dSe dr,
Qr

0 90

where

Qr Qr

+ ar max <€T_1,supfr_1(w,t)> + bs max <83_1,supgs Y, t) ) } sup//G x,ty, ) dy dT.
Qr Qr

o = {pmax <€p_1,supg”_1(w,t)> + gmax <€q_1,sup fq_l(ac,t)>
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By (8) and (9) there exists T, such that ® < 1. Then we obtain (ug, vx) — (u,v) in C(Qr)x
C(Qr) as k — co.

By the definition of B the sets U and V are uniformly bounded.

Now we prove the equicontinuity of the sets U and V. We will consider the set U since the
proof for the set V is similar. We show that for any ¢ > 0 there exists § > 0, such that

|U(£E2,t2) — U($17t1)| < € (12)

for any u(z,t) € U and any (21,t1), (22,t2) € Qr with the property |(x2,t2) — (21,1)] < 6.
Applying (10), we obtain

(s, t2) — (e, t1)] < / (Glaa, b2, 0) — Gla, t1:y, O)uos(y)) dy

Q
to

+ /Q/ (22, b3y, )Wy, 7) — a’ (y,7) + ac”) dy dr

1

//G w1ty )P (Y, ) —au’ (y, 7) +ag") dy dr (13)
+ / /mG(xg,tz;g,r) Q/ 66,9, 7y, 7) dy | dSedr

_ / / G, 11:6,7) / (&, 7)) dy | dSedr|.
0 Q

Since [, G(z,t;y, 0)uo-(y) dy is a continuous function in Qr (see [29])

/(G($27t2§y70) — G(w1, 115y, 0))ues (y) dy| < § (14)

Q

for small values of 4.
Let us consider the second term in the right hand side of (13). We set h(y,7) = vP(y,7) —
au"(y,7) +as", H = supg,, [h(y, 7)| and suppose for the definiteness that t2 > t;. Using (7),
( ) and the continuity of the Green’s function for ¢ > 7 > 0, we have

to t1

| | cstaprintyryayar— [ [ Gty it dy i
Q

0 0 Q

2 ty—v
/ / s, to;y, 7) dy dr | / / (Gl tasy, ™) — Glan by, D) dydr— (15)
t1—y Q 0 9]

t1
+//G(:E1,t1;y,7)dyd7 <§

t1—y Q

with an appropriate choice of v and 4.
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Similarly, we estimate the third term in the right hand side of (13)

t2
l//ﬂm@iﬁ)/@@%ﬂﬁ@med&m
Q

0 90

t1
- [ [eimen | [ocnnsiwnay| dsear| <5 o)
Q

0 o0

for small values of §. From (13)—(16) we derive (12).

The Ascoli-Arzeld theorem guarantees the relative compactness of AB. Thus we are able
to apply a corollary of the Schauder-Tikhonov fixed point theorem (see [30]) and conclude
that A has a fixed point in B if 7" is small. Now if (us,v.) is a fixed point of A then it is
a solution of (3) in Q7. The uniqueness of the solution follows from a comparison principle
for (3) which can be proved in a similar way as Theorem 3 in the next section. >

Now we are ready to prove the existence of a local solution of (1).

Theorem 2. For small values of T' problem (1) has a maximal solution in Q.

< Now, let €9 > £1. Then it is easy to show that (u.,(z,1),v.,(z,1)) is a supersolution of
problem (3) with € = &1 in Q7 for some 7. Applying a comparison principle to problem (3),
we have u.,(z,1) > u, (2,t) and v, (x,t) > v, (x,t) in Q7. Using the last inequalities and
the continuation principle of solutions we deduce that the existence time of (u.(x,t), v.(x,t))
does not decrease as £ N\, 0. Taking £ — 0, we get

Umax (T, 1) = ii_r)r(l)ug(w,t) >0, Upax(z,t)= il_r)]% ve(,t) >0, (17)

and (Umax (2, 1), Vmax(x, 1)) exists in Q7 for some 7. By dominated convergence theorem
(Umax (2, 1), Vmax (2, 1)) satisfies the following equations:

e (2, ) — /th%ﬁm @+//bxt%><mmh> (4, 7)) dy dr

//Gxta [ ot6.v. sty dy | dsear,
Q

0 o0

UmaX(myt) - /G(LE L y: UO dy +//G xr, L y: max(y7 )_ bvrsnax(y77)> dy dT

+//G@m&ﬂ !w@uﬂﬁwwﬂ@/d&m-

0 90

By the properties of the Green function (Umax(2,t), Vmax(x, %)) is a solution of (1) in Q7.
Let (u(x,t),v(x,t)) be another solution of (1) in Q7. Applying a comparison principle to
problem (3), we have u.(x,t) > u(x,t), ve(x,t) > v(x,t) in Q. Taking £ — 0 we deduce that
Umax = U(X, 1), Vmax = v(x,t) in Q7. Therefore, (Umax(®,1), Vmax(x, 1)) is a maximal solution
of (1) in Q7. >
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3. Comparison Principle

We start this section with a comparison principle for problem (1).

Theorem 3. Let (u(x,t),v(x,t)) and (u(x,t),v(x,t)) be a supersolution and a subsolution
of problem (1) in Q, respectively. Suppose that y(w,t) > 0 or w(x,t) > 0 in Qr UT'r and
v(x,t) > 0 or v(x,t) > 0 in Qr U 'y if min(p,q,m,n) < 1. Then u(x,t) > u(x,t) and
v(x,t) = v(x,t) in Qr UT'7.

<] Suppose at first that
min(p, g, m,n) = 1. (18)

Let functions ug:(x), vo-(x) have the same properties as in the previous section but
0 < upe(r) —ulx,0) <22, 0 < v(x) —v(2,0) < 26 (19)

Then problem (1) with wug(x) = wu(x,0), vo(xr) = wv(x,0) has a maximal solution
(Umax (2, 1), Umaz (2, 1)), and, moreover,

Umax(myt) - ii_I)T(l)UE(LE,t), 'Umax(myt) - ii_r)%’ug(m,t),

where (u.(z,t)v:(x,t)) is a solution of (3). To establish the theorem it is enough to prove
that

u(@,t) < umax(2,1) <U(x,1), v(2,1) < Umax(@,1) < V(2,t) In Qp USy  (20)
for any Ty € (0,7"). We show only that

Umax (7, 1) U2, 1),  Vmax(@,t) < V(2,t) in Qr, U St (21)
for any Ty € (0,7) since the proof of other inequalities in (20) is similar. We set
wl(mﬂf) :UE(LE,t) —ﬂ([E,t), wg(LE,t) :'Us(mﬂf) —@(iE,t). (22)

By virtue of (3), (19), (22) and the definition of a supersolution we conclude

wir < Aw; +p0p wy — ardy” Yo + ae” x,t) € Qr,
0
wor < Awsy + qu wy — bs@y™ Loy + bes, (x,t) € Qmy,
80.)1 m t f¢ xr y, em_lwl(yyt) dy7 (myt) E STQ; (23)
Bua(z.) fw ,y, 0nbg " wa(y, t) dy, (2,t) € Sty,
wi(x,0) < 28, wa(x,0) < 2¢, x €,

where 0;, i = 1,4, 6, are some continuous functions in Q7 between v.(x,t) and v(x,t), and
0;, i = 2,3, 5, are some continuous functions in Q)7 between u.(x,t) and T(x,t). Based on the
assumptions made, we have

0<m(x,t) <M, 0<0(x,t) <M, =<u(e,t) <M, e<v(x,t)<M in Qr, (24)
0<pla,y,t) <M and 0<¥(x,y,t) <M in 9Q x Qm,
where M is some positive constant. It follows from (24) that powers of 6;, = 1,...,6 in (23)

are positive bounded functions in (7, and, moreover, 9’1’_1 < MpPt Gg_l < M 9?‘_1 <
M1 g2t < M1, Let us define the functions

wi(x,t) = fx,t) +erexplat)h(r), wolx,t) = gla,t) + 21 exp(at)h(zx), (25)
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where
h(z) € C*(Q2), h(x)>1 inQ, £ > {mM™+nM"} [ Wy)dy ondQ,  (26)
g1 =2c+&" +£° a>max Ahfég) +pMP~ 4 MO 4 g 4 b, (27)
Q

We substitute the functions from (25) into the first inequality of (23) to derive
fe(x, t) + asy exp(at)h(z) < Af(x,t) + 1 exp(at) Ah(x) + p 0P~ a, t)g(x, t)
+p 9’1’_1(:10, t)ey explat)h(x) — arfy Na, t) f(x,t) —arty (2, t)er explat)h(z) +as” in Q.
Hence by (26), (27) we get
fle,t) < Af(z,t) +p~ (2, t)g(x, t) — ar 05 (@, 1) f(x,t) in Qr,. (28)
In a similar way we obtain
ge(x,t) < Agla,t) + 08~ (2, 1) f(z,t) — bs 057 (2, t)g(x, 1) in Q.

Substituting the functions from (25) into the third and fourth inequalities of (23), we deduce
that
Of(x

8

/ o(z,y, YO (y, 1)y, 1) dy  on S, (29)

and
dg(x,t

) [ 008 w000y on 51,

From (23), (25), (27) we have f(z,0) <0, g(x,0) < 0 in Q. We prove that

f(iE,t) <0, g(x,t) <0 in QTO U STO' (30)

Let (30) not be true. Then there exists (zo,t0) € @ U Sty such that to > 0, f(z,t) <0,
g(x,t) < 0 for 0 <t <tyand f(xo,to) = 0 or g(xg,to) = 0 for some xy € €. Suppose that
flxo,to) = 0. If 29 € Q, then fi(xo,t0) = 0, Af(xo,t0) < 0 and by (28) we get

0 = fi(zo,to) < Af(wo,t0) +p& " (w0, to)g(xo, to) < 0.
If 29 € 09, then (29) yields

af(iEo, to

0< =~ /<z5 20, Y, to)mOZ " (y, o) f (y, to) dy < 0.

If g(x0,to) = 0 we can obtain a contradiction in a similar way.

Taking £ — 0 in (30) and using (22), (25)—(27), we deduce (21).

If (18) doesn’t hold we can introduce wy = u(x,t) —u(w,t), wa(w,t) = v(x,t) —v(x,t) and
prove the theorem in a similar way using the positiveness of some functions in a subsolution
and a supersolution. >

REMARK. Under the condition min(r, s) < 1 we don’t suppose the positiveness of a sub-
solution or a supersolution in Theorem 3. A comparison principle for problem (1) with zero
Dirichlet boundary condition is proved in [23] for the case min(r, s) < 1 under the conditions
u(x,t) > 0 and ¥(x,t) > 0in Q.
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To prove the uniqueness of a solution of problem (1) we need the following statement.

Lemma. Let (u,v) be a solution of (1) in Qr. If min(r, s) > 1 and up(z) # 0 or vo(z) £ 0
in Q, then u(x,t) > 0 and v(x,t) > 0 in Q7 USt. If up(x) > 0 and vo(x) > 0 in Q and either
p<r<l,g<s<l1ormax(r,s) > 1, then u(x,t) > 0 and v(x,t) >0 in Qr U 7.

< Let min(r, s) > 1 and ug(x) £ 0 in . Denote

M = supu(x,t),
QTO

where Ty € (0,T). We set h(z,t) = u(z,t) exp(At) with A > aM"~!. Then we have in Qr,
he — Ah = exp(A) (A + ug — Au) > exp(A)u (A —au""1) > 0.

Since h(z,0) = ug(z) > 0 and up(x) # 0 in €2, by the strong maximum principle h(x,t) > 0
in Qr,. Let h(xg,to) = 0 at some point (xg,%y) € S7,. Then according to Theorem 3.6 of [31]
it yields dh(xo,t0)/0v < 0, which contradicts the boundary condition for u in (1). Hence
u(x,t) > 0 in Q7 U St since Ty may be any in (0,7).
We show that
’U(LE,t) >0 in QrUSt. (31)

If either vo(x) £ 0 or vo(x) = 0 and there is no 7 € (0,7p), such that
v(x,t) =0 in Q;, (32)

then we prove (31) as above. If there exists 7 € (0,7p), such that (32) holds, then we have
a contradiction in ¢, with the second equation in (1).
Suppose now that ug(z) > 0 and vo(z) >0in Qand p<r <1,g<s <1. Let

1 'rip 1 Siq
£9 = min < min ug(x), min vo(x), <—> ) (‘) .
Q Q a b

It is easy to see that (£2,22) is a subsolution of (1) in @7 and by Theorem 3 u(x,t) > =5 and
’U(LE,t) =g in Qr U, .
If ug(x) > 0 and vo(x) > 0 in Q and s > 1, then arguing as above, we obtain

’U(LE,t) >e3 inQrUl'y

1
N
— mi : 3
£4 = min < minug(z), | = .
Q a

Then u(zx,t) = 4 is a subsolution of the following problem

for some 3 > 0. Set

ur = Au + P —au”, (x,t) € Qr,
Bufed — ({¢(w7yyt)um(yyt) dy,  (x,1) € Sr, (33)
U(LE,O) - ,U’O(m)y x € €.

Now by the comparison principle for (33) we conclude that u(x,t) > g4 in QrUI'7r. The proof
is similar in the remaining case. >
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As a simple consequence of Theorem 3 and Lemma, we get the following uniqueness result
for problem (1).

Theorem 4. Let (u,v) be a solution of (1) in Qr. Suppose that at least one of the
following conditions holds:

1) w(x,t) > 0 and v(x,t) > 0 in Qr Ul'p;

2) min(p,q,m,n) > 1;

3) min(p, ¢, m,n) < 1, up(x) > 0 and vo(x) > 0 in Q and either p <r <1,qg <s <1 or
max(r,s) > 1.

Then a solution of problem (1) is unique in Q7.

Now we show that problem (1) may have a nonunique solution in Q7.

Theorem 5. Let up(z) = vo(x) = 0 and at least one of the following conditions hold:

1)pg<1,r>Apand s> forAe [q,fﬂ;

2) min(1,r) > m and ¢(x,y1,t1) > 0 for any x € IQ and some y; € I and t; € [0,T);

3) min(1,s) > n and Y(x,ya,t2) > 0 for any x € 982 and some y, € 982 and tp € [0,T)).

Then problem (1) has a nonunique solution in Qr.

< We note that problem (1) with trivial initial datum wo(x) = vo(z) = 0 has the
trivial solution (0,0). As we showed in Theorem 2 a maximal solution (tmax(,t), Vmax (2, t))
satisfies (17), where (u.(x,t),v.(x,t)) is some positive in Q7 supersolution of (1). To prove
the theorem we construct a nontrivial nonnegative subsolution (u(z,t)),v(x,t) of (1) with
trivial initial datum. By Theorem 3 then we have u.(xz,t) > g(w,t) fug(m,t) > v(x,t) and
therefore a maximal solution is nontrivial.

Let the conditions 1) hold. We put

u(x,t) = (Ctw(x, 1)), vz, t) = (th(w,t))ﬁ, (34)

where positive constants C', «, 5 will be chosen later and w(x,t) is a solution of the following
problem

wy = Aw, (x,t) € Qr,

w(z,t) =0, (x,t) € ST,

w(z,0) = wo(x), x €.
Here wo(x) is a bounded nontrivial nonnegative continuous function, which satisfies
the boundary condition. By the strong maximum principle

0 <wlx,t) < M =supwo(x) for (x,t) € Qr. (35)
x€eQ
We note that
o t ov(x,t
u(z,0) = v(x,0) =0 forx € 2 and u(, t) <0, u(z, ) <0 for (z,t) € St.  (36)
ov ov
Suppose at first that
where o > p“ . Then
a>Bp+1. (38)

We put A = % It is easy to check that A takes all values in ( q“] if a takes all values in

q, p+1
[f’j;q, 00). S1nce r>Ap and s > £ for A € (g, qﬁ] we have

ar—pBp >0, fBs—aq>0. (39)
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By virtue of (34)—(39), after simple calculations we obtain
w, — Au — P + au” < at* HCw(x, 1) — (Ctw(x, 1)) + a(Ctw(x, )"
< (th(m,t))ﬁp{aTa_ﬁp_l(CM)a_ﬁp + a(CT M) PP — 1} <0, (40)
v — Av —u? + b < BN (Cw(a, 1) — (Clw(e, 1) + b(Clw(z, 1))
<(CRqu,ﬂ)aq{ﬁCﬂ4—%b«?Tﬂ4y%_aq——1} <0 (41)

for (x,t) € Qr if C is sufficiently small. It is easy to see that (40), (41) hold for » > gp
and s > 1 under suitable choice of a and C. Thus by (36), (40), (41) we conclude that
(u(x,t),v(x,t)) is a nontrivial subsolution of (1) with trivial initial datum and the theorem

is proved for A € [q, %]. To prove the theorem for A € (%, %] we put o = Op + 1 with
8= % and argue in a similar way.

Now we suppose that the conditions 2) hold. Let us consider the following problem

Ug :Au_aur7 (LE,t) EQT:
@%ﬁ:gd%wmﬁ@ﬁ@h (x,1) € Sr, (42)
u(z,0) =0, x €.

It is proved in [9] that (42) has a nontrivial nonnegative solution wu,(x,t). Then a pair
of functions (u,(x,t),0) is a nontrivial subsolution of (1) with trivial initial datum.
The remaining case can be treated similarly. >
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HAYAJIBHO-KPAEBAS 3AJAYA JJIs1 CUCTEMBI TTOJYJIMHENHBIX
ITAPABOJIMYECKUX YPABHEHWH C IOTIVIOIIEHWEM U HEJIMHENHBIMU
HEJJOKAJIbHBIMU I'PAHUYHBIMU YCJTOBUAMNA

Byneimo . Al Tnagxos A. JI.!, Huknrur A. 1.2

! Bestopycckmii rocy1apeTBERNDIl yHABEPCHTET,
Benapyce, 220030, Munck, np. HesapucumocTn, 4;
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Benapyce, 210038, Burtebck, MockoBcknit mpocekT, 33
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AHHOTaL[Hﬂ. B pa60Te MEI pacCMaTpuBaeM KJIaCCHYeCKHEe PEIlleH A HaHaJ[bHO—KpaeBOfI 3aJa49d JJId CucTe-
MBI HOJIyJII/IHefIHI)IX Hapa6OJ'[I/I‘IeCKI/IX ypaBHeHI/IfI C HOIJIONIeHnEeM U HeJIMHEHHBIMUA HeJOKAJIbHBIMHA I'paHUYHBIMHA
YCIOBHSAMMU. Henuneitnoctu B YPaBHEHUSX U T'PAaHUIHBIX YCJIOBHAX MOTYT HE YAOBJECTBOPATE yCJIOBUIO Jlunmm-
ma. ,Z[J'[H JAOKa3aTeJbCTBa CYINECTBOBaHNA PEIIeHUsI MBI PEryJIApU3yeM UCXOAHYIO 3aJa9y. MCHOJ’[I)SyH TeopeMy
H_[ayzﬁepa — TuxonoBa o HEIOABUXKHOMN TOYKe, JOKA3bIBACTCAd CyHIeCTBOBaHUE JIOKAJHLHOT'O PEIIEeHU peryJid-
pI/ISOBaHHOfI 3aJa49Hd. HOKaBaHO, qTO mIpelet peHleHI/Iﬁ perJIHpI/I?)OBa,HHOfI 3aJa91 dBJIdeTCd MaKCHUMaJbHBIM
permenneM UCXOMHON 3aa4un. MCHOJ’[I)SyH CBOWMCTBa MaKCHUMAaJbHOT'O pelleHn s, JOKa3bIBacTCA IMPHUHITHUII CpaB-
HEeHHUAd. HpI/I 3TOM He JeJlaeTCd JOIIOJTHHTE/IBbHBIX Hpe,ZLHOJIO}KeHI/IfI, KOTJla HEJUHEHHOCTH B IIOIVIONIEHUU He
YIAOBJIETBOPAIOT YCJOBUIO ﬂnnmnua. Ha,fI,ZLeHI)I yCJa0OBYsA, IIPU BBINOJHEHNHA KOTOPBIX pPelleHnd ABJAIOTCA IIO-
JOXKHNUTEJIBHBIMI (byHKI_[I/IHMI/I. VYeTaHaBIUBAETCS CIUHCTBEHHOCTEb pEIICHUA. HOKaBaHO, HTO HYJEBOE pelienne
MOXKeET OLITEL Hee JMHCTBECHHBIM.

KirroueBbie ciioBa: crucTeMa HOJIyJII/IHefIHI)IX Hapa6OJIH‘IeCKHX ypaBHeHI/IfI, HeJOKaJEBHEIE T'DaHUYHEIC
yCJaoBHs, CyImMeCcTBOBaHNE PEIleHnsl, IPUHIUII CPAaBHEHU .
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