О наименьшем задании бэровской σ -локальной формации¹

Воробьев Н.Н.

Витебский государственный университет имени П.М. Машерова, Витебск, Беларусь vornic2001@mail.ru

Все рассматриваемые группы конечны. Мы будем использовать терминологию из [1–5]. Пусть σ — разбиение множества всех простых чисел \mathbb{P} , т. е. $\sigma = \{\sigma_i \mid i \in I\}$, где $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ и $\sigma_i \cap \sigma_j = \emptyset$ для всех $i \neq j$.

Группа G называется σ -примарной, если G является σ_i -группой для некоторого i. Главный фактор H/K группы G называется: σ -центральным (в группе G), если $(H/K) \rtimes (G/C_G(H/K))$ является σ -примарным; σ_i -фактором, если H/K является σ_i -группой. Группа G называется обобщенной $\{\sigma_i\}$ -нильпотентной, если каждый главный σ_i -фактор группы G является σ -центральным.

Если n — натуральное число, то символ $\pi(n)$ обозначает множество всех его простых делителей; $\sigma(n)$ обозначает множество $\{\sigma_i \mid \sigma_i \cap \pi(n) \neq \varnothing\}$; $\sigma(G) = \sigma(|G|)$ и $\sigma(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \sigma(G)$; $\sigma^+(G) = \{\sigma_i \mid G \}$ обладает главным фактором H/K таким, что $\sigma(H/K) = \{\sigma_i\}$, $\sigma^+(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \sigma^+(G)$. Символ $F_{\{g\sigma_i\}}(G)$ обозначает произведение всех нормальных обобщенных $\{\sigma_i\}$ -нильпотентных подгрупп группы G. Напомним, что класс групп называется формацией, если он замкнут относительно взятия гомоморфных образов и подпрямых произведений.

Всякая функция f вида

$$f: \sigma \cup \{\emptyset\} \to \{\text{формации групп}\},$$

где $f(\emptyset) \neq \emptyset$, называется обобщенной формационной σ -функцией (см. [5]) и полагают

$$BLF_{\sigma}(f) = (G \mid G/R_{\sigma}(G) \in f(\emptyset) \text{ и } G/F_{\{q\sigma_i\}}(G) \in f(\sigma_i)$$
 для всех $\sigma_i \in \sigma^+(G)$).

Если для некоторой обобщенной формационной σ -функции f имеет место $\mathfrak{F} = BLF_{\sigma}(f)$, то класс \mathfrak{F} называется бэровским σ -локальным, а f — обобщенным σ -локальным заданием класса \mathfrak{F} (см. [5]).

Обобщенная формационная σ -функция f называется внутренней, если $f(a) \subseteq BLF_{\sigma}(f)$ для всех $a \in \sigma \cup \{\emptyset\}$. Доказана следующая

Теорема 1. Если $\mathfrak{F} = \bigcap_{j \in J} \mathfrak{F}_j$ и $\mathfrak{F}_j = BLF_{\sigma}(f_j)$ для всех $j \in J$, то $\mathfrak{F} = BLF_{\sigma}(f)$, где $f(\emptyset) = \bigcap_{j \in J} f_j(\emptyset)$ и $f(\sigma_i) = \bigcap_{j \in J} f_j(\sigma_i)$ для всех $\sigma_i \in \sigma^+(\mathfrak{F}) = \bigcap_{j \in J} \sigma^+(\mathfrak{F}_j)$ и $f(\sigma_i) = \emptyset$ для всех $\sigma_i \in \sigma \setminus \sigma^+(\mathfrak{F})$. Кроме того, если f_j — внутреннее обобщенное σ -локальное задание для всех $j \in J$, то f также является внутренним обобщенным σ -локальным заданием.

Пусть $\{f_j \mid j \in J\}$ — набор всех обобщенных σ -локальных заданий формации \mathfrak{F} . В силу теоремы 1 $f = \bigcap_{j \in J} f_j$ — обобщенное σ -локальное задание формации \mathfrak{F} , называемое наименьшим, т. е. $f(a) = \bigcap_{j \in J} f_j(a)$ для всех $a \in \sigma_i \cup \{\emptyset\}$ по всем i.

Символом form(\mathfrak{X}) обозначается пересечение всех формаций, содержащих совокупность групп \mathfrak{X} . Символом c^{σ} form(\mathfrak{X}) обозначается пересечение всех бэровских σ -локальных формаций, содержащих совокупность групп \mathfrak{X} . Следующее утверждение дает способ построения наименьшего обобщенного σ -локального задания формации $\mathfrak{F} = c^{\sigma}$ form(\mathfrak{X}).

Теорема 2. Пусть \mathfrak{X} — некоторая непустая совокупность групп, $\mathfrak{F} = c^{\sigma}$ form $(\mathfrak{X}) = BLF_{\sigma}(f)$, где f — наименьшее обобщенное σ -локальное задание формации \mathfrak{F} . Тогда справедливы следующие утверждения:

- $1) \ \sigma^+(\mathfrak{X}) = \sigma^+(\mathfrak{F});$
- 2) $f(\emptyset) = \text{form}(G/R_{\sigma}(G) \mid G \in \mathfrak{X});$
- 3) $f(\sigma_i) = \text{form}(G/F_{\{g\sigma_i\}}(G) \mid G \in \mathfrak{X}) = \text{form}(G/F_{\{g\sigma_i\}}(G) \mid G \in \mathfrak{F})$ для всех $\sigma_i \in \sigma^+(\mathfrak{X})$ и $f(\sigma_i) = \varnothing$ для всех $\sigma_i \in \sigma \setminus \sigma^+(\mathfrak{X})$;

Екатеринбург, Россия 21-28 июля, 2024

¹Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (проект БРФФИ №Ф24У-009 от 2 мая 2024 года).

4) если h — произвольное обобщенное σ -локальное задание формации \mathfrak{F} , то для всех $\sigma_i \in \sigma^+(\mathfrak{X})$ имеет место

$$f(\sigma_i) = \text{form}(G \mid G \in \mathfrak{F} \cap h(\sigma_i), O_{\sigma_i}(G) = 1) \text{ и}$$
$$f(\emptyset) = \text{form}(G \mid G \in \mathfrak{F} \cap h(\emptyset), R_{\sigma}(G) = 1).$$

Теорема 2 используется в дальнейшем для построения решеток бэровских σ -локальных формаций и описания их свойств.

Список литературы

- [1] А. Н. Скиба. Алгебра формаций. Минск: Белорусская наука, 1997.
- [2] А. Н. Скиба, Л. А. Шеметков. Кратно £-композиционные формации конечных групп. Украинский матем. журн., **52**: 6 (2000), 783–797.
- [3] Чжан Чи, А. Н. Скиба. О Σ_t^σ -замкнутых классах конечных групп. Украинский матем. журн., **70**: 2 (2018), 1707—1715.
- [4] Zhang Chi, V. G. Safonov, A. N. Skiba. On n-multiply σ-local formations of finite groups. Comm. Algebra, 47: 3 (2019), 957–968.
- [5] V. G. Safonov, I. N. Safonova, A. N. Skiba. On Baer- σ -local formations of finite groups. Comm. Algebra, 48: 9 (2020), 4002–4012.

Екатеринбург, Россия 21-28 июля, 2024