министерство просвещения рсфср

ЛЕНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ им. А. И. ГЕРЦЕНА

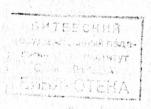
Кафедра математического анализа

м. я. зингер

ФУНКЦИОНАЛЫ ПРОИЗВОДНЫХ ОТ АЛГЕБРАИЧЕСКОГО ПОЛИНОМА НА КОМПЛЕКСНОЙ ПЛОСКОСТИ

(Оценки производных алгебраического полинома)

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук



ЛЕНИНГРАД 1966

министерство просвещения рсфср

ЛЕНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ им. А. И. ГЕРШЕНА

Кафедра математического анализа

м. я. зингер

ФУНКЦИОНАЛЫ ПРОИЗВОДНЫХ ОТ АЛГЕБРАИЧЕСКОГО ПОЛИНОМА НА КОМПЛЕКСНОЙ ПЛОСКОСТИ

(Оценки производных алгебраического полинома)

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель— доктор физико-математических наук, профессор Е. В. Вороновская

ЛЕНИНГРА 1966

Работа выполнена в Ленинградском электротехническом институте связи им. проф. М. А. Бонч-Бруевича

Защита состоится « » *устану* 196 б г. в Ленинградском Государственном педагогическом институте им. А. И. Герцена.

Официальные оппоненты:

доктор физико-математических наук, профессор Н. Л. Лебедев,

кандидат физико-математических наук В. А. Гусев.

Автореферат разослан « g » ι ι ι 1966 г.

Ответственный редактор И. А. Егорова

В диссертации рассматриваются следующие задачи:

Задача І. Среди алгебраических полиномов степени не выше n с действительными коэффициентами, удовлетворяющих условию $\max_{[0,1]} |P_n(x)| = 1$ (в дальнейшем будем обозначать этот класс полиномов через $Y_{...}$) найти тот, который в данной точке $x=z_0$ комплексной плоскости дает $\max \operatorname{Re} P_n^{(k)}(x)$ или $\max \operatorname{Im} P_n^{(k)}(x)$ (k=1, 2,...n).

Задача II. В классе полиномов Y_n найти полином, который в данной точке $x=z_0=\varrho e^{i\varphi}$ комплексной плоскости дает $\max \operatorname{Re}(P_n(x))^{(k)}_{\varphi}$ или $\max \operatorname{Im}(P_n(x))^{(k)}_{\varphi}$ (k>0, целое).

Задача III. В классе полиномов Y_n найти полином, который в данной точке $x = z_0$ комплексной плоскости дает $\max |P_n^{(k)}(x)|$.

Решение задач I и III дано в области $|x| \gg \rho_{0, k}$ (k < n), где $\frac{1}{2} \ll \rho_{0, k} < 1$; решение задачи II дано в области $|x| \gg \rho_{1, k}$, где $0 < \rho_{1, k} < 1$. Достаточно рассматривать $\text{Im } x \gg 0$.

Естественно, что после решения указанных задач можно было рассмотреть поведение функций

$$\begin{split} N_{z}^{(k)}(\rho,\,\varphi) &= \underset{P_{n} \in Y_{n}}{\operatorname{supr}} |P_{n}^{(k)}(\rho e^{i\varphi})|;\\ N_{\cos,z}^{(k)}(\rho,\,\varphi) &= \underset{P_{n} \in Y_{n}}{\operatorname{supr}} \operatorname{Re}\, P_{n}^{(k)}(\rho e^{i\varphi});\\ N_{\sin,z}^{(k)}(\rho,\,\varphi) &= \underset{P_{n} \in Y_{n}}{\operatorname{supr}} \operatorname{Im}\, P_{n}^{(k)}(\rho e^{i\varphi}) \end{split}$$

и т. д. (Задача IV). Кроме того, приведены более грубые, но и более простые, неравенства для производных k-то порядка (Задача IV).

Подавляющее большинство результатов, приведен-

ных в диссертации, получено с использованием метода функционалов, предложенного Е. В. Вороновской [1]. Оценки для производных вытекают из нахождения норм некоторых функционалов, чем и определяется название диссертации.

В первой главе излагаются основная идея и некоторые результаты метода функционалов, необходимые для дальнейшего. Новый результат, который формулируется в этой главе, относится к оценке нормы конечного линейного функционала F, заданного на множестве алгебранческих полиномов $\{L_n(x)\}$ с действительными коэффициентами степени не выше n отрезком μ_0 , μ_1 , μ_2 ,.... μ_n , где $F(x^i) = \mu_i$. Имеет место теорема: норма функционала F не превышает максимального по абсолютной величине значения функционала на одном из следующих n+2 полиномов:

$$T_n(x)$$
, $\left[T_n(x) - \frac{1}{n} \frac{x(x-1)T_n'(x)}{x-\tau_i}\right]$ $(i=0, 1...n)$,

где $T_n(x) = \cos n \arccos(2x-1); \quad \{\tau_i\}_{i=0}^n$ — точки на [0,1], в которых $|T_n(x)| = 1$.

Во второй главе рассматриваются вспомогательные алгебранческие предложения, служащие аналитическим аппаратом, который применяется для решения основных вопросов данной работы.

Пусть алгебраический полином с действительными коэффициентами $Q(z) = \sum_{k=0}^{n} a_k z^k \ (a_n \neq 0)$ рассматривается на комплексной плоскости.

Теорема 1—2. Пусть $(z_j)_{j=1}^n$ — корин полинома $Q(z) = \sum_{k=0}^n a_k z^k$ и пусть R_0 — наименьший возможний радиус круга с центром в начале координат, в котором (с включением границы) находятся корни $(z_j)_{j=1}^n$. Тогда триго-

нометрический полином $C(\rho, \varphi) = \sum_{k=0}^{n} a_k \rho^k \cos k \varphi$ имеет на $[0, \pi]$ при $\rho > R_0$ празличных действительных корпей $\{\gamma_k(\rho)\}_{k=1}^n$ и

$$\lim_{\rho \to \infty} \gamma_k(\rho) = \frac{(2k-1)\pi}{2n} \quad (k=1, 2, \dots n).$$

Теорема 2—2. На полуплоскости $\operatorname{Im} z > 0$ ветви

 $\{ \rho e^{i\gamma} m^{(\rho)} \}_{m=1}^n$ при $\rho \to \infty$ приближаются к лучам, исходящим из точки $-\frac{1}{n} \frac{a_{n-1}}{a_n}$ на действительной оси. Углы наклона лучей к положительному направлению действительной оси, как уже было найдено, суть $\left\{ \frac{(2m-1)\pi}{2n} \right\}_{m=1}^n$.

Теорема 3—2. Пусть полином $Q(x) = \sum_{k=0}^{n} a_k x^k (a_n \neq 0)$ имеет только действительные корни (простые или кратные), которые неотрицательны и наибольший из них равен d. Тогда все n действительных корней $\{\gamma_k(\rho)\}_{k=1}^n$ полинома $C(\rho, \varphi) = \sum_{k=0}^n a_k \rho^k \cos k \varphi$ при возрастании ρ (от ρ =

=d) стремятся к своим предельным значениям, **монотон- но возрастая.**

Пусть полиномы с действительными коэффициентами $Q_1(x) = \sum_{k=0}^n a_k^{(1)} x^k$ и $Q_2(x) = \sum_{k=0}^n a_k^{(2)} x^k$, $a_n^{(1)} \neq 0$, $a_n^{(2)} \neq 0$, имеют только действительные корни. Будем говорить, что корни $\{x_j^{(1)}\}_{j=1}^n$ и $\{x_j^{(2)}\}_{j=1}^n$ полиномов $Q_1(x)$ и $Q_2(x)$ соответственно перемежаются в широком смысле, если имеют место перавенства

$$x_1^{(1)} \leqslant x_1^{(2)} \leqslant x_2^{(1)} \leqslant x_2^{(2)} \leqslant \dots \leqslant x_k^{(1)} < x_k^{(2)} \leqslant \dots \leqslant x_n^{(1)} \leqslant x_n^{(2)}, \quad (1)$$

причем, строгое неравенство имеет место хотя бы только для двух смежных корней, имеющих одинаковые нижние индексы $(k=1,\ 2,...n)$. Если для корней $\{x_j^{(1)}\}_{j=1}^n$ и $\{x_j^{(2)}\}_{j=1}^n$ имеют место неравенства

$$x_1^{(1)} < x_1^{(2)} < x_2^{(1)} < x_2^{(2)} < \dots < x_n^{(1)} < x_n^{(2)},$$

то будем говорить о **строгой перемежаемости** корпей полиномов $Q_1(x)$ и $Q_2(x)$.

Теорема 4—2. Пусть корни полиномов $Q_1(x)$ и $Q_2(x)$ удовлетворяют перавенствам (1) и пусть $\rho_0 = \max\{|x_1^{(1)}|, x_n^{(2)}\}$. Тогда при $\rho > \rho_0$ тригонометрические полиномы

$$C_1(\rho, \varphi) = \sum_{k=0}^{n} a_k^{(1)} \rho^k \cos k \varphi$$
 и $C_2(\rho, \varphi) = \sum_{k=0}^{n} a_k^{(2)} \rho^k \cos k \varphi$

имеют на $[0,\ \pi]$ строго перемежающиеся действительные корни (по φ):

$$0 < \gamma_1^{(2)} < \gamma_1^{(1)} < \gamma_2^{(2)} < \gamma_2^{(1)} < \ldots < \gamma_n^{(2)} < \gamma_n^{(1)} < \pi.$$

Утверждение теоремы 4-2 справедливо и в случае, когда степени алгебраических полиномов $Q_1(x)$ и $Q_2(x)$ разнятся на единицу, при условии, что их корни удовлетворяют неравенствам:

$$x_1^{(1)} \leqslant x_1^{(2)} \leqslant x_2^{(1)} \leqslant x_2^{(2)} \leqslant \dots \leqslant x_n^{(1)} \leqslant x_n^{(2)} \leqslant x_{n+1}^{(1)},$$

причем могут иметь место все знаки равенства.

Теорема 8—2. Если корни полиномов $Q_1(x) = \sum_{k=0}^n a_k^{(i)} x^k$ и $Q_2(x) = \sum_{k=0}^n a_k^{(2)} x^k$ перемежаются в широком смысле (выполнены неравенства (1)), то при $\rho > \rho_0$ тригонометрические полиномы $S_1(\rho, \varphi) = \sum_{k=1}^n a_k^{(1)} \rho^k \sin k \varphi$ и $C_2(\rho, \varphi) = \sum_{k=0}^n a_k^{(2)} \rho^k \cos k \varphi$ имеют на $(0, \pi)$ строго перемежающиеся действительные корни

$$0<\gamma_1^{(2)}<\lambda_1^{(1)}<\gamma_2^{(2)}<\lambda_2^{(1)}<\ldots<\lambda_{n-1}^{(1)}<\gamma_n^{(2)}<\pi.$$

В этой же главе вводятся алгебранческие полиномы

$$L_{n+1}(x) = L_{n+1,0}(x) = \prod_{i=1}^{n} (x-\sigma_i),$$
 где $0 \leqslant \sigma_0 < \sigma_1 < ... < \sigma_n \leqslant 1;$ $L_{n+1,k}(x) = \frac{x}{n+1} L'_{n+1,k-1}(x), \quad k=1,2,...,$ $\Lambda_{n,p}(x) = \Lambda_{n,p,0}(x) = \frac{L_{n+1}(x)}{x-\sigma_p}, \quad p=0,1,...n,$ $\Lambda_{n,p,k}(x) = \frac{x}{n} \Lambda'_{n,p,k-1}(x), \quad k=1,2,...,$

свойство перемежаемости корней в широком смысле которых используется для решения задачи II.

В третьей главе формулируются основные результаты по задачам I и II. Ниже приводятся те из них, которые относятся к $\operatorname{Re} P_n^{(k)}(x)$.

Будем рассматривать $\operatorname{Re} P_n^{(k)}(x)$ в точке $x=z_0==\rho(\cos\phi+i\sin\phi)$ как линейный функционал $F_{z_0,\cos}^{(k)}$, заданный на $\{L_n(x)\}$ конечной последовательностью

$$0_0, 0_1, \dots 0_{k-1}, k!, (k+1)! \rho \cos \varphi, \dots \frac{n!}{(n-k)!} \rho^{n-k} \cos(n-k) \varphi.$$
 (2)

Пусть $Q_n(x,z_0)$ — экстремальный полином функционала $F_{z_0\cos}^{(k)}$, т. е.

$$\|F_{z_0\cos}^{(k)}\| = N_{z_0\cos}^{(k)}(\rho,\varphi) = \operatorname{Re} Q_n^{(k)}(z_0,z_0).$$

Тогда для любого полинома $L_n(x)$ с действительными коэффициентами

$$\max |\operatorname{Re} L_n^{(k)}(z_0)| \leqslant M_L \, N_{z_0\cos}^{(k)}(\rho, \varphi) = M_L \operatorname{Re} Q_n^{(k)}(z_0, z_0) \, ,$$
 где
$$M_L = \max_{[0,1]} |L_n(x)|.$$

Итак, задача о нахождении полинома, на котором достигается $N_{z,\cos}^{(k)}(\rho,\phi)$ в заданной точке $x=z_0$, сводится к изучению экстремальных полиномов функционала $F_{z,\cos}^{(k)}$.

Пусть, по-прежнему, $0=\tau_0<\tau_1<\tau_2<...<\tau_{n-1}<\tau_n=1$ — точки, в которых $|T_n(x)|=1$. И пусть $R_{n+1}(x)=\prod\limits_{i=0}^n (x-\tau_i)$, $R_{n+1,m}(x)=\frac{R_{n+1}(x)}{x-\tau_m}$, ρ_0 , k— наибольший корень полинома $R_{n+1}^{(k)}(x)$.

Теорема 1—3. На полуокружности *) радиуса $\rho \geqslant \rho_{0,k}$ имеется n-k+1 дуг $\left[\alpha_m^{(k)}(\rho),\ \beta_m^{(k)}(\rho)\right]$ $(k=1,\ 2,...n,\ m=1,\ 2,...n-k+1)$, в точках которых экстремальным для функционала (2) является один из полиномов $\pm T_n(x)$; границы дуг: $\alpha_1^{(k)}=0;\ \alpha_2^{(k)},\ \alpha_3^{(k)},...\alpha_{n-k+1}^{(k)}$ —корни уравнения $F_{z,\cos}^{(k)}[R_{n+1,n}]=0$ на $[0,\pi];\ \beta_1^{(k)},\ \beta_2^{(k)},...\beta_{n-k}^{(k)}$ —корни уравнения $F_{z,\cos}^{(k)}[R_{n+1,0}]=0$ на $[0,\pi]$ и $\beta_{n-k+1}^{(k)}=\pi$.

Назовем эти дуги чебышевскими.

В последующих теоремах будут фигурировать полиномы паспорта [n,n,0], введенные Е. И. Золотаревым [2] и подробно исследованные Е. В. Вороновской [1]. Это — семейство полиномов, входящее в класс Y_n и зависящее от одного переменного параметра; в качестве такого параметра можно взять старший коэффициент. В этом случае полиномы имеют вид:

$$Q_n(x,\vartheta) = \vartheta x^n - y_{n-1}(\vartheta) \, x^{n-1} + \ldots + y_1(\vartheta) x + y_0(\vartheta)$$
. При непрерывном убывании ϑ от 2^{2n-1} до -2^{2n-1} поли-

^{*)} В этой теореме и во всех последующих окружности рассматриваются с центром в начале координат.

$$\min_{[0,\pi]} N_{z}^{(k)}(\rho,\varphi) = N_{n}^{(k)}(\rho,0) = T_{n}^{(k)}(\rho), k = 0,1,2...n-1.$$

Во второй части пятой главы задачи III и IV рассматриваются при условии, что $x=z_0=\xi$ является любым действительным числом. При таком ограничении задачи III и IV рассматривались А. А. Марковым [4], В. А. Марковым [5], С. Н. Бернштейном [6—8], Шеффером и Даффином [9], а в последние годы — в работах Е. В. Вороновской [10] (случай k=1) и В. А. Гусева [11] $(k=2,\ 3,...n)$.

Пусть $N_1(\xi) = \sup_{P_n \in Y_n} |P_n'(\xi)|$. В работе [10] сформули-

рованы, между прочим, следующие утверждения:

1) на сегменте [0, 1] имеется n чебышевских сегментов $[\overline{\alpha}_i^{(1)}, \ \overline{\beta}_i^{(1)}], \ i=1,\ 2,...n$, в точках которых N_1 (ξ) достигается на одном из полиномов $\pm T_n(x)$; границы сегментов: $\overline{\alpha}_2^{(1)}, \ \overline{\alpha}_3^{(1)}, ... \ \overline{\alpha}_n^{(1)}$ — корни уравнения $\frac{d}{dx} \left(\frac{R_{n+1}(x)}{x} \right) = 0$

н
$$\overline{\alpha}_1^{(1)} = 0$$
; $\overline{\beta}_1^{(1)}$, $\overline{\beta}_2^{(1)}$,... $\overline{\beta}_{n-1}^{(1)}$ — корни уравнения $\frac{d}{dx} \left(\frac{R_{n+1}(x)}{x-1} \right) = 0$ н $\overline{\beta}_n^{(1)} = 1$. (Здесь $R_{n+1}(x) = \prod_{i=0}^n (x-\tau_i)$).

2) на сегменте [0,1] имеется n-1 точек $\{\xi_{0,i}^{(1)}\}_{i=1}^{n-1},$ расположенных по одной на интервалах $(\overline{\beta}_i^{(1)}, \overline{\alpha}_{i+1}^{(1)}),$ $i=1,\ 2,...n-1$, которые являются точками minima для $N_1(\xi)$.

Ниже формулируются дополняющие утверждения.

Теорема 4—5. На интервале $(\varepsilon, 1-\varepsilon)$, где $\varepsilon > 0$ — сколь угодно малая фиксированная величина, имеют место следующие асимптотические выражения для границ $\{\overline{\alpha}_i^{(1)}\}$, $\{\overline{\beta}_i^{(1)}\}$ чебышевских сегментов:

$$\overline{\alpha}_{i}^{(1)} = \cos^{2}\frac{(2i+1)\pi}{4n} - \frac{1}{2n^{2}} + O\left(\frac{1}{n^{4}}\right),$$

$$\overline{\beta}_{i}^{(1)} = \cos^{2}\frac{(2i+1)\pi}{4n} + \frac{1}{2n^{2}} + O\left(\frac{1}{n^{4}}\right).$$

$$(\varepsilon < \overline{\alpha}_{i}^{(1)}, \ \overline{\beta}_{i}^{(1)} < 1 - \varepsilon)$$

Теорема 6-5.

$$0 < \lim_{n \to \infty} \left[|T'_n(\bar{\beta}_{n-t}^{(1)})| \cos^2 \frac{\pi}{2n} - N_1(\xi_{0,n-t}^{(1)}) \right] < C_i,$$

$$\lim_{n\to\infty} \frac{N_1\left(\xi_{0,n-i}^{(1)}\right)}{n^2} = \lim_{n\to\infty} \frac{\left|T_n'\left(\overline{\beta}_{n-i}^{(1)}\right)\right|}{n^2} = \frac{4\left|\sin\frac{(2i+\Delta_i)\pi}{2}\right|}{(2i+\Delta_i)\pi},$$

где $C_i < \frac{25}{48} (\ 2i+1)^i, \ 0.8 < \Delta_i < 1, \ i=1,2,...k_0$ и k_0 — фиксированное число.

В заключение главы V приведены значения $\lim_{n\to\infty} \frac{N_1(\xi_{0,i}^{(1)})}{n^2}$ (вычисленные с точностью до 0, 0001) для i=1, 2, 3, 4, 5.

Результаты, содержащиеся в диссертации, опубликованы в статьях [12] — [14].

ЛИТЕРАТУРА

1. Е. В. Вороновская. Метод функционалов и его приложения. ЛЭИС. 1963

ния. ЛЭИС, 1963. 2. Е. И. Золотарев. Приложение эллиптических функций к вопросам о функциях, наименее и наиболее уклоняющихся от нуля (1887). Поли. собр. соч., вып. 2, изд. АН СССР, Л., 1932.

3. С. Н. Бериштейн. Об одном свойстве многочленов. (1913).

Собр. соч., т. І, № 10, 1952, 146—150.

4. А. А. Марков. Об одном вопросе Д. И. Менделсева, Изв. СПб акад. наук, т. 62, 1889, 1—24.

5. В. А. Марков. О функциях, наименее уклоняющихся от ну-

ля в данном промежутке. СПб, 1892.

6. С. Н. Бернштейн. О наилучшем приближении непрерывных функций посредством многочленов данной степени (1912). Собр. соч., т. I, № 3, 1952, 11—104.

7. С. Н. Бериштейн. Несколько замечаний к перавенству

Владимира Маркова. Собр. соч., т. І, № 11, 1952, 151—156.

8. С. Н. Бериштейн. О теореме В. А. Маркова (1938). Собр.

соч., т. II, № 75, 1952, 281—286.

9. A. C. Schaeffer and R. I. Duffin. On some inequalities of S. Bernstein and W. Markoff for derivatives of polynomials, Bull. Amer. Math. Soc., 44, No. 4, 1938, 289-297.

10. Е. В. Вороновская. Функционал первой производной и уточнение теоремы А. А. Маркова. Изв. АН СССР, серия матем., 23,

1959, 951—962.

11. В. А. Гусев. Функционалы производных от алгебраического полинома и теорема В. А. Маркова. Изв. АН СССР, серия матем., 25, 1961, 367—384.

ВНАКОМИТЕЛЬНЫЙ ФРАГМЕНТ
12. М. Я. Зингер. О корнях тригонометрических полиномов. ДАН СССР, т. 161, № 6, 1965, 1263—1266.
13. М. Я. Зингер. Функционалы производных на комплексной плоскости, ДАН СССР, т. 166, № 4, 1966, 775—778.
14. Е. В. Вороновская и М. Я. Зингер. Оценка полинома на комплексной плоскости. ДАН СССР, т. 143, № 5, 1962, 1921—1025.