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CHAPTER 1. HIGHER ALGEBRA 
 

§1. Matrices and determinants 
Definition. A matrix is a rectangular table made up of numbers. A matrix 

is usually designated by a capital letter of the Latin alphabet, and its elements by 

the same lowercase letter with two indices, the first (or upper) of which denotes 

the row number, and the second (or lower) - the number of the column in which 

the given element is located.  

For example,  

      A = 






1  

 
2  

 
3  

 
4

5  
 
6   7  

 
8

                                              (1.1) 

This is a matrix consisting of 2 rows and 4 columns. We say that it has 

dimensions 24. In it  a11 =1, a12 =2, and  a21 =5. Instead of numbers, the matrix 

can contain variables. Two matrices are considered equal if they have the same 

size, and all their elements in the same places are equal. 

Definition.  A matrix of dimensions  nn  is called a square matrix of or-

der  n. The elements of a square matrix whose row and column numbers coin-

cide form the main diagonal. If all elements outside the diagonal are zero, the 

matrix is called diagonal. A diagonal matrix with ones on its main diagonal is 

called a unit matrix and is denoted by the letter E. For example, the unit matrix 

of order 3 has the form 

                                          E = 






1  

 
0  

 
0

0  
 
1   0

0  
 
0  

 
1

                                                     

If all elements of the matrix below (above) the main diagonal are equal to zero, 

then the matrix is called upper triangular (lower triangular). A matrix whose 

elements are all equal to zero is called zero and is denoted by  O. 

Definition.  The transposition of a matrix A is a permutation of its ele-

ments in which each element aij changes places with the element aji. The matrix 

that results from the transposition is denoted by A
T
. For example, for the matrix (1.1)   

A
T
=











 

1   5

2   6

3   7

4   8

,     

Definition.  The concept of determinant is introduced only for square ma-

trices. The determinant of a matrix A is denoted by  det A or |A |. If instead of 

round brackets there are straight brackets around the matrix elements, then this 

also means the determinant of the matrix. The determinant of a matrix of order 2 

is calculated by the formula: 







a11  a12 

a21  a22 
 = a11a22 – a12a21. 
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Let us assume that we already know how to calculate the determinant of a 

matrix of order  n1, and and that A is a matrix of order  n. If we delete the i-th 

row and j-th column from the matrix, we get a matrix of order n1. Let  Mij be 

the determinant of this matrix. It is called the minor complement to the element  

aij. Let us add a minus sign to this minor in the case where i+j is odd. The result-

ing number is called the algebraic complement to the element aij; we will denote 

it by Aij. We can write that   

Aij =(1)
i + j

Mij. 

Now we choose an arbitrary row in the matrix A and multiply each ele-

ment of this row by its algebraic complement; add the resulting numbers. The 

value that we have calculated in this way is called the determinant of the matrix 

A. It can be shown that the result of the calculation does not depend on which 

row of the matrix we choose. For example, if we choose the first row, we get a 

formula called the expansion of the determinant by the first row: 

detA = a11A11+  a12A12+…+a1nA1n.  

For a matrix of order 3, this formula looks like this: 

       






a11  a12  a13

a21  a22  a23

a31  a32  a33

= a11A11 + a12A12 +
 
a13A13 = a11M11 – a12M12 +

 
a13M13 = 

                                                = a11





a22  a23 

a32  a33 
– a12






a21  a23 

a31  a33 
  + a13






a21  a22 

a31  a32 
. 

We took the second term with a minus sign because 1+2  is odd. 

           

Example: 

  






1  

 
2  

 
3

4  
 
5  

 
6

7  
 
8  

 
9

  =  1· 






5   6
 

8   9
 

 
– 2· 






4   6
 

7   9
 + 3· 






4   5
 

7   8
  =  

                         =
 
1· (5·

 
9 – 6

 
·
 
8) – 2·

 
(4·

 
9 – 6·7)

 
+

 
3· (4·8

 
–

 
5·7) = –3

 
+12 – 9 = 0. 

We formulate the following properties only for rows, but they are also 

true for columns. 

 

Properties of the determinant 

1.  If one row of the determinant consists only of zeros, then the determi-

nant is zero. 

2.  If the determinant contains two identical or proportional rows, then it 

is zero. 

3.  When two rows of a matrix are permuted, the determinant changes sign. 

4.  The common factor of the elements of one row can be taken out of the 

sign of the determinant.  
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In the previous example, all elements of the third column are multiples of 

three. Therefore, we can take the factor 3 outside the determinant sign: 

 






1  

 
2  

 
3

4  
 
5  

 
6

7  
 
8  

 
9

  = 3· 






1  

 
2  

 
1

4  
 
5  

 
2

7  
 
8  

 
3

 

5.  If one row of a determinant is represented as the sum of two rows, then 

the determinant is equal to the sum of the two corresponding determinants. For 

example, 







  1       2      3

4+a  
 
5+b  

 
6+c

  7       8      9 
=






1  

 
2  

 
3

4  
 
5  

 
6

7  
 
8  

 
9

+






1  

 
2  

 
3

a  
 
b  

 
c

7  
 
8  

 
9

 

6.  If the elements of one row of a matrix are added to the corresponding el-

ements of another row, multiplied by a certain number, then the determinant of 

the matrix will not change. 

In our example, we add the first row multiplied by –1 to the second and 

third rows (the first row itself remains in its place without changes):  

 






1  

 
2  

 
3

4  
 
5  

 
6

7  
 
8  

 
9

= 






1  

 
2  

 
3

3  
 
3  

 
3

6  
 
6  

 
6

 

We got two proportional lines, therefore the determinant is equal to zero. 

7.  The determinant of a triangular matrix is equal to the product of the di-

agonal elements:  

 






1  

 
2 1

0 3  
 
6

0  
 
0  

 
9

  =  1·
 
(–3)

 
·

 
9 =

 
 –

 
27. 

A diagonal matrix is a special case of a triangular matrix. Therefore, its determi-

nant is also equal to the product of the diagonal elements. 
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§2. Linear operations on matrices 
Linear operations on matrices are operations of adding two matrices and 

multiplying a matrix by a number.  

Only matrices of the same size can be added. In this case, their elements 

that are in the same places are added. As a result of addition, a matrix of the 

same size is obtained.  









a11   a12 … 

 
a1n

a21   a22  … 
 
a2n

…   …  …  …

am1   am2 … amn 

 + 









b11   b12 … 

 
b1n

b21   b22  … 
 
b2n

…   …  …  …

bm1   bm2 … bmn 

 = 









a11+b11  a12+b12 … 

 
a1n+b1n

a21+b21  a22+b22 … 
 
a2n+b2n

   …         …       …     …

am1+bm1  am2+bm2… 
 
amn+bmn 

()
. 

 

For example,  

A=








 

1   4

2   5

3   6
,    B=







  1  1

–2    2

  3  –3
,    A+B=









 

1+1   4–1

22   5+2

3+3   63

 
= 








 

2   3

0   7

6   3
. 

When a matrix is multiplied by a number, each of its elements is multiplied by 

that number:  

·









a11   a12 … 

 
a1n

a21   a22  … 
 
a2n

…   …  …  …

am1   am2 … amn 

= 









a11   a12 … 

 
a1n

a21   a22  … 
 
a2n

 …      …    …   …

am1   am2 … amn 

. 

For example, for matrix A from the previous example 

3·A=








 

3   12

6   15

9   18
. 

We denote the matrix  –1·A   as  –A . 

 

Properties of linear operations on matrices 

1.  A+B=B+A ;      5.  (A+B)=A+B ;  

2.  (A+B)+C=A+(B+C);    6.  (+)A=A+A;  

3.  A+O=A;      7.  ()A=(A) ;  

4.  A+(–A)=O;      8.  1·A=A .  
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§3. Cramer's Rule 

Let a system of linear equations (SLE) be given in which the number of 

equations coincides with the number of unknowns. We will limit ourselves to 

the case when this number is equal to 3:  






 

a11x1 + a12x2 + a13x3 =
 
b1,

a21x1 + a22x2 + a23x3 =
 
b2,

a31x1 + a32x2 + a33x3 =
 
b3.

                                      (1.2) 

The numbers aij are called the coefficients of the system, and the numbers b1, b2, 

b3  are called the free terms. A solution to a system of linear equations is any set 

of numbers  (1, 2, 3), such that when substituted for the unknowns   x1, x2, x3  

all equations of the system are transformed into true equalities. The coefficients 

of the system form the matrix A, and the free terms form the column B: 

                                        A= 






a11  a12  a13

a21  a22  a23

a31  a32  a33

 ;  B
 
= 






b1

b2

b3

. 

Let us denote  
 
= detA, and   i  is the determinant of the matrix that is obtained 

from A by replacing the  i-th column with the column of  B. For example, 

                                              1= 






b1  a12  a13

b2  a22  a23

b3  a32  a33

. 

Theorem 1.1 (Cramer's Rule). If  0, then the system of linear equa-

tions (1.2) has a unique solution. It can be found using the formulas 

                                     x1 = 
1


 ,  x2 = 

2


 ,  x3 = 

3


 . 

This theorem is also true for systems consisting of an arbitrary number n 

of equations and unknowns.  

 

Examples of problem solving 

1. Find a solution to the system of equations 





 
5x + 9y = 3,

3x + 5y = 1.
 

Solution. 

=






5  

 
9 

3   5 
= –2,     1 =







3  

 
9 

1   5 
= 6,     2 =







5  

 
3 

3   1 
= – 4. 

                     x =
1


 = 

6

–2
 = –3,   y =

2


 = 

–
 
4

–2
 = 2. 
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Before writing the answer, we perform a check. To do this, we substitute 

the found values into the system of equations: 

 




 
5(–3) + 92 =  3, – true 

3(–3) + 52 = 1– true.
 

 

Answer:  (–3, 2). 

 

2. Find a solution to the system of equations 

 





 

  x1 +
 
2x2 +

 
x3 =

 
6,

3x1 + x2 
 
3x3 =

 
2,

2x1 + x2 – x3 =
 
3.

 

Solution.  


 
= 








1   2    1

3   1  3

2   1  1

= –3,  1
 
= 








6   2    1

2   1  3

3   1  1

 = –3, 2=








1   6    1

3   2  3

2   3  1

= –6, 3
 
= 








1   2   6

3   1   2

2   1   3
= –3, 

x1 = 
1


 = 
3

–3
 = 1,   x2 = 

2


 = 

–
 
6

–3
 = 2,   x3 = 

3


 = 
3

–3
 = 1. 

Answer:  (1, 2, 1). 

Excersise. Check this answer independently. 
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EXAMPLES OF PROBLEM SOLVING 
 

§4. Matrix multiplication 

Let 

a=( )a1  a2 … ak    and    b
 
= 









b1

b2



bk 

 – 

be a row and a column consisting of the same number of elements. Define 

a·b
 
= a1b1+a2b2+… +akbk. 

Now let A be a matrix of the dimension  mk,  and B a matrix of size  

kn, i.e. the number of columns in matrix A is equal to the number of rows in 

matrix B, or, equivalently, the length of a row in matrix A is equal to the height 

of a column in matrix B. Then we can multiply the rows of matrix A by the col-

umns of matrix B. Let  a i= ( )ai1   ai2 … aik  be the i-th row of matrix A, and   

bj
 
= 









b1j

b2j



bkj 

 be is the j-th column of matrix B. Let 

cij = a i·bj
 
= ai1b1j

 
+ ai2b2j

 
+… +

 
aikbkj,   i=1,…,m,  j=1,…,

 
n. 

The numbers cij form a matrix C of dimensions  mn, which is called the prod-

uct of matrices A and  B:  

C
 
= AB

 
= 









a1·b1   

 
a1·b2 … 

 
a1·bn

a2·b1  
 
 a2·b2  … 

 
a2·bn

  …     …      …   …  

am·b1   am·b2 … am·bn

. 

Note 1. We can rearrange numbers when multiplying. Matrices cannot be 

rearranged. If the product  AB  is defined, then the product BA may not be de-

fined. If both products are defined, then the matrices  AB  and  BA  are neces-

sarily square, but they may have different orders. For example, if A has dimen-

sions 23 and B has dimensions 32, then AB has order 2 and BA has order 3; it 

turns out that these matrices cannot be compared at all:   

Even if both products  AB  and  BA  are defined and have the same order, 

we can get   ABBA. For example, 
 







1  

 
1

0   0 





0  

 
0

1   1
 
=

 







1  

 
1

0   0
,  






0  

 
0

1   1 





1  

 
1

0   0
 
=

 







0  

 
0

1   1
. 

 

It turns out that  AB=A,  and  BA=B.  

Definition.  If  AB=BA, then matrices  A  and  B  are said to commute. 
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Example.    







  4 

 
  3

–3    4
 






12 

 
  5

–5   12
 
=

 







  33  56

–56  33
 = 







12 

 
  5

–5   12 





  4 

 
  3

–3    4
 

Note  2.  From the equality  AB=O   it does not automatically follow that 
one of the matrices is zero. This is shown by the following example. 







  1 

 
–2

–3    6
 






2   5

1  10
 
=

 







0  

 
0

0   0
 

 

Properties of the matrix multiplication operation (selective). 

1.  If  A  is a square matrix of order  n  and  E  is the identity matrix of the 
same order, then  AE = EA = A. Thus, the identity matrix behaves like the num-
ber 1 when multiplied. 

2.  AO = O, OA = O (if the corresponding products are defined). 

3.  If the products  AB  and (AB)C are defined, then the products BC and 

A(BC) are defined; moreover, (AB)С= A(BС). 

4.  If  A(B +С)  makes sense, then  A(B +С)=AB + AС. If (A+B)С  

makes sense, then, then  (A + B)С= AС+ BС. 

5.  (AB) = (A)B = A(B). 

6.  If the product  AB  is defined, then  B
T
A

T
  is also defined and  

(AB)
T
=B

T
A

T
. 

7.  If  A  and  B  are square matrices of the same order, then  detAB =  

= detA·detB. 
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§5. Gauss method for solving systems of linear equations 

We will present the Gauss method for systems of 3 linear equations with 

three unknowns. However, it can be used for systems of arbitrary size. 

Let a system of linear equations be given:  






 

a11x1 + a12x2 + a13x3 =
 
b1,

a21x1 + a22x2 + a23x3 =
 
b2,

a31x1 + a32x2 + a33x3 =
 
b3.

                                      (1.2) 

If all coefficients in the first column are equal zero a11= a21= a31=0, then the un-

known value x1  does not participate in the equation at all, and it can take any value. 

Let at least one of the coefficients a11, a21, a31  be non-zero. If  a11=0, then among  

a21, a31  we choose the number that is non-zero and rearrange the corresponding 

equation to the first place. In the new system we will have  a110. In practice, we 

put such an equation to the first place so that   a11  turns out to be a divisor for  a21  

and  a31. It is best if after the rearrangement it turns out to be  a11=1. 

 

Step 1.  To the second equation we add the first equation multiplied by  

a21/a11, and to the third equation we add the first equation multiplied by  a31/a11 

(the first equation itself remains unchanged). As a result of these actions, we ex-

clude  x1  from the 2nd and 3rd equations, i.e. we obtain a system of the form 

 






 

a11x1 + a12x2 + a13x3 =
 
b1,

             с22x2 + с23x3 =
 
d2,

             
 
с32x2 + с33x3 =

 
d3.

                                      (1.3) 

 

Step 2.  To the third equation we add the second equation multiplied by  

c32/c22  (the second equation itself remains unchanged). As a result of these ac-

tions we exclude  x2  from the third equation, i.e. we obtain a system of the form 






 

a11x1 + a12x2 + a13x3 =
 
b1,

             с22x2 + с23x3 =
 
d2,

             
 
            f33x3 =

 
g3.

                                      (1.4) 

This operation cannot be done if  c22 =0. In this case, we will swap equations 2 

and 3 and immediately obtain an SLE of the form (1.4). 

 

Step 3.  From the third equation we can find  x3  and substitute the found 

value into the second equation. Then from the second equation we can find the 

value of  x2. Now we substitute these values into the first equation and find the 

value of  x1. 

In the process of solving, we may get an equation that can be divided  by 

some number. Then it is worth doing.  

We may get an equation  0 = k, where k is some number not equal to zero. 

Then we conclude that the system has no solutions.  
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We may get an equation  0 = 0. Then we can cross out such an equation. 

How to proceed in this case we will show in example 2.  

 

Example 1.

          





 

  3x1 –  x2 +
 
4x3 =

 
1,

    x1 +
 
2x2 – x3 =

 
5,

–
 
4x1  x2 +2x3 =

 
6.

 

 

Let's move the second equation to the first place. Let's ask ourselves the 

question: by what number should we multiply this equation so that after adding 

it to the second (in the new order) equation, we get no  x1? The answer is obvi-

ous: before adding it, we need to multiply the first equation by –3. In the same 

way, we determine that before adding it to the third equation, we need to multi-

ply the first by 4. We perform the actions indicated above. In this case, the first 

equation itself remains unchanged. We denote these actions with arrows: 
 

 





 

    x1 +
 
2x2 – x3 =

 
5,

  3x1 –  x2 +
 
4x3 =

 
1,

–
 
4x1  x2 +2x3 =

 
6.

                         




 

x1 +
 
2x2 – x3 =

 
5,

   –
 
7x2 +

 
7x3 =

 
14,

        7x2 
 
2x3 =

 
14.

 

 

If you do not have sufficient calculation skills, you can separately, apart from 

the general solution, perform the above actions in parts. Namely, first multiply 

the first equation by –3, and then add it to the second equation; first multiply the 

first equation by 4, and then add it to the third equation. When formalizing the 

solution, leave these actions on the draft. 

Next we see that we can divided the second equation by –7. But it is more 

convenient to do this after we add the second equation to the third. We also de-

note these actions. 
 

 




 

x1 +
 
2x2 – x3 =

 
5,

   –
 
7x2 +

 
7x3 =

 
14,

        7x2 
 
2x3 =

 
14.

           : (7)       





 

x1 +
 
2x2 – x3 =

 
5,

         x2 
  
x3 = 2 ,

                  5x3 =
 
0.

                    (1.5) 

 

Next we draw a curly bracket on three lines and write on the last line   

x3 =
 
0. Then on the second line we calculate  x2, and finally on the first line we 

calculate  x1. 

 





 

x1 = 52x2 + x3 = 1 ,

x2 =
  
x3 + 2 = 2,

x3 =
 
0.

 

Checking:

  





 

    1 +
 
2·2 – 0 =

 
5 – true,

  3  –  2 +
 
4·0 =

 
1 – true,

–
 
4  2 +2·0 =

 
6 – true.

  

Answer:  (1,
 
2,

 
0). 

4 –3 

+ 
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Transformations can be performed not on the system of equations, but on 

its extended matrix, reducing its right-hand side to a triangular form. We will 

demonstrate these actions using the previous example. 

 

   






   1    2  –1

   3  –1   4

 –4  –1   2 

  5

 
–1
 
14

                    






1    2  –1

0  –7   7

0   7 – 2 

   5

 
–14

  14
                       







1   2  –1

0   1  –1

0   0    5 

5

2

0
 

 

After these transformations we can write out the system of linear equa-

tions (1.5) again. But there is another way to continue the solution: using the 

transformations we bring the matrix of the system of equations (not expanded) 

to a diagonal form. To do this, we first get one in the last row and use it to zero 

all the elements above it. In this case, the actions are performed on the entire 

row, but since the third element in the last column is equal to zero, the elements 

of the last column will not change. 

 

 






1   2  –1

0   1  –1

0   0    5 

5

2

0
                 







1   2  –1

0   1  –1

0   0    1 

5

2

0
                      







1   2   0

0   1   0

0   0   1 

5

2

0
 

 

The purpose of the next step is to get zeros in the second column above the di-

agonal. To do this, we first divide the second row by the number in that row on 

the diagonal in order to get a unit in the place of that number. In our example, 

we already have a unit in the place we need. 

 







1   2   0

0   1   0

0   0   1 

5

2

0
                   







1   0   0

0   1   0

0   0   1 

1

2

0
 

 

A system of linear equations for this matrix look like this: 

 






 

x1            =
 
1,

      x2       = 2 ,

               x3 =
 
0.

 

 

In fact, we have obtained a ready-made solution. For systems consisting of two 

or three equations, the use of matrices does not lead to a reduction in the time 

spent on the solution. But when solving systems with a large number of equa-

tions, the use of matrices is fully justified. We will show this in Example 4. 

4 –3 

+ 
: (7) 

: 5 + 
–4 

–2 
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Example 2.

   




 

   
 
x1 +

 
3x2 11x3 =

 
1,

   x1 +5x2 – 25x3 =
 
7,

5x1 
 
9x2 +13x3 =

 
13.

                   




 

x1 +
 
3x2 11x3 =

 
1,

     2x2 14x3 =
 
6,

     6x2 
 
42x3 =

 
18.

             :2 





 

x1 +
 
3x2 11x3 =

 
1,

          x2 7x3 =
 
3,

                  0 =
 
0.

 

We can cross out the last equation. The number of equations turned out to 

be less than the number of unknowns. We can move any of the unknowns  x2  or  

x3  to the right side and assign it an arbitrary value, for example, 0 или 1 (as you 

find more convenient). In our system, it is more convenient to move  x3  to the 

right side and assign it the value  x3 =0. Then we will find the corresponding 

values of   x1  and  x2: 

 






 

x1 +
 
3x2 =

 
1,

x2 =
 
3,

x3 =0.
         






 

x1 =
 
1

 
3x2 =19=8,

x2 =
 
3,

x3 =0.
 

 

What we have found is called a particular solution of the system. But it is 

not the only one: we could have given any other value instead of  x3   and ob-

tained a different answer. The general solution of the system is sought in the fol-

lowing way. We give  x3  not a numerical value, but the value of an arbitrary pa-

rameter, and then find the corresponding values of  x1  and  x2  (which will also 

depend on this parameter): 

 






 

x1 +
 
3x2 =

 
1+11a,

x2 =
 
3+7a,

x3 =a , aR.
          





 

x1 =
 
1+11a3x2=1+11a3(3+7a)=810a,

x2 =
 
3+7a,

x3 =a , aR.

 

Answer:  (810a, 3+7a,
 
a ), aR. 

 

Example 3.  An SLE is called inconsistent if it has no solutions. Now we 

will give an example of an inconsistent SLE. 

  





 

  2x1 + 3x2 – x3  = – 4,

  4x1 + 5x2 – 5x3 = – 3,

–6x1 – 7x2 + 9x3 = 20.
                       






 

2x1 + 3x2 – x3 = – 4,

          –x2 – 3x3 = 5 ,

          2x2 + 6x3 = –2.
               






 

2x1 + 3x2 – x3 = – 4,

          –x2 – 3x3 = 5 ,

                  0 = 8.
 

We got the wrong equality  8 = 0.  

Answer: The system has no solutions. 

 

5 1 

3 

3 –2 

2 
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§7. Diagonalization 

Properties 3, 4, 6 and 7 of the determinant (see §1) allow us to use the meth-

od of reduction to diagonal form by means of elementary transformations, which 

we will briefly call the Gauss method, to calculate the determinant. It is very simi-

lar to the corresponding method for solving systems of linear equations. But there 

are differences.  

1. In the process of solving systems of linear equations, we could freely 

rearrange the equations and divide the equation by any number. When calcu-

lating the determinant, it should be taken into account that it changes in the 

process. 

2. In the process of solving systems of linear equations, we performed ac-

tions only on rows, but when calculating the determinant, we can perform the 

same actions on columns. 

So, we will classify the following actions as elementary transformations 

of the determinant. 

1. A permutation of two rows or columns. In this case, the determinant 

changes sign. 

2. Multiplication of a row or column by a (non-zero number) number dif-

ferent from zero. In this case, the determinant is also multiplied by this number. 

In other words, we use the property: the common factor of the elements of one 

row or one column is taken out of the determinant sign. 

3. Adding to one row (or column) another row (or column), multiplied by a 

certain number. In this case, the row (column) that we add does not change itself. 

Let us consider this method using the example of calculating a fourth-

order determinant. Our task is to obtain zeros below the main diagonal using el-

ementary transformations of the determinant.  

Example.  Calculate the determinant  using the Gauss method if 

 

 = 









4  13  12  11

0    2     5    
 
2

6   15  30  
 
5

2    6    8    5

 

 

Step 1. First, we want to get zeros in the first column in all rows except 

the first. In the next determinant, it is more convenient for us to put the fourth 

row in first place. To do this, we need to swap it alternately with rows 3, 2 and 

1. This means that we make three permutations of the rows. Each of these per-

mutations changes the sign of the determinant, which means that with a com-

plete permutation, the sign will also change. 
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 =  









2    6    8    5

4  13  12  11

0    2     5    
 
2

6   15  30  
 
5

          .  

 

Here we have indicated further actions with arrows: we add the first line multi-

plied by –2 to the second line of the determinant, and we add the first line multi-

plied by –3 to the fourth line (the first line itself, however, remains unchanged). 

We have obtained zeros in the first column below the main diagonal.  

 =  









2    6    8    

 
5

0    1     4     1

0    2     5     2

0  3  6  10

. 

Step 2. The next step is to get zeros in the second column below the main 

diagonal. To do this, we add the second row of the matrix multiplied by –2 to 

the third row, and add the second row multiplied by 3 to the fourth row. 

 =  









2    6    8    

 
5

0    1     4     1

0    2     5     2

0  3  6  10

           =  









2   6  8   5

 

0   1    4   1
 

0   0  3   0
 

0   0   
 
6  7

 

Step 3. Next we should get zeros in the third column below the main diagonal. 

As a result, we obtained an upper triangular matrix, the determinant of which we 

calculate as the product of the diagonal elements. 

 

 =  









2   6  8   5

 

0   1    4   1
 

0   0  3   0
 

0   0   
 
6  7

      =









2   6  8   5

 

0   1    4   1
 

0   0  3   0
 

0   0   
 
0  7

= –2·1·(3)·(7) =42. 

3 

–2 

3 

–2 

2 
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Tasks for independent solution 
 

Problem 1.  Matrices A and B are given. Calculate the products  AB,  BA, AB
Т
, 

A
Т
B

Т
, if these products are defined (has sense). 

1.  A =






1 2    3

7   2  3
,  В=







1   1

4   2

5   1
 ;   11. A =







  6 3  1

4   2    1
,  В=







2   2

4   1

0   9
 ; 

2. A =






8    4   1

5  3   2
,  В=







  1   2

2   6

  0   4
 ;  12. A =







2  2  1

4  5  3
,  В=







1   0

2   3

2   6
 ; 

3. A =






12   3   2

  3   5   4
,  В=







  2   1

2 4

1   0
 ;  13. A =







3  

 
2  1

  3 2  7
,  В=







5   1

4   2

1   1
 ; 

4.  A =






3   6    0

8   3  2
,  В=







1   4

  2  2

1   1
 ;  14. A =







  1   4   8

2   3 5
,  В=







  0   4

2   6

  1   2
 ; 

5. A =






1   2   2

3   5   4
,  В=







 

 
2   6

2 3
  
1   0

 ;   15. A =






2   3   12

4   5    3
,  В=







  1   0

  2 4

2   1
 ; 

6. A =






  1   3  6

1  2   4
,  В=







0   9

4   1

2   2
 ;  16. A =







  1   0

  2   5

 3  1 
,  В=







1   3    5

 2  2    1
 ; 

7.  A =






11  2   5

 1   9   3
,  В=







  0 1

  1   3

3  
 
1

 ;  17. A =






1   2

0   5

1   4
 ,  В=







1    9   5

0  2   1
 ; 

8. A =






7   2  1

2   6  4
 ,  В=







5   

 
1

  3  2

  2   
 
3

 ; 18. A =






 1   2 

 0   5 
,  В=







2   

 
1

 3  2 
 ; 

9. A =






9  

 
1 4

7 5  2
,  В=







  1  2

5  4

  1  3
 ;   19. A =







1   8

3   5

0   2
,  В=







  5   4   9

 1  3 2
 ; 

10. A =






  2   8   5

3   1   2
,  В=







7   6

  3   0

2   9
 ; 20. A =







1   8

3   5

2   2
,  В=







  5   4   6

 1  3 2
 ; 

 

Problem 2.  Solve the system of equations using Cramer's rule. Check the 

answer. 

1.
    




 
6x

 
+

 
11y

 
=

 
14,

8x
 


 
5y

 
=

 
1.

 
8.

    



 
8x

 
+

 
9y

 
=

 
7,

4x
 


 
12y

 
=

 
2.

 
15.

   



 
7x

 
+

 
6y

 
=

 
2,

5x
 
+

 
8y

 
=

 
7.

 

2.
    




 
6x

 
+

 
7y

 
=

 
9,

9x
 


 
5y

 
=

 
2.

  
9.

    



 
6x

 
+

 
10y

 
=

 
14,

9x
 


 
7y

 
=

 
1.

 
16.

   



 
12x

 


 
5y

 
=

 
1,

 4x
 


 
7y

 
=

 
5.

 

3.
    





 
9x

 
+

 
12y

 
=

 
3,

6x
 
+

 
10y

 
=

 
3.

  
10.

   



 
4x

 
+

 
11y

 
=

 
5,

6x
 
+

 
5y

 
=

 
4.

 
17.

   



 
 9x

 


 
8y

 
=

 
11,

12x
 
+

 
5y

 
=

 
1.
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4.
    




 
6x

 


 
11y

 
=

 
7,

 9x
 


 
5y

 
=

 
1.

 
11.

   



 
11x

 


 
6y

 
=

 
14,

 5x + 8y = 1.
 

18.
   



 
 9x

 


 
8y

 
=

 
7,

12x
 
+

 
4y

 
=

 
2.

 

5.
    




 
6x

 


 
7y

 
=

 
2,

8x
 


 
5y

 
=

 
7.

  
12.

   



 
7x

 


 
6y

 
=

 
9,

5x
 
+

 
9y

 
=

 
2.

  
19.

   



 
10x

 


 
6y

 
=

 
14,

 7x + 9y =
 
1.

 

6.
    




 
5x

 
+

 
12y

 
=

 
1,

7x
 
+

 
4y

 
=

 
5.

  
13.

   



 
12x

 


 
9y

 
=

 
3,

10x
 


 
6y

 
=

 
3.

  
20.

   



 
11x

 


 
4y

 
=

 
5,

 5x
 


 
6y

 
=

 


 
4.

 

7.
    




 
8x

 
+

 
9y

 
=

 
11,

 5x
 


 
12y

 
=

 
1.

  
14.

   



 
11x

 
+

 
6y

 
=

 
7,

 5x
 
+

 
9y

 
=

 
1.

    

 

Problem 3. Solve a system of linear equations using the Gauss method. 

1.  





 

      x1 –
 
3x2 +

 
2x3 =

 
4,

   2x1  3x2 +
 
3x3 =

 
3,

–3x1 +12x2 –
 
2x3 =

 
7.

    7.  





 

  x1 –
 
2x2 +

 
3x3 =

 
2,

4x1 
 
4x2 +

 
7x3 =

 
1,

3x1  4x2 +
 
5x3 =

 
4.

 

 2.  





 

   x1 –
 
2x2 +

 
3x3 =

 
3,

3x1  4x2 +
 
5x3 =

 
11,

4x1 
 
4x2 +

 
7x3 =

 
7.

    8.  





 

   x1 +
 
5x2 

 
2x3 =

 
1,

3x1 +
 
12x2 

 
5x3 =

 
3,

2x1 + 7x2 
 
7x3 =

 
10.

 

 3.  





 

     x1 +
 
5x2 +

 
2x3 =

 
3,

2x1  7x2 
 
7x3 =

 
3,

  3x1 +
 
12x2 +

 
5x3 =

 
4.

    9.  






 

   x1 +
 
3x2 

 
2x3 =

 
1,

2x1 + 2x2 +
 
5x3 =

 
16,

3x1 +
 
5x2 +

 
2x3 =

 
15.

 

 4.  





 

     x1 +
 
3x2 +

 
2x3 =

 
5,

3x1  5x2 +
 
2x3 =

 
3,

  2x1 +
 
2x2 –

 
5x3 =

 
4.

    10. 





 

  x1 –
 
4x2 +

 
3x3 =

 
3,

2x1  4x2 +
 
7x3 =

 
3,

3x1 
 
4x2 +

 
5x3 =

 
3.

 

 5.  





 

     x1 –
 
4x2 +

 
3x3 =

 
8,

  3x1  4x2 +
 
5x3 =

 
8,

–2x1 +
 
4x2 –

 
7x3 = 2.

   

11. 

 




 

    x1 +
 
3x2 –

 
2x3 =

 
4,

  2x1 + 3x2 
 
3x3 =

 
3,

–3x1 12x2 +
 
2x3 =

 
7.

 

 6.  





 

    x1 –
 
3x2 +

 
2x3 =

 
4,

3x1 
 
12x2 +

 
2x3 =

 
1,

2x1  3x2 +
 
3x3 =

 
9.

    

12.

  




 

    x1 +
 
2x2 

 
3x3 =

 
3,

3x1 + 4x2 
 
5x3 =11,

 4x1 +
 
4x2 

 
7x3 =

 
7.

 

13. 

 




 

     x1 
 
5x2 

 
2x3 =

 
3,

2x1 + 7x2 +
 
7x3 =

 
3,

  3x1 
 
12x2 

 
5x3 =

 
4.

   

17. 

 




 

    x1 +
 
2x2 

 
3x3 =

 
2,

4x1 +
 
4x2 

 
7x3 =

 
1,

3x1 + 4x2 
 
5x3 =

 
4.

  

14.

  




 

      x1 
 
3x2 

 
2x3 =

 
5,

3x1 + 5x2 
 
2x3 =

 
3,

   2x1 
 
2x2 +

 
5x3 =

 
4.

   18. 

 




 

    x1 
 
5x2 +

 
2x3 =

 
1,

3x1 
 
12x2 +

 
5x3 =

 
3,

2x1  7x2 +
 
7x3 =

 
10.

 

15.

  




 

      x1 +
 
4x2 

 
3x3 =

 
8,

  3x1 + 4x2 
 
5x3 =

 
8,

2x1 
 
4x2 +

 
7x3 =

 
2.

   19. 

 




 

    x1 
 
3x2 +

 
2x3 =

 
1,

2x1  2x2 
 
5x3 =

 
16,

3x1 
 
5x2 

 
2x3 =

 
15.

 

16. 

 




 

    x1 +
 
3x2 

 
2x3 =

 
4,

3x1 +12x2 
 
2x3 =

 
1,

2x1 + 3x2 
 
3x3 =

 
9.

    

20. 

 




 

    x1 +
 
4x2 

 
3x3 =

 
3,

2x1 + 4x2 
 
7x3 =

 
–3,

3x1 +
 
4x2 

 
5x3 =

 
3.
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CHAPTER 2. ANALYTICAL GEOMETRY 
 

§1. Coordinate systems on the plane 
Let us choose a point  O  on a straight line, which we will call the origin 

of coordinates, and a direction, which we will call positive. Such a straight line 
is called an axis. The direction opposite to positive will be called negative. The 
positive direction on a drawing is usually depicted to the right of the point and is 
designated by an arrow. In the positive direction of the axis from point O we 
will set aside a segment OE, which we will consider to be unitary (it sets the 
scale). We will sign point E with the number 1. Now we can talk about the dis-
tance between two points on the axis.   

Let M be an arbitrary point on a line. 
Let x=|OM |  (the distance between points O 
and M) if M belongs to the positive direction, 

and x = |OM |  if M belongs to the negative 
direction. Then x  is called the coordinate of 
point  M  on the axis (fig. 2.1). 

Let two mutually perpendicular axes 
be chosen on a plane, which intersect at a 
point O, called the origin of coordinates. 
We will call these axes coordinate axes and 
denote them Ox and Oy. In this case, we 
will also require that the rotation by 90°, 
which combines the positive direction of the 
Ox axis with the positive direction of the Oy 
axis, be carried out counterclockwise. We 
say that these axes together with the point  
O  form a Cartesian coordinate system  Oxy 
on the plane (fig. 2.2). 

Let  M  be an arbitrary point in the plane. Let us drop perpendiculars  
MM1  on the  Ox  axis and  MM2  on the  Oy  axis. Let point  M1  have coordinate 
x  on axis  Ox, and point  M2  have coordinate  y  on axis  Oy Then we say that 
point  M  has coordinates  (x,

 
y)  and write  M(x,

 
y). The x coordinate is called the 

abscissa of point  M, and the  y  coordinate is called the ordinate of point  точки  
M. The pair of numbers (x,

 
y) is called the Cartesian coordinates of point  M. 

 Let an arbitrary ray  OP  be given on 
a plane. We will call it the polar axis, and 
the point  O  the origin or the pole. Let  M 
be an arbitrary point on the plane. Denote   

r
 
=

 
|OM | , аnd   the angle between the rays  

OP  and  OM. In this case, if the rotation from 
the ray OP to the ray OM is counterclockwise, 

we consider    to be positive (fig. 2.3), and if 

clockwise, we consider    to be negative.   

M O 

x 

1 

fig.2.1 

O 

M 

M1 

M2 

x 

y 

1 
1 

fig.2.2 

O 

M(r,
 
) 

 

r 

P 
fig.2.3 
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Definition.  The pair   (r,
 
)   is called the polar coordinates of the point 

M, and the set of the point  O  and the axis  OP  is called the polar coordinate 
system on the plane. 

It is obvious that  0
 
r <

 
+, and  

for the angle    it is usually agreed  

that  0< 2, or that  –<. If  r
 
=

 
0, 

then    is considered undefined.  

Now let the Cartesian and polar 

coordinate systems with a common origin O 

be simultaneously defined on the plane,and 

let the positive direction of the Ox axis 

coincide with the positive direction of the 

OP axis (fig. 2.4). Then from  OMM1  and  

OMM2  we get 

 




 
x

 
=

 
r

 
cos ,

y
 
=

 
r

 
sin .

                     (2.1)        



 
r

 
= x

2 
+

 
y

2
,

cos= x / r ,  sin= y / r .
          (2.2) 

 

Let us emphasize that knowledge of the sine, cosine, or tangent separately does 

not allow us to uniquely determine the angle  . That is why both equalities 

cos= x / r ,  sin= y / r  should be written in formulas (2.2).  

 

fig.2.4 

M  

O  

r  

M1  

x  

y  y  

  

y  

x  

M2 
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§2. The concept  of a vector 

An ordinary segment  AB  has two ends: A and B (Fig. 2.5 a). If one of 

the points is called the beginning, and the other is the end, then the segment is 

called directed. If A is the beginning, and B is the end, then this segment is 

designated AB
 –

, and we depict it as in the figure in Fig. 2.5 b).      

 

 

 

 

                                     

 

We denote the length of the directed segment as follows: | AB
 –  

| .  

 

Definition. Directed segments AB
 –

 and A1B1

 –

  

are called equal if they have the same length and 

the same direction (fig. 2.6). We write AB
 –  

=A1B1

 –

. 
 

Definition. A vector is a class of equivalent 

directed segments. This means that each directed 

segment defines a vector, and equal directed seg-

ments define the same vector.   

Vectors are denoted by lowercase Latin letters with an arrow above: a


,
 
b


,
 

c


… If the vector  a


  is defined by the directed segment AB
 –

, then we write a
 

= AB
 –

, 

and say that  AB
 –

  is the vector  a


, laid off from the point A. On the drawing,  

the vector is depicted by any of the directed segments defining it.  

The length of a vector a


 is denoted by | a
 

| and it is equal to the length  

of the directed segment defining this vector. The direction of a vector is the  

direction of any of the segments defining this vector.  

 In other words, a vector has a length, a direction, but no specific 

beginning or end. To plot a vector from point A means to indicate a directed 

segment  AB
 –  

=
 
a


.  
 

Example. Let ABCD be a parallelo-

gram  (fig. 2.7). If  a
 

= AB
 –

, then also a
 

= DC
 –

. 

Similarly, if  b
 

= BC
 –

  then also  b
 

= AD
 –

. 

Definition. A vector whose length is 

zero is called a null vector. We denote it  o


;  

it is defined by a directed segment whose  

A 

B 
 

A1 

B1 

 

fig.2.6 

A B 

D C 

fig.2.7 

A 

B 
 

fig.2.5 a) 

A 

B 
 

fig.2.5 b) 
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beginning and end coincide. For example,  o
 

= AA
 –

. A vector whose length is 

equal to 1 is called a unit vector. 

 

Definition. Vectors that have the same directions are called co-

directed, and those that have opposite directions are called oppositely di-

rected. We write  a
 


 b
 

  or  a
 


 b
 

. Vectors whose directions coincide or are 

opposite are called collinear. We write a
 || b

 
. It is considered that o

 
 has no 

defined direction and is collinear with any vector. Vectors parallel to one 

plane are called coplanar. 
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§3.  Linear operations on vectors 

Definition. Let two arbitrary vectors a
 

 

and  b


 be given. We choose any point O and 

plot the vector  a


  from it: a
 

= OA
 –

. Then we 

plot the vector  b
 

 from the point A: b
 

= AB
 –

. Let 

c


 be the vector that is defined by the directed 

segment OB
 

. Then c


 is called the sum of the 

vectors a
 

 and  b


. We write c
 

= a
 

+ b


. 

This method of constructing the sum of two vectors is called the triangle rule 

(fig. 2.8). In order to construct the sum of vectors, we must set the second vector 

aside from the end of the directed segment defining the first vector. We postulate 

that the result of the construction does not depend on the choice of point  O. 

Let the vector  a


  be defined by the directed segment AB
 –

, and the vector  x


 

be defined by the directed segment  BA
 –

. Such a vector  x


  is called opposite to 

the vector  a


  and is denoted by –a


. According to the triangle rule, the vector 

a
 

+ x


 is defined by the directed segment  AA
 –

, and therefore it is zero vector. 

Thus, a
 

+ (–a


) = o


.   

 

Properties of the vector addition operation. 

1.   a


,
 
b


  holds  a
 

+ b
 

= b
 

+
 
a
 

 (commutativity); 

2.   a


,
 
b


,
 
c


  holds (a
 

+ b


) + c
 

= a
 

+ (b
 

+c


)
 
 (associativity); 

3.   a


  holds  a
 

+ o
 

= a
 

.      

4.   a


   x


  such that  a
 

+ x
 

= o
 

.  

The symbol  is read as “for any”. The symbol  is read as “exists”. The 

pair of symbols  is read as “exists the only one”. Property 2 allows us to use 

the notation  a
 

+ b
 

+ c
 

 without brackets.  

Another way to construct the sum of vectors is the parallelogram rule. Let 

us set aside  a


  and 
 
b


  from one point  O:  a
 

= OA
 –

, b
 

= OB
 –

. Let us complete 

OAB  to a parallelogram OACB. Let  c
 

 be the vector defined by the directed 

segment  OC
 –

 (fig. 2.9). Then  c
 

= a
 

+ b


. 

 

 

 

 

 

A O 

C B 

a


 

b


 c


 

fig.2.9 

a


 b
 

a


 c


a


 

O 

A 

B 

fig.2.8 

a


 

b


 
d
 

 

O  

A  

 

fig.2.10 
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Definition.  We denote the vector  a
 

+ (–b


)  as  a
 

–b


 and call it the differ-

ence of the vectors  a
 

 and  b


. 

Figure 2.10 shows how to construct the vector  d
 

= a
 

–b


. Let us set aside  a
 

 

and  b


  from one point  O: a
 

= OA
 –

, b
 

= OB
 –

. Then  d
 

= BA
 –

. 

 

Definition. The product of a vector  a


  and a number    is a vector  b


 

such that 

1. a


 
 b


, if    >
 
0,  and  a

 


 b


, if  
 
<

 
0; 

2. |b


 | = ||·|a


 |. 

We write  b
 

=a


.  

In other words, vectors 2a


 and − 2a


  have lengths twice as large as a


, but 

2a


 has the same direction as vector a


, and vector − 2a


  has the opposite direction. 

 
Examples 1.  Let  A1B1  be the midline in tri-

angle  ABC, parallel to side  AB, a
 

= AB
 –

, b
 

= A1B
 –

1  

(fig. 2.11). Тогда  b
 

=
1

2
 a


, because these vectors 

are codirectional, and the length of vector  b


 is 2 

times less than that of vector  a


. 
2.  Let  AM  be the median in the triangle 

ABC, and  c
 

= AM
 –

. Let us complete the triangle 
to a parallelogram  ABCD (fig. 2.12). Let  M  be 

the intersection point of the diagonals, and let  AB
 –  

=
 

a


,  AC
 –  

=
 
b


. Then   AD
 –

 =
 
a
 

+ b


, and  AM
 –  

=
 1

2
AD
 –

. 

This means that the vector c
 

, which is defined by 

the median  AM
 –

, is equal to half the sum of the 

vectors defined by the sides of the triangle  AB
 –

  

and  AC
 –

 : c
 

=
1

2
 (a
 

+ b


). 

 

Properties of the multiplying a vector by a number.  

For any vectors  a


,
 
b


  and for any  ,R  the following holds: 

5. ( a
 

+ b


) =a
 

+b


;           6. (+)a
 

= a
 

+a


; 

7. (a


) = ()a


;                 8. 1·a
 

= a


. 
 

A B 

C 

A1 B1 

a


 

b


 

fig.2.11 

B C 

A 

M 

a


 b


 

D 

c


 

fig.2.12 
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§4.  Coordinates of a vector 
 

Let a vector m


 be given. Let us set 

it aside from the origin: m
  

=OM
 –

. Let a 

point  M  have coordinates  M(m1,m2) 

(fig. 2.13). Then we will assign the same 

coordinates to the vector  m


: m


(m1,m2). 

We say, that m


 is the radius-vector of 

point  M. m


 

From  OMM1  by the Pythagorean 

theorem we find that 

|OM|= |OM1|
2
+|OM2|

2
 = m1

2
+m2

2
 . 

This means that the length of the vector is 

calculated using the formula 
 

|m
  

|= m1

2
+m2

2
 .               (2.3) 

 

Let us know the coordinates of the 

beginning and end of the vector m
  

= AB
 –

: 

A(x1,
 
y1), B(x2,

 
y2)  (fig. 2.14). Then the 

coordinates of the vector  m
  

 are found  

as follows:  m


(x2x1,
 
y2y1).   

So, you should learn the rule by 

heart: in order to find the coordinates of a 

vector, you need to subtract the coordi-

nates of its beginning from the coordinates 

of its end.  

The length of the vector m


 coincides with the length of the segment AB. 

This value is also called the distance between points A and B. From formula 

(2.3) follows the formula for calculating the distance between points:  

 

|AB|= (x2x1)
2 
+ (y2y1)

2
 .                                  (2.4) 

 

Let us know the coordinates of the vectors  m


  and  n


: m


(m1,m2), n


(n1,n2) and  q
 

=m
  

+n


. Then the coordinates of the vector  q
 

  can be found as 

follows: q
 

(m1+n1,m2+n2). If  r
 

=m


, then  r


(m1,m2). Thus, we should learn 

the rule by heart: when adding vectors, their coordinates are added together, 

and when multiplying a vector by a number, its coordinates are multiplied by 

this number. 

O 

B 

x2 

y2 

x 

y 

x1 

y1 A 

m


 

fig.2.14 

fig.2.13 

O 

x 

y 

M1(m1) 

M2(m2) 
M 

m

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Theorem 2.1 (The sign of collinearity of vectors). In order for two non-

zero vectors to be collinear, it is necessary and sufficient that their coordinates are 

proportional: 

m


(m1,m2) | |   n


(n1,n2)     
m1

m1
 = 

n2

n2
 . 

 

Unit vectors that are co-directed with the 

positive directions of the coordinate axes are usu-

ally denoted  e1
 

, e2
 

  или  i


, j


. Their coordinates 

are: i


(1, 0), j


(0, 1) (fig. 2.15). An arbitrary vector  

m


(m1,m2)  can be represented as a combination of 

these vectors:  m
  

= m1 i
 

+m2 j


. 
fig. 2.15 

O 

x 

y 

i


 

j

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§5.  Scalar product of vectors 

Definition. The scalar product of two vectors  a


  and  b


  is a number 

                           a
 
 b
 

= | a
 |b


 cos(a


,
 
b


).                                   (2.5) 

The number  a
2

= a
 
 a
 

 is called the scalar square of the vector a
 

. 

From the definition we obtain 

           a
2

= | a
 

 | | a
 

 |  
cos

 
0

о
 =

 | a
 

 |
2
         | a

 
 |

 
= a

 
 a
 

. 

It is also obvious from the definition that the equality a
 
 b
 

= 0  is possible only 

in the following cases:  1. | a
 

 |=
 
0

 
,  2. b


=

 
0

 
,  3. (a


,
 
b


 )
 
=

  
/2. 

Thus, we proved the following theorem. 

 

Theorem 2.2.  1. The scalar square of a vector is equal to the square of its 

length. 

2.  In order for non-zero vectors a


 and b


 to be perpendicular, it is neces-

sary and sufficient that their scalar product be equal to zero (a

b


    a
 
·

 
b
 

= 0). 

From the definition follows a formula by which one can calculate the an-

gle between vectors: 

cos( a
 

, b


) = 
a
 
·

 
b
 

| a
  

| | b
 

|
 .                                        (2.6) 

If we know the coordinates of the vectors a


(a1,
 
a2)  and  b


(b1,

 
b2), then 

their scalar product is calculated using the formula   

a
 
·

 
b
 

= a1b1+a2b2.                                            (2.7) 

From formulas (2.6) and (2.7) follows the formula for calculating the angle be-

tween vectors: 

cos(a


,b


 ) = 
a1b1

 
+

 
a2b2

a
1

2 
+

 
a

2

2 
 b

1

2  
+

 
b

2

2  ,                                (2.8) 

and the condition of perpendicularity of vectors: 

a1b1+a2b2 =
 
0.                                            (2.9) 

In the future, when solving problems, we will allow ourselves a fairly 

common liberty: we will call the directed segment   AB
 –

  a vector. 

 

Example.  The coordinates of the vertices of a quadrilateral are given:  

A(3,1), B(7,3), C(8,
 
2), D(2,

 
4). Prove that  ABCD  is a rectangle. 

 

Proof.  We find the coordinates of vectors that are defined by opposite 

sides. In order to find the coordinates of the vector  AB
 –

,  we subtract the coordi-
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nates of point  A  from the coordinates of point  B; in order to find the coordi-

nates of the vector  DC
 –

,  we subtract the coordinates of point  D  from the coor-

dinates of point  C: 

AB
 –

(7(3),3(1)),  AB
–

(7+3,3+1),  AB
–

(10,2) 

DC
–

(8(2),24),  DC
–

(8+2,2),  DC
–

(10,2). 

We see that  AB
 –  

=
 
DC
 –

, i.e. the opposite sides of the quadrilateral are paral-

lel and equal. So ABCD is a parallelogram. We need to check that the two adja-

cent sides are perpendicular. We already know the coordinates  AB
 –

. Let's find 

the coordinates of  AD
–

:  AD
–

 (1,
 
5). We calculate the scalar product of the vectors  

AB
 –

  and  AD
–

: 

AB
–

·AD
–  

= 10·1+(2)·5
 
= 1010=0 . 

This means that  AB
–

 
 
AD

–

. Therefore, ABCD is a rectangle. 
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§6.  Midpoint of a segment. Area of a parallelogram 

and a triangle 

 

 

Let us know the coordinates of the ends of 

the segment AB: A(x1,
 
y1), B(x2,

 
y2). Let the point 

C divide the segment AB in half (fig. 2.16). It is 

required to find its coordinates (x,
 
y).  

From the drawing we see that  AС
 –  

=
 
СВ
 –

. We find the coordinates of these 

vectors:  AС
 –

 (x–x1,
 
yy1),  СВ

 –

(x2–x,
 
y2y). The vectors are equal, which means 

their coordinates are also equal: 

x–x1=
 
x2–x,   yy1= y2y. 

From here we find that  2x=x1+x2 ,  2y=y1+y2 .  Finally 

x
 
= 

 x1+
 
x2

2
 ,  y

 
= 

 y1+
 
y2

2  .                                      (2.10) 

That is, the coordinates of the middle of a segment are the arithmetic mean of 

the coordinates of its ends. 

 

Theorem 2.3.  Let ABCD be a parallel-

ogram, and let us know the coordinates of the 

vectors AB
 –

 and AD
 –

: AB
 –

(a1, a2), AD
 –

(b1, b2)  

(fig. 2.17). Then the area of the parallelo-

gram is calculated using the formula 

SABCD = mod






a1  a2 

b1  b2 
                                        (2.11) 

(here “mod” means modulus: the determinant can be negative, but the area is 

necessarily non-negative). 

 

Corollary.  Let us know the coordinates of 

the vectors  AB
 –

  and  AС
 –

: AB
 –

(a1, a2), AС
 –

(b1, b2)  

(fig. 2.18). Then the area of the triangle ABC is 

calculated using the formula: 

SABC = 
1

2
 mod







a1  a2 

b1  b2 
.              (2.12) 

O 

A B 

C D 

fig.2.17 

A B 

C 

fig.2.18 

A 

C 

B 

fig.2.16 
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§7.  Equation of a straight line on a plane 
 

As part of the school curriculum, you should have learned that the equation 

y=kx+b                                                   (2.13) 

defines a line on the plane. This means that the line consists of those and only 

those points whose coordinates (x, y) satisfy equation (2.13).   

At  x=0  we find from (2.13) that  y=b . From this follows the geometric 

meaning of the coefficient b: it is the segment cut off by the line on the Oy axis 

(it can also be negative).  

We choose a direction on the line that corresponds to an increase in  y  

and call it positive. The angle between the positive direction of the  Ox  axis and 

the positive direction of the line is called the slope of the line (fig. 2.20). The ge-

ometric meaning of the coefficient k:  k = tg – the tangent of the slope of the 

line. Therefore,  k  is called the angular coefficient.  

 

 

 

 

 

 

 

 

 

 

Definition.  The angle between lines on a plane is the smaller of the two 

angles that the lines form when they intersect.  (fig. 2.20).  

 

Theorem 2.4.  Let two lines on a plane be given by equations with an an-

gular coefficient  

l1: y=k1x
 
+

 
b1,      l2: y=k2 x

 
+

 
b2. 

Then  

1) the angle between them is calculated using the formula  tg
 


 
= 

|k2 – k1|

|1
 
+

 
k1k2 |

 ; 

2)  the lines coincide if and only if   k1=k2, b1=b2; 

3)  lines are parallel if and only if   k1=k2, b1b2; 

3)  lines are perpendicular if and only if   k2=1/k1. 

For example, the lines  l1: y = 2x+5  and   l2: y=2x3  are parallel, and the 

lines  l1: y = 2x+5  и  l3: y =0,5x3  are perpendicular. 

Not every line on the plane can be defined using an equation with an 

angular coefficient. Lines parallel to the  Oy  axis are defined by equations 

of the form  x=c. Both of these types of equations are combined by an equa-

tion of the form   

ax+by+c=0,                                            (2.14) 

O 

b 
 

 x 

y 

fig.2.20 

x  
 

 

l2 

l1 

O 

y 

fig.2.21 
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which is called the general equation of a line. And conversely, any equation 

of the form (2.14) defines a line on a plane. In order to obtain (2.14) from 

(2.13), it is sufficient to transfer all the terms of the equation to one part.  

Let us recall that the distance from a point to a line is the length of the 

perpendicular dropped from this point to the line (fig. 2.22). 

 

Theorem 2.5.  Let a line l on a plane be given 

by the general equation (2.12). Then the distance 

from the point  M(x,y)  to this line is calculated by 

the formula 

h =
 |ax+by+c |

 a
2
+b

 2  .                (2.15) 

Let us know the coordinates of two points on the line  l: A(x1,
 
y1), B(x2,

 
y2). 

The question is: how to write the equation of the line l? First, we find the angu-

lar coefficient   

k
 
=  

y2
 
– y1

x2
 
– x1

 . 

After this we write the equation 

yy1 =k(xx1). 

It remains to open the brackets and move y1 to the right side of the equation. An 

example of composing an equation is given in paragraph 9. 

 

M 

l 

h 

fig.2.22 
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§8. Application of determinants to the calculation of areas  

and volumes in space 

We are not going to explain in detail on how the Cartesian coordinate sys-

tem is defined in space. As an example, figure 2.22 shows how points B(5,1,2)  

and C(4,5,3)  are constructed on the drawing based on their coordinates.  

In space the rule also takes place: in order to find the coordinates of a 

vector, you need to subtract the coordinates of its beginning from the 

coordinates of its end.  

Let a parallelepiped ABCDA1B1C1D1  (fig. 2.23) be given in space. Let AB
 –

, 

AD
 –

, AA1

 –

  be directed segments lying on the edges of the parallelepiped set aside 

off one point,  a


,
 
b


,
 
c


 be the vectors defined by these directed segments. Then 

we say that the parallelepiped is constructed on vectors  a


,
 
b


,
 
c


, laid off from one 

point  A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 2.6.  Let us know the coordinates of the vectors  a


(a1,
 
a2,

 
a3),  

b


(b1,
 
b2,

 
b3), c


(c1,

 
c2,

 
c3). Then the volume of the parallelepiped constructed on 

these vectors, laid off from one point, is calculated by the formula: 
 

V = mod






a1  

 
a2  a3

b1  b2  
 
b3

c1   c2  c3

.                                       (2.16) 

 

 

 

B 

C 

1 

1 –1 

5 

5 

–3 

4 

y 

x 

z 

2 

O 

fig.2.22 

a
  

c
  

A B 

D 

A1 

C 

B1 

C1 D1 

h 
b
  

fig.2.23 
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The volume of the triangular pyramid  ABDA1 (fig. 2.23) is 1/6 of the vol-

ume of the parallelepiped. Therefore,  

the volume of the triangular pyramid constructed on these vectors, laid off from 

one point, is calculated using the formula: 
 

V =
1

6
 mod







a1  

 
a2  a3

b1  b2  
 
b3

c1   c2  c3

.                                           (2.17) 

 

Theorem 2.7.  Let parallelogram ABCD in space, be constructed on vectors  

a


(a1,
 
a2,

 
a3), b


(b1,

 
b2,

 
b3), laid off from one point A. Then its area is calculated by 

the formula 

 

S =






a2 

 
a3 

b2  
 
b3 

2

+ 






a1 

 
a3 

b1  
 
b3 

2

+ 






a1 

 
a2 

b1  
 
b2 

2

.                             (2.18) 

 

The area of triangle  ABD, constructed on vectors  a


  and  b


, laid off from 

point A, is half the area of the parallelogram.  
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§9.  Equations of a line and a plane in space 

The plane  in space can be defined using three points   M0, M1, M2, 
which do not lie on the same line. In this case, we can consider two non-

collinear vectors  a
 

=M0M1

 –

  and  b
 

=M0M2

 –

   parallel to the plane (fig. 2.24). 
 

Theorem 2.8.   The plane , passing 
through the point M0(x0,

 
y0,

 
z0), parallel to 

two non-collinear vectors  a


(a1, a2, a3),  

b


(b1, b2, b3)  has the equation 







 x

 
–

 
x0   y

 
–

 
y0   z

 
–

 
z0

 

   a1       
 
a2       a3

   b1       
 
b2       b3 

=0      (2.19) 

Corollary.  The plane   passing through three points M0(x0,y0,z0),  
M1(x1,y1,z1), M2(x2,

 
y2,

 
z2), not lying on the same line is given by the equation 







 x – x0   

 
y – y0    z – z0

 x1– x0   y1– y0   
 
z1– z0

 x2– x0   y2 – y0   z2 – z0

= 0 .                             (2.20) 

After expanding the determinant (2.19) or (2.20) and reducing similar terms, we 
obtain an equation of the form 

ax+by+cz+d=0 ,                                     (2.21) 
which is called the general equation of the plane. It turns out that the vector    

n


 (a,
 
b, c)  is perpendicular to the plane, which is given by equation (2.21), and it 

is called the normal vector to the plane. 
 

Theorem 2.9.  Let the   be defined by the general equation (2.21). Then 
the distance from an arbitrary point  M(x0,

 
y0,

 
z0)  t0 the plane is calculated by 

the formula 

            h = 
|ax0 + by0 +cz0 + d |

a
 2
+b

 2 
+

 
c

2  .                                       (2.22) 

 

Theorem 2.10.   The line  l  passing through the p0int M0(x0, y0,
 
z0), paral-

lel to the vector  a


(a1,
 
a2,

 
a3)  is given by the canonical equation 

                                            
x

 
– x0

 a1
 = 

y
 
– y0

 a2
 = 

 z
 
– z0

 a3
 ,                                    (2.23) 

or by parametric equati0ns 






 

x
 
=

 
x0 +

 
a1t,

y
 
=

 
y0 +

 
a2t,

z
 
=

 
z0 +

 
a3t, tR.

                                       (2.24) 

The vector  a
 

| |l   is called the direction vector of the line  l. 
Corollary.  A straight line passing through two distinct points   

M0(x0,
 
y0,

 
z0)  and  M1(x1,

 
y1,

 
z1),  is given by the equation 

                                            
x – x0

x1
 
– x0

 = 
y – y0

y1
 
– y0

 = 
z – z0

z1
 
– z0

 .                                 (2.25 ) 

M0 

M1  

b
  

a
  

M2 

fig.2.24 
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§10.  Equation of a circle 

Definition.  A circle of radius r with cen-

ter at point  Mo  is a set on a plane consisting of 

all points, the distance from each of which to Mo  

is equal to  r  (fig. 2.25). 

 

Theorem 2.11.  A circle    of radius r, 

having its center at the point M0(x0, y0), is given 

by the equation 

(x – x0)
2
+ (y – y0)

2
= r

2
.              (2.23) 

For example, a circle of radius 5 with center at 

point  Mo(2, –3 is given by the equation 

(x – 2)
2
+ (y + 3)

2
= 25. 

O 

Mo 

M 

y 

x 



O 

r 

xo 

yo 

fig.2.25 
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§11.  Examples of problem solving 

Task 1.  The coordinates of the three vertices of the parallelogram are 

known:  A(–
 
5,

 
1), B(1,

 
3), D(4,

 
5) (fig. 2.26).  

a)  Find the coordinates of the fourth vertex.  C; 

b)  calculate the area of a parallelogram; 

c)  find its height drawn from the vertex  D  to the side  AB; 

d)  find the coordinates of the point O of intersection of the diagonals. 

Solution.  a) Let's find the coordinates of the vector  AB
 –

. To do this, we 

subtract the coordinates of point  A  from the coordinates of point  B: 

 AB
 –

(1(5),
 
31)     AB

 –

(6,
 
2).  

Let  C(x, y). Then  DC
 –

(x + 4, y – 5).  

On the other hand  AB
 –  

= DC
 –

. Hence  

DC
 –

(6,
 
2). We have two equations:   

x + 4= 6, y – 5= 2. 

Thus  C(2, 7). 

b)  We find the coordinates of the vector  AD
 –

.  To do this, we subtract the 

coordinates of point  A  from the coordinates of point  D:  AD
 –

(4(5),
 
51)     

AD
 –

(1,
 
4). We apply formula  (2.11): 

SABCD = mod






6  2 

1  4 
= |6·42·1| = 22. 

в)  From the school program we know the formula  SABCD = |AB |·h. Hence  

h =
SABCD

 |AB |
. We find the length of the side AB:  |AB |= 6

2 
+

 
2

2
 = 40 =2 10. Тhen 

h =  
22

2 10
 = 

11

10
 = 

11 10

10  . 

c)  The coordinates of point O are calculated as the arithmetic mean of the 

coordinates of any two opposite vertices: for example, B and  D: 

O






14

2
, 
3+5

2
      O(1,5;

 
4). 

Answer:  C(2,
 
7);  SABCD = 22;  h =

11 10

10  ,  O(1,5;
 
4). 

 

Task 2.  The vertices of the quadrilateral are at the points  A(1,
 
2),  

B(7,–
 
6), C(11,–3),  D(8,

 
1). Show that  ABCD  is a trapezoid. Find the lengths of 

the bases of the trapezoid, its area, and  cosDAB  (рис. 2.27). 

O 

A  B 

C D 

h 

fig.2.26 
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Solution.  We find the coordinates of the vectors   AB
 –

(6,8),  BC
 –

(4,
 
3),  

CD
 –

(3,
 
4),

  
AD
 –

(7,1). We check the vectors determined by the opposite sides of 

the quadrangle for collinearity: 

     – 
 6 

3  = – 
 8 

4      – correct, then AB
 –

  is collinear to  CD
 –

. 

        
 4 

7  = 
3

1        – incorrect, then  BC
 –

 is not collinear to AD
 –

. 

Thus, in a quadrilateral, two opposite 

sides are collinear, and two are not. So it is a 

trapezoid, and the bases are AB and CD. We 

find the lengths of the sides: 

AB
 –

= 6
2 

+ 8
2
 =10, 

and similarly BC
 –

= 5; CD
 –

= 5; AD
 –

= 5 2. 

Let us denote   = BAD. Then 

cos=  
AB
 –

·AD
 –

 |AB
 –

| |AD
 –

|
 = 

6·7 + (–8)·(–1)

10·5 2
 = 

1

2
 , 

therefore  BAD = 45
o
. It is not always possible to obtain a tabular angle, so we 

can do the following: knowing cos, we find  sin: 

sin= 1– cos
2
 = 

1

2
 . 

Then  h =|AD
 –

| ·= 5. Knowing the height and lengths of the bases, we find the area: 

S
 
= 

1

2
 
(|AB |+ |CD | ) · h =

75

2
 . 

Another way to calculate the height using the equation of a line is given in the 

following task.  

Answer: AB
 –

=10, BC
 –

=
 
5, cos= 

1

2
 , SABCD

 
= 

75

2
 . 

Task  3.  The coordinates of the vertices of the triangle are known:  

A(1,
 
3), B(11,

 
0), C(9,

 
9)  (fig. 2.28).  

a)  Make an equation of side  AB, height  CD  
and find the coordinates of point  D. 

b)  Calculate the height of a triangle using 
the formula for the distance from a point to a line. 

c)  Calculate the area of ABC. 

Solution.  а)  We find the slope coefficient 
of the line  AB:   

kAB = 
yByA

xBxA
 = 

03

11(1)
 = – 

1

4
 . 

We make the equation of the straight line  AB: 

C 

B A 

h 

D 

 

рис.2.27 

A B 

C 

D 

h 

fig.2.27 
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yyA = kAB(xxA)       y3 = – 
1

4
 (x(1))       y = – 

1

4
 x+

11

4
 . 

Straight lines AB and CD are perpendicular. Therefore  kCD =  
1

kAB
 = 4. We com-

pose the equation of straight line  CD: 

yyC = kCD(xxC)     y9 = 4(x9)       y = 4x27. 

Point  D  is a common point for lines  AB  and  CD. This means that its 

coordinates must simultaneously satisfy the equations of these two lines. There-

fore, to find the coordinates of point  D, we combine the equations of lines  AB 

and  CD  into one system and solve this system. 






 
y = – 

1

4
 
x+

 11

4
 ,

y = 4x27.
          






 
4x27= – 

1

4
 
x+

 11

4
 ,

 y = 4x27.
        




 
x = 7,

y = 1.
     D(7,

 
1). 

b)  We rewrite the equation of the line AB in the form of a general equation: 

y = – 
1

4
 
x+

11

4
        4y = – x+11        x+4y11= 0 . 

Let us apply formula (2.15) to this equation and to the point  С: 

h
 
=

 9+4·911

4
2
+1

2  = 
34

17
 = 2 17. 

c)
  SABC  =

1

2
 mod







12 

 
3

10   6
=

 1

2
 |12·6

 


 
10·(3)|

 
= 

1

2
 
|72

 
+

 
30|

 
=

 1

2
 ·102

 
=

 
51. 

This is consistent with the previously obtained result. 

Answer: a)  AB: y = – 
1

4
 x+

11

4
,  CD: y = 4x27;  D(7, 1); 

     b)  h
 
=2 17;   c) | S = 51. 

 

Task 5.  The coordinates of the vertices of a triangular pyramid are giv-

en:  SABC: A(4,
 
0,

 
1), B(5,–1,

 
1), C(4,

 
7,–5), S(7,

 
5,

 
2)  (fig. 2.28). 

a) Find the volume of the pyramid, the area of 

the base ABC and the height.  

b) Make an equation of the plane of the base 

and calculate the height using the formula 

for the distance from a point to the plane. 

Compare with the previously obtained result. 

Solution.  а)  From one vertex A the vectors  

a
 

=AB
 –

, b
 

=AC
 –

,
 
с
 

=AS
 –

 emanate. We find their co-

ordinates: 

a


(1,–1,
 
0),   b


(0,

 
7,–

 
6),  с


(3,

 
5,

 
1). 

We find the volume of the pyramid according to 

formula (2.17):   

 A 

B 

 C 

 S 

h 

a


 

c


 

b


 

fig.2.28 
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                V
 
=

 1

6
 mod







1 

 
1 

   
0

0 
 
 
 
7 

 


 
6

3 
 
 
 
5 

 
  1

=  

= 
1

6
 mod 









1·






7  6

5    1
 
– (1)·







0  6

3    1
+0  =

1

6
 | 37+18 |=

55

6
. 

 

The area of a triangle is is equal to half the area of  

the parallelogram. Therefore 

 

        Sbase = 
1

2 





1   0

  7  6

2

+ 






1    0

0  6

2

+ 






1  1

0    7

2

 = 

= 
1

2
 6

2
+ 6

2
+ 7

2
 = 

1

2
 

36
 
+

 
36 +

 
49 =

  11

2
. 

It should be known from school mathematics that V
 
=

 1

3
 SΔABC ·h

 
. From here   

h
 
=

 3V

SΔABC
 = 

55/2

11/2
 = 5. 

 

b)  The plane passing through the point M(x0, y0,
 
z0), parallel to two given 

vectors  a


(a1,
 
a2,

 
a3), b


(b1,

 
b2,

 
b3)  is given by the equation  

  






x

 
–

 
x0 y

 
–

 
y0 z

 
–

 
z0

a1 a2 a3

b1 b2 b3

 = 0  

We substitute into this equation the coordinates of point A and vectors a


 =AB
 –

, 

b
 

=AC
 –

:  

 






x

 


 
4   y

 
+

 
0   z

 
–

 
1

   1      1       0

   0       7       6

= 0. 

We expand the determinant by the first line: 

                    6(x
 


 
4) +

 
6y

 
+

 
7(z

 
–

 
1) = 0      6x

 
+

 
6y

 
+

 
7z

 
–

 
31 = 0. 

It is recommended to check by substituting the coordinates of the points A, B, C 

into this equation.  

The height of the pyramid is equal to the distance from the point S to the 

plane  =ABC. We can calculate it using formula (2.22): 

 

h =  
|6·7+6·5+7·2–31|

6
2
+ 6

2
+ 7

2  = 
|42+30+14 – 31|

36 + 36 + 49
 = 

55

11
=5. 

 

This is consistent with the previously obtained result.  

Answer: a)  V
 
=

 55

6
,  Sосн.= 

11

2
 , h=5;  b)  ABC: 6x

 
+

 
6y

 
+

 
7z

 
–

 
31 = 0, h = 5. 
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Task 6.  Given the equation of the plane 

       : 11x10y2z+105=0 

and the coordinates of the point S(6,–5,–2). Write 

the equation of the perpendicular SH to the plane 

and find the coordinates of the point  H (fig. 2.29).   

Solution. From the equation of the plane we 

find that the vector  n


(11,–10,–2)  is the normal 

vector to the plane. This same vector will be the di-

rectrix for the line  h
 
=

 
SH.  

The parametric equation of a straight line passing through a given point 

M(x0,
 
y0,

 
z0) with a direction vector a


(a1,

 
a2,

 
a3) has the form 






 

x
 
=

 
x0 + a1t,

y
 
=

 
y0 + a2t,

z
 
=

 
z0 + a3t .

 

In our case we get the equation: 

SH:  





 

x
 
=

   
6  + 11t,

y
 
=

 
–5 – 10t,

z
 
=

 
–2 – 2t .

                                                (*) 

Let's find the base of the perpendicular. This is the point of intersection of 

the line  SH  with the plane  . To do this, we must solve the equations  SH  and    

. We substitute x, y, z from the equation SH into the equation  : 

                            11(6
 
+

 
11t)

 
–

 
10(–5

 
–

 
10 t)

 
–

 
2(–2

 
–

 
2t)

 
+ 105 = 0, 

                                  66
 
+

 
121 t

 
+

 
50

 
+

 
100 t

 
+

 
4

 
+

 
4 t

 
+

 
105

 
=

 
0, 

                                              225
 
y

 
= –225,   t

 
= –1. 

Substitute the found t  into the equation SH and find the coordinates of the point  H: 






 

x
 
=

   
6  + 11·(–1) = – 5,

y
 
=

 
–5 – 10·(–1) = 5 ,

z
 
=

 
–2 – 2·(–1) = 0 .

 

H(–5,
 
5,

 
0). 

Answer: Equation of a perpendicular  SH:  





 

x
 
=

   
6  + 11t,

y
 
=

 
–5 – 10t,

z
 
=

 
–2 – 2t .

    H(–5,
 
5,

 
0). 

рис.2.29 

 S 

h 

 H 
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Tasks for independent solution 

 

Task 1.  The coordinates of the vertices of the triangle ABC are known 

(fig. 2.27).  

a)  Write an equation of side AB, height CD and find the coordinates of point D. 

b)  Calculate the height of a triangle using the formula for the distance from 

a point to a line. 

c)  Calculate the area of  ABC  using formula  (2.12). 

1.  A(3,
 
1), B(9,

 
5), C(2,

 
8).   11.  A(6,

 
0), B(6,

 
4), C(5,

 
7). 

2.  A(2,5), B(1,
 
7), C(8,

 
1).    12.  A(1,5), B(2,

 
7), C(8,3). 

3.  A(5,4), B(10,1), C(1,
 
2).  13.  A(5,

 
1), B(10,5), C(2,

 
4).  

4.  A(0,
 
1), B(12,3), C(5,

 
6).   14.  A(6,

 
1), B(6,3), C(1,

 
6). 

5.  A(0,
 
2), B(9,4), C(7,

 
6).   15.  A(6,

 
2), B(3,4), C(1,

 
6). 

6.  A(1,
 
2), B(5,2), C(6,

 
6).   16.  A(1,2), B(7,

 
2), C(8,6). 

7.  A(0,
 
4), B(3,2), C(4,3).   17.  A(2,

 
5), B(5,1), C(2,2). 

8.  A(0,4), B(8,
 
0), C(4,7).   18.  A(4,

 
0), B(0,8), C(6,6). 

9.  A(0,3), B(9,
 
0), C(5,8).   19.  A(0,

 
3), B(9,

 
0), C(5,

 
8). 

10.  A(0,3), B(12,
 
0), C(2,

 
6).  20.  A(2,

 
0), B(1,12), C(8,6). 

 

Task 2. The coordinates of the vertices of the triangular pyramid SABC are 

given (fig. 2.28).  

a)  Find the volume of the pyramid, the area of the base ABC and the height.  

b) Make an equation of the plane of the base and calculate the height using 

the formula for the distance from a point to a plane. Compare with the 

previously obtained result. 

  1.  A(–1,
 
1,

 
2), B(–5,

 
4,–2), C(–1,

 
2,

 
3), S(–8,–5,

 
4). 

  2.  A(0, 2,
 
2), B(0,

 
4,

 
3), C(1,

 
4,

 
2), D(7,–1,

 
7). 

  3.  A(1,
 
1,

 
2), B(1,

 
2,

 
4), C(4,

 
1,

 
4), S(2,7,

 
3). 

  4.  A(1,
 
1,2), B(1,2,1), C(1,2,

 
0), S(5,2,12). 

  5.  A(5,
 
1,

 
2), B(5,2,

 
6), C(

 
4,

 
4,2 ), S(2,

 
12,

 
4). 

  6.  A(5,
 
1,

 
2), B(5,2,

 
6), C(4,

 
4,2), S( 2,

 
12,

 
4). 

  7.  A(6,
 
0,

 
1), B(6,3,

 
5), C(–5,

 
3,–3), S(1,

 
9,1). 

  8.  A(1,
 
0,1), B(2,

 
0,

 
4), C(4,

 
2,

 
3), S(10,11,8). 

  9.  A(1,
 
3,

 
0), B(1,1,

 
2), C(0,

 
5,2), S(7,

 
2,

 
6). 

10.  A(1,
 
4,

 
2), B(7,

 
6,

 
3), C(3,

 
4,

 
3), S(6,7,7). 

11.  A(2,
 
1,

 
4), B(3,1,

 
2), C(3,

 
7,

 
6), S(–7,

 
6,7). 
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12.  A(1,–1,
 
0), B(2,

 
1,

 
2), C(1,

 
1,

 
1), S(3,2,

 
7). 

13.  A(1,
 
1,

 
1), B(1,

 
3,

 
2), C(0,

 
3,

 
1), S(6,2,

 
6). 

14.  A(1,–1,
 
0), B(1,

 
0,

 
2), C(2,1,

 
2), S(0,9,

 
1). 

15.  A(2,–1,
 
1), B(3,1,

 
2), C(–2,5,

 
4), S(4,8,5). 

16.  A(2,
 
0,3),

 
B(2,3,2),

 
C(0,3,–1), S(4,3,13). 

17.  A(6,
 
1,

 
1), B(9,

 
2,

 
1), C(6,

 
2,

 
3), S(4,11,

 
11).  

18.  A(1,
 
0,–2), B(2,–3,–2), C(0,

 
2,

 
4), S(2,

 
4,–

 
6). 

19.  A(2,
 
3,

 
1), B(6,

 
3,

 
0), C(2,

 
0,

 
2), S(–1,

 
3,

 
5). 

20.  A(2,–2,
 
4), B(8,

 
7,12), C(2,–1,

 
3), S(5,

 
1,

 
0). 
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