

УДК 512.542

О максимальных цепях длины три в конечных группах

Д.П. Андреева

Учреждение образования «Гомельский государственный университет им. Ф. Скорины»

Пусть G — конечная группа. Подгруппа H группы G называется 2-максимальной подгруппой группы G, если H является максимальной подгруппой в некоторой максимальной подгруппе M группы G. Аналогично могут быть определены 3-максимальные подгруппы в группе. Максимальной цепью длины n группы G называется всякая цепь вида $E_n < E_{n-1} < ... < E_1 < E_0 = G$, где E_i является максимальной подгруппой в E_{i-1} , i=1,2,..., n. Работа посвящена исследованию групп, у которых все ненормальные максимальные подгруппы нильпотентны n0 в каждой максимальной цепи длины три имеется собственная субнормальная подгруппа.

Ключевые слова: максимальная подгруппа, группа Шмидта, субнормальная подгруппа.

On maximal chains of length three in finite groups

D.P. Andreeva

Educational establishment «Francisk Skorina Gomel State University»

Let G be a finite group. Subgroup H of G group is called 2-maximal subgroup of G group, if H is a maximal subgroup in some maximal subgroup M of G group. Likewise 3-maximal subgroups in a group can be distinguished. Maximal chain of length n of G group is called any chain of the type $E_n < E_{n-1} < ... < E_1 < E_0 = G$, where E_i is a maximal subgroup in E_{i-1} , i = 1, 2, ..., n. The paper is devoted to the study of groups in which all abnormal maximal subgroups are nilpotent and in every maximal chain of length three there is an own subnormal group.

Key words: maximal subgroup, Schmidt group, subnormal subgroup.

 ${f B}$ се рассматриваемые в данной работе группы являются конечными. Напомним, что подгруппа H группы G называется 2-максимальной подгруппой (или второй максимальной подгруппой) группы G если H является максимальной подгруппой в некоторой максимальной подгруппе M группы G. Аналогично могут быть определены 3-максимальные подгруппы, 4-максимальные подгруппы G называется всякая цепь вида $E_n < E_{n-1} < ... < E_1 < E_0 = G$, где E_i является максимальной подгруппой в E_{i-1} , i=1,2,...,n.

В последние годы выявлен ряд новых интересных результатов о вторых и третьих максимальных подгруппах. В недавней публикации [1] Ли Широнг получил классификацию ненильпотентных групп, у которых каждая 2-максимальная подгруппа является ТІ-подгруппой. В работе [2] Го Шуин и К.П. Шам доказали разрешимость групп, в которых все 2-максимальные подгруппы обладают свойством покрытия-изолирования. В работах [3–5] Го Веньбинем, Ли Баоджуном, А.Н. Скибой и К.П. Шамом были получены новые характери-

зации сверхразрешимых групп в терминах 2-максимальных подгрупп. В работе [6] описываются ненильпотентные группы, в которых каждая 2-максимальная подгруппа перестановочна со всеми 3-максимальными подгруппами, а в работе [7] дано описание групп, в которых каждая максимальная подгруппа перестановочна со всеми 3-максимальными подгруппами.

В 2005 году Л.А. Шеметковым на Гомельском городском алгебраическом семинаре был поставлен следующий вопрос: что можно сказать о строении конечной группы G, если в каждой ее максимальной цепи длины n имеется собственная субнормальная в G подгруппа? Понятно, что в нильпотентной группе все ее подгруппы субнормальны. Нетрудно также показать, что ненильпотентные группы, у которых в каждой максимальной цепи длины два имеется собственная субнормальная подгруппа, являются группами Шмидта с абелевыми силовскими подгруппами (см. [8], лемма 2.5).

Целью данной работы является изучение строения конечных групп, у которых все ненормальные максимальные подгруппы нильпотетны и в каждой максимальной цепи длины три имеется собственная субнормальная подгруппа.

В дальнейшем p, q и r — простые делители порядка группы G ($p \neq q$), P, Q и R обозначают некоторые силовские p-подгруппу, q-подгруппу и r-подгруппу в G соответственно.

Сформулируем в виде лемм необходимые в дальнейшем результаты.

Лемма 1 [8, лемма 2.1]. (1) *Если в G нет* 3-максимальных подгрупп, то $|G| \in \{p, pq\}$;

- (2) если $|G| = p^{\alpha}q^{\beta}r^{\gamma}$, где $\alpha + \beta + \gamma = 3$ ($\alpha, \beta, \gamma \in \mathbb{N} \cup \{0\}$), то |G| = pqr и 1 является единственной 3-максимальной подгруппой в G;
- (3) если $|G| = p^{\alpha}q^{\beta}r^{\gamma}$, где $\alpha + \beta + \gamma < 3$ ($\alpha, \beta, \gamma \in N \cup \{0\}$), то в G нет 3-максимальных подгрупп.

Лемма 2 [8, лемма 2.3]. Если N — нормальная подгруппа группы G и в G/N имеется 3-максимальная подгруппа, то в каждой максимальной цепи длины три этой факторгруппы имеется собственная субнормальная в G/N подгруппа.

Лемма 3 [9, гл. A, теорема 14.4]. *Пусть* $A, B \le G$. *Если A и В субнормальны в G, то* < A, B > - *субнормальная подгруппа группы G*.

Лемма 4 [10, лемма 4]. Пусть M — максимальная подгруппа группы G. Если L субнормальна в G и $L \subseteq M$, то $L \subseteq M_G$.

Теорема 1. Пусть G — группа, y которой в каждой максимальной цепи длины три имеется собственная субнормальная в G подгруппа и $\pi(G) = \{p,q\}$. B том и только в том случае все ненормальные максимальные подгруппы группы G нильпотентны, когда G = [P]Q и G — группа одного из следующих видов:

- (1) G $\varepsilon pynna$ $UMu\partial ma$, $|\Phi(P)| \le p$ u $|Q:Q_G|=q$;
- (2) P является минимальной нормальной подгруппой в G и $|Q:Q_G| = q^2$;
- (3) P является минимальной нормальной подгруппой в G, $|Q:Q_G|=q$, любая максимальная подгруппа из Q, отличная от Q_G , циклична;
- (4) $G=[G^N]M$, где G^N минимальная нормальная подгруппа группы G, $M=[M_p]Q$ представитель единственного класса нильпотентных ненормальных максимальных подгрупп группы G, $|M_p|=p$, $Q=\langle a \rangle$ циклическая группа u $|Q:Q_G|=q$.

Доказательство. Необходимость. Так как все ненормальные максимальные подгруппы группы G нильпотентны, то, по теореме 24.2 из [11], относительно группы G выполнены следующие условия:

- 1) G^N является *s*-группой для некоторого простого числа s;
 - 2) $G^N / \Phi(G^N)$ главный фактор группы G;
 - 3) любые две ненормальные максимальные подгруппы группы G сопряжены в G.

Не теряя общности, мы можем считать, что s = p.

Предположим вначале, что $G^N = P$. Так как $\pi(G) = \{p,q\}$, то G = PQ. Поскольку группа G не является нильпотентной, то в ней имеется такая максимальная подгруппа A_1 , что $|G:A_1| = p^a$ для некоторого $a \in N$ и A_1 не является нормальной в G. Поэтому A_1 нильпотентна и A_1 не является субнормальной в G. Не теряя общности, мы можем считать, что $Q \le A_1$.

Предположим, что $\Phi(P) = 1$. Тогда P является минимальной нормальной подгруппой в G и $A_1 = Q$ — максимальная подгруппа группы G, которая несубнормальна в G. Предположим вначале, что все максимальные подгруппы из Qявляются субнормальными в G. Тогда, по лемме 3, *Q* – циклическая группа. Очевидно, что в этом случае G имеет в точности два класса максимальных подгрупп, представителями которых являются группы Q и PQ_1 , где Q_1 – максимальная подгруппа группы \mathcal{Q} . Так как $\mathcal{Q}_{\scriptscriptstyle 1}$ является субнормальной подгруппой в G, то Q_1 субнормальна в PQ_1 и, следовательно, нормальна в ней. С другой стороны, Q_1 нормальна в Q. Следовательно, Q_1 является нормальной подгруппой в G и поэтому PQ_1 нильпотентна. Заметим также, что в этом случае, ввиду леммы 4, $Q_1 = Q_G$. Следовательно, G является группой Шмидта, т.е. G – группа типа (1).

Предположим теперь, что в Q нет максимальных субнормальных в G подгрупп. Если Q_1 — максимальная подгруппа в Q, то, ввиду условия, все максимальные подгруппы из Q_1 являются субнормальными в G. Значит, по лемме 3, Q_1 — циклическая группа. Следовательно, максимальная подгруппа Q_2 из Q_1 характеристична в Q_1 и поэтому нормальна в Q_2 . Кроме того, Q_2 нормальна в PQ_2 , так как Q_2 субнормальна в G и, следовательно, субнормальна в G и, следовательно, субнормальна в G и, по лемме 4, G0 — группа типа (2).

Предположим теперь, что в Q все максимальные подгруппы, кроме одной подгруппы Q_1 ,

не являются субнормальными в G. Тогда, как и выше, получаем, что Q_1 нормальна в G и поэтому, по лемме 4, $Q_1 = Q_G$. Значит, $|Q:Q_G| = q$. Таким образом, G – группа типа (3).

Допустим теперь, что $\Phi(P) \neq 1$. Тогда, ввиду того, $P/\Phi(P)$ – главный фактор группы G, $A_1 = \Phi(P)Q$ – максимальная подгруппа в G, причем A_1 несубнормальна в G. Так как $\Phi(P) \neq 1$, то A_1 не является циклической группой и поэтому, по лемме 3, в A_1 имеется максимальная несубнормальная в G подгруппа A_2 с $|A_1:A_2|=p$. Тогда $Q \leq A$ И поэтому $A_2 = A_2 \cap A_1 = Q(A_2 \cap \Phi(P))$. Так как, по условию, все максимальные подгруппы из A_2 являются субнормальными в G, то, по лемме 3, $A_2 = Q$ – циклическая группа и поэтому $|\Phi(P)| = p$. Очевидно, что в этом случае G является группой Шмидта, т.е. G – группа типа (1).

Пусть теперь $G^N \subset P$. Если $\Phi(G^N) \neq 1$, то $(G/\Phi(G^N))^N = G^N/\Phi(G^N)$ – силовская *p*-подгруппа в $G/\Phi(G^N)$. Значит, $G^N=P$ – силовская pподгруппа в G, противоречие. Таким образом, получаем, что $\Phi(G^N)=1$. Значит, G^N является минимальной нормальной подгруппой в G. А так как G – ненильпотентная группа, то G $ot\subset\Phi(G)$ и, следовательно, существует максимальная подгруппа M в G такая, что $G = [G^N]M$. Из того, что G/G^N изоморфно M, следует, что M нильпотентна и, значит, силовская p-подгруппа M_p группы M нормальна в M . Значит, $M \subseteq N_G(M_p)$. Но $M_p < N_G(M_p)$ и, следовательно, $N_G(M_p) = G$. Из последнего следует, что M_p нормальна в G. Так как P имеет вид $P = [G^N]M_p$, то P нормальна в G. Очевидно, что M не является нормальной подгруппой в G. Значит, M несубнормальна в G. Кроме того, согласно 3), М является представителем единственного класса нильпотентных ненормальных максимальных подгрупп группы G. Если все максимальные подгруппы из М являются субнормальными в G, то, по лемме 3, M – циклическая примарная группа и поэтому $|M_n|=1$, что влечет $G^N = P$, противоречие. Значит, в M имеется максимальная несубнормальная в G подгруппа L, которая, по лемме 3, является циклической примарной группой. Очевидно, что в этом случае $|M_p|=p$ и, не теряя общности, можем считать, что L=Q. Кроме того, если Q_1 – максимальная подгруппа из Q, то Q_1 является субнормальной подгруппой в G. Откуда, по лемме 4, следует, что $Q_1 = Q_G$.

Таким образом, G является группой типа (4). Д о с т а т о ч н о с т ь. Очевидно, что в данном случае в каждой максимальной цепи длины три группы G имеется собственная субнормальная в G подгруппа. Теорема доказана.

Теорема 2. Пусть G — группа, у которой в каждой максимальной цепи длины три имеется собственная субнормальная подгруппа и $|\pi(G)|=3$. В том и только в том случае все ненормальные максимальные подгруппы группы G нильпотентны, когда G=[P](QR), где $P=G^N$ является минимальной нормальной подгруппой в G, |R|=r, Q=<a> — циклическая группа, $|Q:Q_G|=q$ и выполняется одно из следующих условий:

- (1) R является нормальной подгруппой в G;
- (2) R ненормальна в G $u \mid Q \models q$.

Доказательство. Необходимость. Как и выше, можно показать, что $G^N \leq P$ и Pнормальна в G. Поскольку группа G не является нильпотентной, то в ней найдется такая ненормальная максимальная подгруппа A_1 , что $|G:A_i|=p^a$ для некоторого $a\in N$. Поэтому A_i нильпотентна и A_1 не является субнормальной в G . Если все максимальные подгруппы из A_1 являются субнормальными подгруппами в G, то, по лемме 3, A_1 – циклическая примарная группа, так как A_1 несубнормальна в G. Значит, $|A_{\mathbf{q}}| = q^b$ для некоторого $b \in N$ и поэтому $|G| = p^a q^b$, что противоречит условию. Следовательно, в A_1 имеется максимальная несубнормальная в G подгруппа A_2 . По условию, все максимальные подгруппы из A_2 являются субнормальными подгруппами в G. Значит, по лемме 3, A_2 — циклическая примарная группа и, очевидно, A_2 не является p-группой. Поэтому, не теряя общности, мы можем считать, что $\mid A_2 \mid = q^c$ некоторого $c \in N$. $|A_1:A_2|=p$, то $|G|=p^{a+1}q^c$, что противоречит условию. Значит, $|A_1:A_2|=r$, |R|=r и $|A_2|=|Q|$. Это означает, что $A_1 \cap P = 1$, т.е. $\Phi(P) = 1$. Очевидно, что $G^N = P$.

Таким образом, G = [P](QR), $A_1 = Q^x R^y$ — ненормальная максимальная подгруппа в G для некоторых $x,y \in G$ и $A_2 = Q^z = < a > -2$ -максимальная несубнормальная в G подгруппа группы G, которая является циклической группой

для некоторого $z \in G$. Не теряя общности, мы можем считать, что $A_1 = QR$ и $A_2 = Q$. Так как $\Phi(P) = 1$ и $P = G^N$, то P — минимальная нормальная подгруппа группы G. Заметим также, что, если Q_1 — максимальная подгруппа в Q, то так как Q_1 субнормальна в G, то Q_1 субнормальна в PQ_1 и, следовательно, нормальна в ней. С другой стороны, Q_1 нормальна в Q. Значит, Q_1 является нормальной подгруппой в G. Следовательно, по лемме $Q_1 = Q_2$ и поэтому $Q_2 = Q_3 = Q_4$.

Если R нормальна в G, то G является группой типа (1). Пусть R не является нормальной подгруппой в G. Тогда максимальная подгруппа RQ_G из A_1 не является субнормальной в G. Действительно, если RQ_G субнормальна в G, то R субнормальна в G и, следовательно, R нормальна в G. Полученное противоречие показывает, что RQ_G несубнормальна в G. Тогда все максимальные подгруппы из RQ_G являются субнормальными в G и поэтому, по лемме G0, G1, G2, G3, G3, G4, G5, G5, G6, G7, G8, G8, G9, G

Д о с т а т о ч н о с т ь. Очевидно, что в данном случае в каждой максимальной цепи длины

три группы G имеется собственная субнормальная в G подгруппа. Теорема доказана.

ЛИТЕРАТУРА

- Shirong, Li. Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups / Li Shirong // Mathematical Proceedings of the Royal Irish Academy. – 2000. – Vol. 100A, № 1. – P. 65–71.
- Guo, W. Cover-avoidance properties and the structure of finite groups / W. Guo, K.P. Shum // Journal of Pure and Applied Algebra. – 2003. – Vol. 181. – P. 297–308.
- Guo, W. X-semipermutable subgroups of finite groups / W. Guo, K.P. Shum, A.N. Skiba // J. Algebra. – 2007. – Vol. 315. – P. 31–41.
- Baojun, Li. New characterizations of finite supersoluble groups / Li Baojun, A.N. Skiba // Science in China Serias A: Mathematics. – 2008. – Vol. 50. № 1. – P. 827–841.
- Guo, W. Finite groups with given s-embedded and n-embedded subgroups / W. Guo, A.N. Skiba // J. Algebra. – 2009. – Vol. 321. – P. 2843–2860.
- Guo, W. The structure of finite non-nilpotent groups in which every 2-maximal subgroup permutes with all 3-maximal subgroups / W. Guo, H.V. Legchekova, A.N. Skiba // Communications in Algebra. – 2009. – Vol. 37. – P. 2446–2456.
- Го, В. Конечные группы, в которых любая 3-максимальная подгруппа перестановочна со всеми максимальными подгруппами / В. Го, Е.В. Легчекова, А.Н. Скиба // Матем. заметки. – 2009. – Т. 86, № 3. – С. 350–359.
- Ковалькова, Д.П. Об одном вопросе теории S-квазинормальных подгрупп / Д.П. Ковалькова, А.Н. Скиба. – Гомель, 2010. – 30 с. – (Препринт / Гомельский гос. ун-т им. Ф. Скорины; № 5).
- Doerk, K. Finite Soluble Groups / K. Doerk, T. Hawkes; Berlin-N. Y.: Walter de Gruyter, 1992. – 889 p.
- Mann, A. Finite groups whose n-maximal subgroups are subnormal / A. Mann // Trans. Amer. Math. Soc. – 1968. – Vol. 132. – P. 395–409.
- Шеметков, Л.А. Формации конечных групп / Л.А. Шеметков. М.: Наука, 1978.

Поступила в редакцию 25.04.2011. Принята в печать 30.06.2011 Адрес для корреспонденции: 246019, г. Гомель, ул. Советская, д. 104, УО «ГГУ им. Ф. Скорины», кафедра алгебры и геометрии, e-mail: dina.kovalkova@gmail.com – Андреева Д.П.

