

УДК 512.544

Бесконечные локально конечные группы с локально нильпотентной недедекиндовой нормой абелевых нециклических подгрупп

Ф.Н. Лиман, Т.Д. Лукашова

Сумский государственный педагогический университет имени А.С. Макаренко

 Σ -нормой группы G называют пересечение нормализаторов всех подгрупп G, входящих в некоторую непустую систему Σ и содержащую все подгруппы c некоторым теоретико-групповым свойством. Если Σ -норма совпадает c группой, то в последней нормальными будут все Σ -подгруппы. Исследованием групп, отличных от своих Σ -норм, впервые занялся P. Бэр еще в 30-х годах прошлого века для системы Σ всех подгрупп группы. В настоящее время многими алгебраистами изучаются группы c различными свойствами c -норм для произвольных систем подгрупп c.

Авторы изучают группы с недедекиндовой Σ -нормой N_G^A абелевых нециклических подгрупп. В статье рассматриваются бесконечные локально конечные группы, в которых норма N_G^A является собственной недедекиндовой локально нильпотентной подгруппой. Установлено, что все такие группы черниковские и являются конечными расширениями квазициклической подгруппы. Детализация строения исследуемых групп указана для бесконечных локально нильпотентных групп (теорема 1), для локально конечных групп с бесконечной локально нильпотентной нормой N_G^A (теорема 2), для бесконечных локально конечных групп с конечной нильпотентной нормой N_G^A (теорема 3).

Ключевые слова: локально конечная группа, локально нильпотентная группа, недедекиндова норма группы, абелева нециклическая подгруппа, норма абелевых нециклических подгруппа, p' -подгруппа.

Infinite locally finite groups with locally nilpotent non-Dedekind norm of abelian non-cyclic subgroups

F.N. Lyman, T.D. Lukashova

Educational establishment «Sumy State Pedagogical Makarenkop University»

We shall call Σ -norm of group G the intersection of normalizers of all subgroups G, which are included into some non-empty system Σ , which contains all the subgroups with some group-theoretical property. If the Σ -norm coincides with the group G, then all the subgroups of Σ are invariant in G. G. Baer was the first, who began to study the groups which are distinct from the Σ -norms for system Σ of all subgroups of group in the 30-ies of the XX century. Nowadays many algebraists study groups with various properties of Σ -norms for any systems of subgroups.

Authors have been studying groups with non-Dedekind Σ -norm N_G^A of abelian non-cyclic subgroups. In this article infinite locally finite groups, in which the norm N_G^A is non-Dedekind locally nilpotent proper subgroup, are considered. It is proved, that such groups are finite extensions of quasicyclic subgroups. The specification of a structure of the investigated groups is given for infinite locally nilpotent groups (the Theorem 1), for locally finite groups with infinite locally nilpotent norm N_G^A (the Theorem 2), for infinite locally finite groups with finite nilpotent norm N_G^A (the Theorem 3).

Key words: locally finite group, locally nilpotent group, non-Dedekind norm of group, abelian non-cyclic subgroup, norm of abelian non-cyclic subgroups, p-subgroup, p'-subgroup.

В теории групп важное место занимают результаты, касающиеся изучения свойств характеристических подгрупп группы и их влияния на строение группы. В настоящее время список

таких подгрупп может быть значительно расширен за счет различных \varSigma -норм группы.

Напомним, что Σ -нормой группы G называется пересечение $N(\Sigma)$ нормализаторов всех подгрупп группы, входящих в некоторую непустую систему Σ , содержащую все подгруппы группы с некоторым теоретико-групповым свойством. При этом любая Σ -норма группы G является ее характеристической подгруппой и содержит центр группы.

При изучении Σ -норм возникает ряд проблем, связанных с изучением свойств групп в зависимости от выбора системы Σ и ограничений, которые накладываются на эти нормы. Зная строение Σ -нормы и природу ее вложения в группу, во многих случаях удается охарактеризовать и свойства самой группы. В подавляющем большинстве исследований эта задача решалась при условии, что Σ -норма совпадает с группой. Впервые ситуацию, когда Σ -норма является собственной подгруппой группы, стал рассматривать Р. Бэр [1].

Авторы продолжают исследование групп с недедекиндовой Σ -нормой системы ДЛЯ Σ всех абелевых нециклических подгрупп группы. работе [2] соответствующая Σ -норма была названа нормой абелевых нециклических подгрупп N_G^A . Если N_G^A =G, то в группе G нормальны все абелевы нециклические подгруппы. Периодические неабелевы группы с таким свойством были изучены в [3] при условии, что каждая из таких групп содержит хотя бы одну абелеву нециклическую под-НА -группами группу, И названы там (HA_p -группами в случае p-групп).

Целью настоящей статьи является исследование бесконечных локально конечных групп, имеющих недедекиндову локально нильпотентную норму N_G^A абелевых нециклических подгрупп. При этом в значительной степени будут использованы результаты, полученные авторами в работах [2; 4], где рассмотрены бесконечные локально конечные p-группы с недедекиндовой нормой N_G^A .

Лемма 1. Пусть Σ — такая система подгрупп группы G, что для каждой Σ -подгруппы S подгруппа $S \times \langle x \rangle$, где $x \in G$, также является Σ -подгруппой. Если при этом группа G содержит Σ -подгруппу A, имеющую единичное пересечение с Σ -нормой группы G, то Σ -норма дедекиндова.

Д о к а з а т е л ь с т в о. Пусть $N(\Sigma)$ — Σ -норма группы G и A — такая Σ -подгруппа, что $A \cap N(\Sigma) = E$. Тогда для любого элемента $x \in N(\Sigma)$ получим $\left[A, \langle x \rangle\right] \subseteq A \cap N(\Sigma) = E$. По условию $\langle A, x \rangle = A \times \langle x \rangle$ также является Σ -подгруппой и потому нормализуется Σ -нормой. Но в таком случае

$$A \times \langle x \rangle \cap N(\Sigma) = \langle x \rangle \triangleleft N(\Sigma)$$

и норма $N(\Sigma)$ будет дедекиндовой. Лемма доказана

В случае, когда Σ – система всех абелевых нециклических подгрупп группы G, получим следующий результат.

Следствие 1. Если в группе G содержится такая абелева нециклическая подгруппа A, что $N_G^A \cap A = E$, где N_G^A — норма абелевых нециклических подгрупп группы G, то подгруппа N_G^A дедекиндова.

Далее будем считать, что норма N_G^A является недедекиндовой локально нильпотентной подгруппой группы G. Если при этом $N_G^A = G$, то G является локально нильпотентной негамильтоновой \overline{HA} -группой. Строение таких групп описывает следующее утверждение.

Утверждение 1 [3]. Периодическая негамильтонова локально нильпотентная группа G тогда и только тогда является \overline{HA} -группой, когда $G = G_p \times B$, где G_p — силовская p-подгруппа группы G, являющаяся негамильтоновой \overline{HA}_p -группой, а B — конечная дедекиндова группа, все абелевы подгруппы которой циклические.

Пусть $\pi(G)$ — множество всех простых делителей порядков элементов группы G и $p \in \pi(G)$. Напомним, что p'-подгруппой группы G называют подгруппу, не содержащую p-элементов. Максимальную по включению p'-подгруппу группы G называют ее силовской p'-подгруппой (см., например, [5, c. 343]).

Лемма 2. Если периодическая непримарная группа G имеет недедекиндову локально нильпотентную норму N_G^A абелевых нециклических подгрупп, силовская p-подгруппа $(N_G^A)_p$ которой недедекиндова, то все абелевы p'-подгруппы группы G циклические. Если при этом группа G локально конечна, то все ее силов-

ские p'-подгруппы конечны, а силовские q-подгруппы ($q \in \pi(G)$, $q \ne p$) являются либо циклическими, либо конечными кватернионными 2-группами.

Д о к а з а т е л ь с т в о. Поскольку норма N_G^A является негамильтоновой локально нильпотентной $\overline{H\!A}$ -группой, то ввиду утверждения 1

$$N_G^A = (N_G^A)_n \times B$$
,

где $(N_G^A)_p$ — силовская p-подгруппа нормы, являющаяся негамильтоновой \overline{HA}_p -группой, а B — конечная дедекиндова группа, все абелевы подгруппы которой циклические, (B,p)=1.

Пусть $G_{p'}$ — произвольная силовская p'-подгруппа группы G. Покажем, что все абелевы подгруппы группы $G_{p'}$ циклические. В самом деле, если A — абелева нециклическая p'-подгруппа, то для любого элемента $x \not\in (N_G^A)_p$ подгруппа $\left\langle x,A\right\rangle$ будет N_G^A -допустимой, откуда

$$\langle x, A \rangle \cap (N_G^A)_p = \langle x \rangle \triangleleft (N_G^A)_p$$
.

Но в таком случае $(N_G^A)_p$ — дедекиндова группа, что противоречит условию. Следовательно, все абелевы p'-подгруппы группы G циклические.

Пусть теперь G — локально конечная группа. Поскольку $G_{p'}$ не содержит бесконечных абелевых подгрупп, то в силу известного результата М.И. Каргаполова, Ф. Холла и Кулатилаки (см., например, [5, с. 499]) $G_{p'}$ является конечной группой, и по доказанному все ее абелевы подгруппы циклические. Из этого также следует, что все силовские q-подгруппы группы G ($q \in \pi(G)$, $q \not= p$) циклические для нечетных простых чисел, а силовская 2-подгруппа либо циклическая, либо конечная кватернионная 2-группа. Лемма доказана.

Отметим, что существуют периодические не локально конечные группы, у которых норма абелевых нециклических подгрупп локально нильпотентна. Простейший пример таких групп приведен ниже.

Пример 1. Пусть $G = G_p \times B$, где G_p – негамильтонова \overline{HA}_p - группа, B – бесконечная периодическая не локально конечная группа

А.Ю. Ольшанского, все подгруппы которой имеют простой порядок (см. [6]) и $p \notin \pi(B)$.

В этой группе норма абелевых нециклических подгрупп локально нильпотентна и совпадает с G_p .

Лемма 3. Периодическая группа G, имеющая недедекиндову локально нильпотентную норму N_G^A , удовлетворяет условию минимальности для абелевых подгрупп.

Доказательство. Пусть группа G и ее норма абелевых нециклических подгрупп N_G^A удовлетворяют условиям леммы. Тогда N_G^A — недедекиндова локально нильпотентная \overline{HA} -группа. Из описания таких групп [3] следует, что N_G^A удовлетворяет условию минимальности для абелевых подгрупп и либо конечна, либо является конечным расширением квазициклической p-подгруппы.

Предположим, что G не удовлетворяет условию минимальности для абелевых подгрупп. Тогда она содержит абелеву подгруппу M, разложимую в прямое произведение бесконечного числа подгрупп простых порядков. Пусть $M_1 = N_G^A \cap M$ — пересечение подгруппы M с нормой N_G^A . Тогда $M_1 < \infty$ и $M = M_1 \times \infty$ M_2 , где $M_1 = \infty$ и $N_G^A \cap M_2 = E$. В силу леммы 1 норма N_G^A должна быть дедекиндовой, что невозможно по условию. Следовательно, G — группа с условием минимальности для абелевых подгрупп, что и требовалось доказать.

Поскольку для локально конечных групп условие минимальности для абелевых подгрупп равносильно условию минимальности для всех подгрупп [7], то имеет место следствие 2.

Следствие 2. Произвольная бесконечная локально конечная группа G, имеющая недедекиндову локально нильпотентную норму N_G^A , является группой Черникова.

Следующая теорема характеризует строение бесконечных периодических локально нильпотентных групп, имеющих недедекиндову норму абелевых нециклических подгрупп.

Теорема 1. Бесконечная периодическая локально нильпотентная группа G тогда и только тогда имеет недедекиндову норму N_G^A абелевых нециклических подгрупп, когда $G = G_p \times G_{p'}$, где G_p — бесконечная силовская

p-подгруппа группы G c недедекиндовой нормой $N_{G_p}^A$ абелевых нециклических подгрупп (где $p \in \pi(G)$), а $G_{p'}$ — конечная циклическая или конечная гамильтонова p'-подгруппа, все абелевы подгруппы которой циклические, причем $N_G^A = N_{G_p}^A \times G_{p'}$.

Д о к а з а т е л ь с т в о. Достаточность условий теоремы очевидна. Покажем их необходимость. Пусть норма N_G^A абелевых нециклических подгрупп недедекиндова. Тогда из утверждения 1 получаем $N_G^A = (N_G^A)_p \times B$, где $(N_G^A)_p -$ силовская p-подгруппа группы N_G^A , являющаяся негамильтоновой \overline{HA}_p -группой, B — конечная дедекиндова группа, все абелевы подгруппы которой циклические и (p,|B|)=1.

Как известно (предложение 1.4 [8]), периодическую локально нильпотентную группу можно представить в виде прямого произведения ее силовских подгрупп G_p и $G_{p'}$, т.е. $G = G_p \times G_{p'}$. Ввиду леммы 2 $G_{p'}$ – конечная группа, в которой все абелевы подгруппы циклические. Следовательно, $G_{p'}$ либо циклическая, либо является прямым произведением циклической группы нечетного (в том числе и единичного) порядка и конечной кватернионной 2-группы.

Пусть $2 \in \pi(G_{p'})$. Покажем, что силовская 2-подгруппа G_2 группы G не содержит обобщенной группы кватернионов порядка 16. Допустим противное: пусть $G_2 \supseteq \langle h_1, h_2 \rangle$, где $|h_1| = 8$, $|h_2| = 4$, $h_1^4 = h_2^2$, $h_2^{-1}h_1h_2 = h_1^{-1}$. В таком случае подгруппа $H = \langle h_1^2, h_2 \rangle$ нормализует каждую абелеву нециклическую подгруппу группы G, откуда $H \subset N_G^A$. Пусть M – произвольная абелева нециклическая подгруппа группы G_p . Тогда $\left\langle h_1 h_2 \right\rangle \! imes \! M$ будет N_G^A -допустимой подгруппой, а значит N_G^A -допустимой будет и $\langle h_1 h_2 \rangle$. Следовательно, $H \subset N_G(\langle h_1 h_2 \rangle)$. другой C стороны, $[h_1h_2, h_2] = [h_1, h_2] = h_1^{-2} \notin \langle h_1h_2 \rangle$, что невозможно. Таким образом, подгруппа G_2 либо циклическая, либо является группой кватернионов порядка 8.

Покажем, что $N_G^A=N_{G_p}^A\times G_{p'}$, где $N_{G_p}^A$ — норма абелевых нециклических подгрупп группы G_p . В самом деле, из условия $\left(N_G^A\right)_p\subseteq N_{G_p}^A$ следует, что норма $N_{G_p}^A$ группы G_p недедекиндова. Учитывая, что каждую абелеву нециклическую подгруппу группы G можно представить в виде $M_p\times \langle h\rangle$, где M_p — нециклическая p-подгруппа, $\left(|h|,p\right)=1$, и $N_{G_p}^A$ нормализует все такие подгруппы, приходим к выводу, что $\left(N_G^A\right)_p=N_{G_p}^A$, откуда $N_G^A=N_{G_p}^A\times G_{p'}$. Теорема доказана.

Обратим внимание на то, что в теореме 1 силовская p-подгруппа G_p группы G является бесконечной p-группой с недедекиндовой нормой $N_{G_p}^A$ абелевых нециклических подгрупп. Строение таких групп описывает следующее утверждение.

Утверждение 2 [2; 4]. Все бесконечные локально конечные p-группы (p – простое число) с недедекиндовой нормой N_G^A абелевых нециклических подгрупп исчерпываются группами следующих типов:

- 1) $G=(A\times < b>)^{\blacktriangle} < c>$, где A- квазициклическая p-группа,|b|=|c|=p, [A, < c>]=1, $[b,c]=a_1\in A$, $|a_1|=p$; $N_G^A=G$;
- 2) $G=A\times Q$, где A квазициклическая 2-группа, Q группа кватернионов порядка 8; $N_C^A=G$:
- 3) G=A < b >, где A квазициклическая 2-группа, |b|=4, $b^2 \in A$, $b^{-1}ab=a^{-1}$ для любого элемента $a \in A$; $N_G^A = G$;
- 4) G=A < b >, где A квазициклическая 2-группа, |b|=8, $b^4 \in A$, $b^{-1}ab=a^{-1}$ для любого элемента $a \in A$; $N_G^A = G$;
- 5) $G=(A \times \langle b \rangle) \land \langle c \rangle \land \langle d \rangle$, где $A \kappa$ вазиииклическая 2-группа, |b|=|c|=|d|=2, $[A, \langle c \rangle]=1$, $[b,c]=[b,d]=[c,d]=a_1 \in A$, $|a_1|=2$, $d^1ad=a^{-1}$ для любого элемента $a \in A$; $N_G^A=(\langle a_2 \rangle \times \langle b \rangle) \land \langle c \rangle$, $a_2 \in A$, $|a_2|=4$;
- 6) G=(A < y >)Q, где A квазициклическая 2-группа, [A,Q]=1, $Q=<q_1,q_2>$, $|q_1|=4$, $q_1^2=q_2^2=[q_1,q_2]$, |y|=4, $y^2=a_1\in A$, $y^{-1}ay=a^{-1}$ для любого элемента $a\in A$, $[\left\langle y\right\rangle,Q]\subseteq\left\langle a_1\right\rangle\times\left\langle q_1^{\ 2}\right\rangle;$ $N_G^A=<a_2>\times Q$, $a_2\in A$, $|a_2|=4$.

Следствие 3. Произвольная локально конечная p-группа G, имеющая бесконечную недедекиндову норму N_G^A абелевых нециклических подгрупп, является бесконечной негамильтоновой \overline{HA}_p -группой.

Следствие 4. Пусть G — бесконечная локально конечная группа, имеющая локально нильпотентную норму N_G^A с негамильтоновой силовской р-подгруппой $(N_G^A)_p$. Тогда G является конечным расширением квазициклической p-подгруппы.

Д о к а з а т е л ь с т в о. Ввиду следствия 2 G — группа Черникова и поэтому является конечным расширением полной абелевой подгруппы P. Так как по лемме 2 все силовские q-подгруппы групы G при $q \neq p$ либо циклические, либо кватернионные 2-группы, то P будет прямым произведением конечного числа квазициклических p-подгрупп.

Пусть $P\supseteq (A_1\times A_2)$, где A_1 и A_2 — квазициклические p-подгруппы. Поскольку $N_G^A\lhd G_1=(A_1\times A_2)N_G^A$, то по теореме 1.16 [8] центр группы G_1 содержит такую полную абелеву подгруппу P_1 , что $\left|P_1\cap N_G^A\right|<\infty$ и $G_1=P_1N_G^A$. Значит, G_1 — конечная над центром локально нильпотентная \overline{HA} -группа. Из описания таких груп (утверждения 1 и 2) получаем, что P=A — квазициклическая p-подгруппа, являющаяся максимальной полной подгруппой группы G.

Исследуем теперь строение бесконечных локально конечных не локально нильпотентных групп, у которых норма абелевых нециклических подгрупп является бесконечной локально нильпотентной подгруппой.

Теорема 2. Пусть G — локально конечная не локально нильпотентная группа, имеющая бесконечную локально нильпотентную недедекиндовую норму N_G^A абелевых нециклических подгрупп. Тогда $G = G_p > H$, где G_p — бесконечная \overline{HA}_p группа, совпадающая с силовской p-подгруппой нормы N_G^A , H — конечная группа, все абелевы подгруппы которой циклические и (|H|, p) = 1. При этом каждый элемент $h \in H$, централизующий некоторую абелеву нециклическую подгруппу $M \subset N_G^A$, централизует норму N_G^A .

Доказательство. Пусть группа G и ее норма N_G^A удовлетворяют условиям теоремы. Тогда ввиду утверждения 1 N_G^A является конечным расширением своей силовской p-подгруппы $\left(N_G^A\right)_n$.

Так как $\left(N_G^A\right)_p$ содержится в норме $N_{G_p}^A$ абелевых нециклических подгрупп произвольной силовской p-подгруппы G_p группы G, то G_p является локально конечной p-группой с бесконечной нормой абелевых нециклических подгрупп. Применяя к G_p следствие 3, получим

$$\left(N_G^A\right)_p = N_{G_p}^A = G_p,$$

т.е. G_p является нормальной в G бесконечной \overline{HA}_p -группой одного из типов 1)—4) утверждения 2. Учитывая, что по следствию 4 $\left[G:G_p\right]<\infty$ и применяя обобщенную теорему Шура (см., например, [8, с. 214]), приходим к выводу, что подгруппа G_p дополняема в G, $G=G_p \leftthreetimes H$. Ввиду леммы 2 подгруппа H конечна, все ее абелевы подгруппы циклические и $\left(H,p\right)=1$.

Пусть теперь h — произвольный элемент подгруппы H, централизующий некоторую абелеву нециклическую подгруппу $M \subset N_G^A$. Не нарушая общности рассуждений, можем считать, что $M \subset G_p$. Тогда $\left(M \times \langle h \rangle\right) - N_G^A$ -допустимая подгруппа, а значит ее характеристическая подгруппа $\langle h \rangle$ также N_G^A -допустима. Учитывая строение нормы N_G^A , приходим к заключению, что $\langle h \rangle \subset C_G(N_G^A)$. Теорема доказана.

Следствие 5. Пусть G — бесконечная локально конечная группа, имеющая бесконечную локально нильпотентную недедекиндову норму N_G^A . Тогда G является конечным расширением нормы N_G^A абелевых нециклических подгрупп.

Как показывает следующий пример, группа указанного в теореме 2 строения может иметь не локально нильпотентную норму абелевых нециклических подгрупп, поэтому условия теоремы 2 являются необходимыми, но не достаточными.

Пример 2. Пусть $G = ((A \times \langle b \rangle) \int \langle c \rangle) \int \langle h \rangle$, где A — квазициклическая 7-подгруппа,

|b|=|c|=7, $|a_1|=7$, |h|=3, [A,< c>]=1, $[b,c]=a_1\in A$, [b,h]=b, [c,h]=c, $[a,h]=a^3$ для каждого элемента $a\in A$.

Очевидно, что G является группой вида $G=G_7$ $\int H$, где $G_7=(A\times < b>)\int < c>$ — бесконечная \overline{HA}_7 -группа и $H=\left\langle h\right\rangle$, но ее норма N_G^A абелевых нециклических подгрупп не локально нильпотентна и совпадает с G .

С другой стороны, при некоторых ограничениях условия теоремы 2 могут стать достаточными. В частности, имеют место следующие два утверждения.

Следствие 6. Пусть G — бесконечная локально конечная группа. Норма N_G^A абелевых нециклических подгрупп тогда и только тогда является локально нильпотентной недедекиндовой группой c бесконечной силовской 2-подгруппой, когда $G = G_2 \times H$, где G_2 — бесконечная \overline{HA}_2 -группа, совпадающая c силовской 2-подгруппой нормы N_G^A , H — конечная группа, все абелевы подгруппы которой циклические, u (H, 2)=1. При этом $N_G^A = G_2 \times Z(H)$.

H о к а з а т е л ь с т в о. H еобходимость. По теореме 2 $G = G_2 \ J H$, где G_2 — бесконечная \overline{HA}_2 -группа, совпадающая с силовской 2-подгруппой нормы N_G^A , а H — конечная группа, все абелевы подгруппы которой циклические, (H|,2)=1. Учитывая утверждение 2, где описаны бесконечные \overline{HA}_2 -группы, приходим к заключению, что G_2 — конечное расширение квазициклической 2-группы A.

Обозначим h — произвольный элемент группы H. Тогда из предложения 1.11 [8] следует, что $h \in C_G(A)$ и подгруппа $\left\langle \langle h \rangle \times A \right\rangle$ является N_G^A -допустимой. Ввиду характеристичности в $\left\langle \langle h \rangle \times A \right\rangle$, подгруппа $\left\langle h \rangle$ также N_G^A -допустима. Учитывая теперь условие $G_2 \subseteq N_G^A$, делаем вывод, что $G = G_2 \times H$.

Покажем, что $N_G^A = G_2 \times Z(H)$. Пусть $h \in (H \cap N_G^A)$. По доказанному $\langle h \rangle - N_G^A$ -допустимая подгруппа. Учитывая локальную нильпотентность нормы N_G^A , характеристичность подгруппы $\langle h \rangle$ в ней и тот факт, что каждый элемент $h \in (H \cap N_G^A)$ нормализует подгруппу

 $A imes \langle y
angle$ для всех $y\in H$, получим $[h,y]\subseteq \langle h
angle \cap A imes \langle y
angle =1$. Следовательно, $h\in Z(H)$ и $N_G^A=G_2 imes Z(H)$.

<u>Достаточность</u>. Пусть G – группа указанного в теореме строения. Тогда все ее абелевы нециклические подгруппы можно представить в виде $M \times \langle t \rangle$, где $M \subseteq G_2$ – абелева нециклическая 2-группа, $\langle t \rangle \subseteq H$. Так как G_2 – бесконечная \overline{HA}_2 -группа, то $G_2 \subseteq N_G^A$ и учитывая утверждение 2 G_2 является конечным расширением квазициклической 2-группы A.

Пусть $h, y \in H \cap N_G^A$ и (|h|,|y|)=1. Тогда подгруппы $A \times \langle y \rangle$ и $A \times \langle h \rangle$ будут N_G^A -допустимыми как абелевы нециклические подгруппы. Ввиду характеристичности подгруппы $\langle h \rangle$ и $\langle y \rangle$ также будут N_G^A -допустимыми. Следовательно, $[h,y] \subseteq \langle h \rangle \cap \langle y \rangle = 1$ и N_G^A — локально нильпотентная группа. Как и при доказательстве необходимости, нетрудно убедиться, что $N_G^A = G_2 \times Z(H)$.

 \mathcal{A} о к а з а т е л ь с т в о. Так как по условию G_p — бесконечная $\overline{\mathit{HA}}_p$ -группа, то из утверждения 2 следует, что G_p является конечным расширением квазициклической p-группы A. Если при этом p=2, то справедливость утверждения теоремы вытекает из следствия 6.

Пусть $p\neq 2$. Тогда G_p — группа типа 1) утверждения 2. Так как $Z(G) \cap G_p \neq E$ и $Z(G_p) = A$, то элемент $a \in A$, где |a| = p содержится в центре группы G. По утверждению 1.11 [8] $A \subseteq Z(G)$. Дальше остается повторить рассуждения, используемые при доказательстве следствия 6.

Обратим внимание, что подгруппа H, о которой идет речь в теореме 2 и ее следствиях, может быть ненильпотентной.

Пример 3. В группе

$$G = ((A \times \langle b \rangle) \int \langle c \rangle) \times H$$
,

где A — квазициклическая 5-подгруппа, |b|=|c|=5, [A, < c>]=1, $[b, c]=a_1 \in A$, $|a_1|=5$, $H=\left\langle d\right\rangle \int h$, |d|=3, |h|=4, $h^{-1}dh=d^{-1}$, норма абелевых нециклических подгрупп $N_G^A=((A\times < b>)\int < c>)\times \left\langle h^2\right\rangle$, а H — ненильпотентная подгруппа.

Рассмотрим теперь бесконечные локально конечные не локально нильпотентные группы, в которых норма абелевых нециклических подгрупп является конечной нильпотентной недедекиндовой подгруппой.

Д о к а з а т е л ь с т в о. Так как норма N_G^A группы G недедекиндова и нильпотентна, то ввиду утверждения 1 $N_G^A = \left(N_G^A\right)_p \times B$, где $\left(N_G^A\right)_p$ — силовская p-подгруппа нормы, являющаяся негамильтоновой \overline{HA}_p -группой, B — конечная дедекиндова группа, все абелевы подгруппы которой циклические и (|B|,p)=1. Применяя к группе G следствие 4, приходим к выводу, что G — конечное расширение квазициклической p-подгруппы A.

Если $p \neq 2$, то A содержится в центре каждой силовской p-подгруппы G_p группы G . Тогда норма $N_{G_p}^A$ абелевых нециклических подгрупп группы G_p бесконечна и по теореме 2

 $N_{G_p}^A = G_p$. Учитывая недедекиндовость подгруппы $\left(N_G^A\right)_p$ и утверждение 2, делаем вывод, что $G_p = A \cdot \left(N_G^A\right)_p$. Значит, $G_p \lhd G$ как произведение нормальных подгрупп. По обобщенной теореме Шура [8, с. 214], подгруппа G_p дополняема в G и $G = G_p \leftthreetimes H$, где H — конечная группа, все абелевы подгруппы которой циклические и (H|,p)=1.

Если при этом все абелевы нециклические подгруппы группы G являются p-группами, то $G_p\subseteq N_G^A$, что противоречит конечности нормы N_G^A . Таким образом, G содержит непримарную абелеву нециклическую подгруппу $M=M_p\times M_q$, где M_p — абелева нециклическая p-группа, M_q — циклическая q-группа. Учитывая строение группы G_p , приходим к выводу, что $M_p\bigcap A\neq E$ Значит, $M_q\subseteq C_G(a_1)$, где $a_1\in A, |a_1|=p$. Ввиду предложения 1.11 [8] $M_q\subseteq C_G(A)$, откуда $A\subseteq N_G^A$, что противоречит конечности нормы N_G^A .

Пусть теперь p=2. Если квазициклическая 2-группа A содержится в центре силовской 2-подгруппы G_2 , то учитывая условие $A \triangleleft G$ и предложение 1.11 [8] приходим к заключению, что $A \subseteq Z(G)$, что невозможно. Таким обра- $A \nsubseteq Z(G_2)$. Тогда $[G:C_G(A)]=2$ $G = C_G(A)(x), x^2 \in C_G(A)$. По доказанному выше $N_G^A \subseteq C_G(A)$. Из этого следует, что $C_G(A)$ группа с бесконечной локально нильпотентной нормой абелевых нециклических подгрупп. Применяя к $C_G(A)$ следствие 6, получим $C_G(A) = C_2 \times H$, где C_2 – бесконечная НА 2 - группа одного из типов 1)—4) утверждения 2, Н - конечная группа с циклическими абелевыми подгруппами и (|H|,2)=1. Обратим внимание на то, что подгруппа H содержит все 2' -элементы группы G и потому является силовской 2'-подгруппой G. Ввиду характеристичности H в $C_G(A)$ получим $H \triangleleft G$. Учитывая теперь, что группа G счетна, имеет нормальную разрешимую локально нормальную силовскую 2' -подгруппу *H* и применяя [5, с. 508], приходим к заключению, что H дополняема в G. Следовательно, $G = H \int G_2$, где G_2 – некоторая силовская 2-подгруппа группы G.

Поскольку силовская 2-подгруппа $\left(N_G^A\right)_2$ нормы N_G^A конечна, содержится в норме $N_{G_2}^A$ абелевых нециклических подгрупп группы G_2 и $A \not\subset Z(G_2)$, то $N_{G_2}^A$ — конечная негамильтонова \overline{HA}_2 -группа, а G_2 — бесконечная локально конечная 2-группа с конечной недедекиндовой нормой абелевых нециклических подгрупп. Учитывая описание таких групп, G_2 — группа одного из типов 5)—6) утверждения 2. Доказательство последнего утверждения теоремы проводится так же, как это было сделано в теореме 2. Необходимость условий теоремы доказана.

достаточность. $G = H \times G_2$, где G_2 – бесконечная 2-группа одного из типов 5)-6) утверждения 2, норма $N_{G_2}^A$ абелевых нециклических подгрупп группы G_2 конечна и совпадает с силовской 2-подгруппой нормы N_G^A , H – конечная группа, все абелевы подгруппы которой циклические, (|H|,2)=1. В таком случае группа G является конечным расширением квазициклической 2-подгруппы А. Так как квазициклическая 2-группа не имеет автоморфизмов нечетного порядка, то [A,H]=1. Поэтому для любого элемента $h \in H$ подгруппа $\langle h, A \rangle = \langle h \rangle \times A$ будет N_G^A -допустимой, откуда ввиду характеристичности N_G^A -допустимой будет и подгруппа $\langle h \rangle$. любых Следовательно, ДЛЯ $h, y \in (H \cap N_G^A)$, порядки которых взаимно просты, получим $[h,y] \subseteq (\langle h \rangle \cap \langle y \rangle) = 1$. Поэтому N_G^A — нильпотентная недедекиндова группа. Теорема доказана.

Существование бесконечных не локально нильпотентных групп, имеющих конечную нильпотентную недедекиндову норму абелевых нециклических подгрупп, подтверждает следующий пример.

Пример 4. Пусть $G = h \times A \times B \times c \times d$, где A – квазициклическая 2-группа, |b|=|c|=|d|=2, [A, < c>]=1, [b, c]=[b, d]=[c, d]= $=a_1 \in A$, $|a_1|=2$, $d^{-1}ad=a^{-1}$ для любого элемента $a \in A$, |h|=3, $d^{-1}hd=h^{-1}$, $[\langle A,b,c\rangle,\langle h\rangle]=1$.

Группа G — бесконечная не локально нильпотентная, а ее норма $N_G^A = \langle a_2, b, c \rangle$, где $a_2 \in A$, $|a_2| = 4$, — конечная нильпотентная группа.

ЛИТЕРАТУРА

- Baer, R. Der Kern, eine Charakteristische Untergruppe / R. Baer // Comp. Math. – 1935. – 1. – S. 254–283.
- Лукашова, Т.Д. Про норму абелевих нециклічних підгруп нескінченних локально скінченних *p*-груп (*p≠2*) / Т.Д. Лукашова // Вісн. Київськ. ун-ту. Сер. «Фіз.-мат. науки». – 2004. – № 3. – С. 35–39.
- Лиман, Ф.Н. Периодические группы, все абелевы нециклические подгруппы которых инвариантны / Ф.Н. Лиман // Группы с ограничениями для подгрупп. – К.: Наукова думка, 1971. – С. 65–96.
- Лиман, Ф.М. Про нескінченні 2-групи з недедекіндовою нормою абелевих нециклічних підгруп / Ф.М. Лиман, Т.Д. Лукашова // Вісн. Київськ. ун-ту. Сер. «Фіз.-мат. науки». 2005. № 1. С. 56–64.
- Курош, А.Г. Теория групп / А.Г. Курош. М.: Наука, 1967. 648 с.
- Ольшанский, А.Ю. Бесконечная группа с подгруппами простых порядков / А.Ю. Ольшанский // Изв. АН СССР. Сер. «Математика». 1980. 44, № 2. С. 309–321.
- Шунков, В.П. О локально конечных группах с условием минимальности для абелевых подгрупп / В.П. Шунков // Алгебра и логика. 1970. 9. С. 579–615.
- Черников, С.Н. Группы с заданными свойствами системы подгрупп / С.Н. Черников. – М.: Наука, 1980. – 384 с.

Поступила в редакцию 10.07.2012. Принята в печать 14.12.2012 Адрес для корреспонденции: e-mail: mathematicsspu@mail.ru — Лиман Ф.Н.