ОБ ОДНОМ ВИДЕ ФАКТОРИЗАЦИИ КВАДРАТНЫХ МАТРИЦ

 $A.A.\ Kозлов^{1},\ T.A.\ Александрович^{2}$ 1 Новополоцк, ПГУ имени Евфросинии Полоцкой 2 Витебск, ВГУ имени П.М. Машерова

На сегодняшний день существуют различные факторизации квадратной матрицы: LU-разложение, QR-разложение, полярное разложение и др. В работе [1] были введены так называемые «почти единичные» матрицы, а также строго положительно регулярные матрицы. Первые отличаются от единичной матрицы наличием четного количества элементов -1, стоящих на главной диагонали; у вторых же все главные угловые миноры являются положительными числами. В статье [1] также было получено разложение «почти единичной» матрицы в произведение строго регулярно положительных матриц. Доказательство этого факта обусловило постановку вопроса о возможности представления любой квадратной матрицы с положительным определителем в виде произведения строго регулярно положительных матриц.

Цель работы — разложение квадратной матрицы с ненулевыми главными угловыми минорами и положительным определителем в произведение строго регулярно положительных матриц.

Материал и методы. Материалом исследования являются невырожденные квадратные матрицы произвольного порядка. В работе использованы методы линейной алгебры и теории матриц.

Результаты и их обсуждение. Обозначим через R^n n-мерное евклидово векторное пространство с нормой $\|x\| = \sqrt{x^T x}$ (символ T означает операцию транспонирования вектора или матрицы); через $e_1, e_2, ..., e_n$ — вектор-столбцы канонического ортонормированного базиса пространства R^n , через M_{mn} — пространство вещественных матриц размерности $m \times n$ со спектральной (операторной) нормой $\|H\| = \max_{\|x\|=1} \|Hx\|$, т.е. нормой, индуцируемой на M_{mn} евклидовой нормой в пространствах R^n и R^m [2, c. 357]; $M_n := M_{nn}$, через $E = [e_1, ..., e_n] \in M_n$ единичную матрицу.

Для любых чисел $k,l \in \{1,...,n\}$ (k < l) введем в рассмотрение квадратные матрицы n-ого порядка

$$S^{(1)}(k,l) := 5\varepsilon_{kk} + 2\varepsilon_{kl} - 8\varepsilon_{lk} - 3\varepsilon_{ll} = \begin{pmatrix} 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & & & & & \vdots & & & \vdots \\ 0 & \dots & 0 & 5 & 0 & \dots & 0 & 2 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ \vdots & & & & & & & \vdots & & & \vdots \\ l & 0 & \dots & 0 & -8 & 0 & \dots & 0 & -3 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{pmatrix},$$

$$(1)$$

$$S^{(2)}(k,l) := 3\varepsilon_{kk} + 2\varepsilon_{kl} - 8\varepsilon_{lk} - 5\varepsilon_{ll} = \begin{pmatrix} 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & & & & & \vdots \\ 0 & \dots & 0 & 3 & 0 & \dots & 0 & 2 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ \vdots & & & & & & \vdots \\ l & 0 & \dots & 0 & -8 & 0 & \dots & 0 & -5 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

$$(2)$$

Возьмем произвольное $s\in N$, такое, что $1\leq s\leq [n/2]$, где $[\cdot]$ означает целую часть числа. Зафиксируем любые пары чисел $(k_i,l_i)\in N\times N,\ i=\overline{1,s},\ для$ которых выполняются неравенства $1\leq k_1< l_1< k_2< l_2< ...< k_s< l_s\leq n$. Обозначим через $S^{(1)}:=S^{(1)}(k_1,l_1,k_2,l_2,...,k_s,l_s)$ и $S^{(2)}:=S^{(2)}(k_1,l_1,k_2,l_2,...,k_s,l_s)$ квадратные матрицы n-ого порядка $S^{(1)}:=E+\sum_{i=1}^s S^{(1)}(k_i,l_i)-\sum_{i=1}^s (\varepsilon_{k_ik_i}+\varepsilon_{l_il_i})$ и $S^{(2)}:=E+\sum_{i=1}^s S^{(2)}(k_i,l_i)-\sum_{i=1}^s (\varepsilon_{k_ik_i}+\varepsilon_{l_il_i}),$ 3 в которых слагаемые $S^{(1)}(k_i,l_i),\ S^{(2)}(k_i,l_i)\in M_n,\ i=\overline{1,s},$ определяются равенствами соответственно (1) и (2).

Замечание 1. Матрица $S^{(1)} \in M_n$ ($S^{(2)} \in M_n$) получена из единичной заменой элементов, стоящих в позициях (k_i, k_i), (k_i, l_i), (l_i, k_i), (l_i, l_i), $i = \overline{1, s}$, соответственно на числа 5, 2, -8 и -3 (на числа 3, 2, -8 и -5).

Обозначим также $\overline{E}(k_1,l_1,...,k_s,l_s):=E-2\sum_{i=1}^s(\varepsilon_{k_ik_i}+\varepsilon_{l_il_i})\in M_n$ матрицу, полученную из единичной заменой единиц, стоящих в строках под номерами $k_1,l_1,...,k_s$, l_s , на -1.

Замечание 2. Пользуясь терминологией статьи [1], такие матрицы далее будем называть «почти единичными».

Теорема 1. Для ранее определенного числа $s \in N$ и пар $(k_i, l_i) \in N \times N$, $i = \overline{1, s}$, матрицы $S^{(1)}, S^{(2)} \in M_n$, определяемые формулами (3), обеспечивают равенство $S^{(1)} \cdot S^{(2)} = \overline{E}(k_1, l_1, ..., k_s, l_s)$.

Определение 1. [2, с. 30] Для любого числа $k \in \{1,...,n\}$ и всякой матрицы $H = (h_{ij})_{i,j=1}^n \in M_n$ через $H\{k\} \in M_k$ обозначим ее главную ведущую подматрицу порядка k, т.е. $H\{1\} := h_{11} \in M_1$, $H\{2\} := \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \in M_2$, ..., $H\{n\} := H \in M_n$. Главным ведущим (угловым) минором k-ого порядка квадратной матрицы $H \in M_n$ будем называть [2, с. 30] определитель ее главной ведущей подматрицы k-ого порядка, т.е. $\det H\{k\}$.

Определение 2. [2] Матрицу $H \in M_n$ назовем *строго* ρ -положительно регулярной, если при всяком $i = \overline{1, n}$ имеют место неравенства $\det H\{i\} \ge \rho$.

Теорема 3. При любом числе $\rho > 0$ и всякой матрице $H \in M_n$, для которой справедливы оценки $|\det H\{i\}| \geq \rho > 0$, $i = \overline{1,n}$, причем $\det H \geq \rho > 0$, найдутся такие матрица $H_1 \in M_n$, удовлетворяющая соотношениям $\det H_1\{i\} \geq \rho$, $i = \overline{1,n}$, и диагональная матрица $\overline{E} := \operatorname{diag}(\pm 1, \dots, \pm 1) \in M_n$, с четным количеством -1 на диагонали, которые обеспечивают равенство $H = H_1 \cdot \overline{E}$.

Следствие 1. Для любого числа $\rho > 0$ и всякой матрицы $H \in M_n$, удовлетворяющей оценкам $|\det H\{i\}| \ge \rho > 0$, $i = \overline{1,n}$, и $\det H \ge \rho > 0$, существуют такие величина $\rho_1 = \rho_1(\rho) > 0$ и строго ρ_1 -положительно регулярные матрицы $H_i \in M_n$, $i = \overline{1,3}$, что имеет место представление $H = \prod_{i=1}^3 H_i$.

Заключение. В настоящих материалах предложено разложение квадратной матрицы с ненулевыми главными угловыми минорами и отделенным от нуля положительным определителем в произведение трех строго положительно регулярных матриц (следствие 1).

Работа выполнялась в рамках Государственной программы научных исследований «Конвергенция-2025» (подпрограмма 1, задание 1.2.01).

ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗ УЛЬТРАЗВУКОВЫХ ИССЛЕДОВАНИЙ

Е.А. Корчевская Витебск, ВГУ имени П.М. Машерова

В настоящее время активно разрабатываются новые неинвазивные методы ультразвуковой диагностики различных заболеваний. В клинической практике востребована неинвазивная, в режиме реального времени информация о степени активности воспалительных заболеваний, которую может обеспечить ультразвуковое исследование (УЗИ). Для некоторых конкретных заболеваний, например, болезней кишечника, разработаны субъективные критерии ультразвуковой диагностики активности воспалительного процесса, однако они имеют ограничения из-за недостаточно формализованной оценки. Поэтому актуальным является создание экспертной системы для диагностики различных заболеваний по ультразвуковому исследованию.

Целью работы является создание с помощью искусственного интеллекта системы оценки степени активности воспалительных заболеваний, основанных на анализе цифровых изображений данных ультразвукового исследования.

В качестве исходных изображений представлены изображения ультразвукового исследования стенки кишечника.

Материал и методы. Для получения характеристик диагностируемого органа необходимо провести предварительную обработку изображений. Пороговая сегментация является одним из самых простых и быстрых методов сегментации. Основная проблема пороговой сегментации заключается в вычислении порога, определяющего разбиение функции яркости на два или более уровня яркости. Рациональный выбор порога позволяет свести шумы и помехи, возникающие в реальных условиях, к минимуму. Порог может быть постоянным и адаптивным (изменяющимся в пространстве и времени). В первом случае он устанавливается заранее в виде некоторого определенного значения, не зависящего от свойств анализируемого изображения, и является постоянным по всему изображению. Во втором случае порог формируется в результате некоторой обработки исходного изображения ультразвукового исследования и задается только для фрагмента изображения. Порог, постоянный по всему изображению, обычно определяют из гистограммы уровней яркости изображения. Это удобно, если объект и шум имеют разную интенсивность. Для получения бинарного изображения возможно применение нескольких порогов. Пороговые значения могут интерактивно задаваться пользователем и автоматически определяться с помощью анализа гистограммы полутоновой величины, некоторых статистических методов или посредством задания определенных параметров.

Результаты и их обсуждение. В результате разработано признаковое пространство для идентификации степени воспаления стенки кишечника. Признаки имеют различную природу и значимость для задачи классификации, поэтому отбор признаков и их упорядочивание основывается на важности этих признаков для характеристики образов или на влиянии данных признаков на качество распознавания. Опора на большое количество признаков, используемых в процессе распознавания, ведет к повышению

^{1.} Козлов, А.А О свойствах строго положительно регулярных матриц /А.А. Козлов, Т.А. Александрович // Веснік Віцебскага дзяржаўнага ўніверсітэта. -2022. -№4. - С. 5-16. URL: https://rep.vsu.by/handle/123456789/35763 (дата обращения: 24.01.2023).

^{2.} Хорн, Р. Матричный анализ / Р. Хорн, Ч. Джонсон. – М.: Мир, 1989. – 655 с.