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Abstract

In the article we develop Euler – Lagrange method and calculate all the roots of an arbitrary complex
polynomial P (z) on the base of calculation (similar to the Bernoulli – Aitken – Nikiporets methods) of
the limits of ratios of Hadamard determinants built by means of coefficients of expansions into Taylor and

Laurent series of the function P ′(z)
P (z)

.
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Methods of numerical solutions for roots of polynomials in the direction discussed in this
article have a long and thoughtful history.

In 1728 D. Bernoulli [Ber1728] described a method which bears his name of numerical
solution for the largest in modulus real root of a polynomial with real coefficients P (x) =
a0x

n+a1x
n−1+ ...+an−1x+an, a0, an 6= 0 (i.e. P (x) is a polynomial of degree n not vanishing

at 0). In this method calculation of the root reduces to the calculation of the limit of the
sequence tm+1

tm
of ratios of neighbouring in numbers solutions to the difference equation

a0tm + a1tm−1 + ...+ antm−n = 0 m = n, n + 1, ..., (1)

built by means of coefficients of the polynomial P (x) (for details see, for example, [McN-P13]
Ch. 10). D. Bernoulli did not give a justification of his method. In 1748 году L. Euler in his
book [Eul1748] devoted Chapter 17 to the analysis of Bernoulli’s type method for numerical
calculation of the largest (minimal) in modulus real root of a polynomial P (x) that does not
possess multiple roots. L. Euler used power series (he called them recurrent series) built for
the function 1

P (x)
and calculated the limits of ratios of neighbouring coefficients of these series.

He observed (by examples) that in the situation when P (x) possesses a pair of the largest in
modulus complex conjugated roots the method may not work – the limit in question may not
exist. In 1798 J. L. Lagrange developing Euler’s ideas in [Lag1798] described the corresponding
method of calculation of the largest (minimal) in modulus real root of a polynomial P (x),

possessing multiple roots. He used the series built for the function P ′(x)
P (x)

. In 1927 A.C. Aitken
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[Ait27] generalised Bernoulli’s method for calculation of the products of ordered in modulus
real roots of P (x). He used the limits of ratios of determinants built from successive in numbers
solutions to the difference equation (1) (for details see, for example, [McN-P13] Ch. 10, where
a review of other similar in spirit methods of calculation of the roots of polynomials with
real coefficients is contained as well). In the articles by V. I. Shmoylov and D. I. Savchenko
[Sh-Sav13] and by V. I. Shmoylov and G. A. Kirichenko [Sh-Kir14] on the base of developed by
V. I. Shmoylov [Sh12] r/ϕ-algorithm of summation of (diverging) continued fractions Aitken’s

method is converted into calculation of Nikiporets’ continued fractions N
(n)
i := Ni(a0, ..., an)

(ratios of infinite “determinants”, expressed in terms of coefficients of P (x)). Namely for their
calculation the r/ϕ-algorithm is exploited.

In the present article we develop Euler – Lagrange method and calculate all the roots of
an arbitrary complex polynomial P (z) on the base of calculation of the limits of ratios of
Hadamard determinants (similar to the Bernoulli – Aitken – Nikiporets methods) built by

means of coefficients of expansions into Taylor and Laurent series of the function P ′(z)
P (z)

.

The corresponding methods for calculation of the largest (minimal) in modulus root of P (z)
were obtained in [T-Ch18, T-Ch21].

Let P (z) = a0z
n + a1z

n−1 + ... + an−1z + an, a0, a1, ..., an ∈ C; a0, an 6= 0 be an arbitrary
polynomial of degree n not vanishing at 0. Thus

P (z) = a0(z − z1)
m1 · ... · (z − zp)

mp , (2)

where m1 +m2+ . . .+mp = n is the sum of multiplicities of the roots zj , and zi 6= zj for i 6= j,
and zj 6= 0, j = 1, . . . , p. Along with P (z) we consider a rational function

P ′(z)

P (z)
=

p
∑

j=1

mj

z − zj
=

∞
∑

k=0

ckz
k. (3)

Here the right hand part is the expansion of P ′(z)
P (z)

into the Taylor series in the neighbourhood

of 0.

Note at once that by the contemporary means of computer mathematics (eg., Maple or
Wolfram Mathematica) one can in an elementary way calculate any number of coefficients of
this series for an arbitrary given polynomial P (z).

By the coefficients ck of the series (3) one can built Hadamard determinants. Namely, for
each pair of natural numbers (k, r), k ≥ 0, r > 0 the Hadamard determinant Hk,r is given by

Hk,r :=

∣

∣

∣

∣

∣

∣

∣

∣

ck ck+1 . . . ck+r−1

ck+1 ck+2 . . . ck+r

. . . . . . . . . . . .
ck+r−1 ck+r . . . ck+2(r−1)

∣

∣

∣

∣

∣

∣

∣

∣

. (4)

For a collection of numbers (α1, . . . , αs), s > 1 the Vandermonde determinant V (α1, . . . , αs)
is given by

V (α1, . . . , αs) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 . . . 1
α1 α2 . . . αs

α2
1 α2

2 . . . α2
s

. . . . . . . . . . . .
αs−1
1 αs−1

2 . . . αs−1
s

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

; (5)

where we set V (α1) = 1.
Recall that V (α1, . . . , αs) 6= 0 iff αi 6= αj for i 6= j.

2



By V (α1, . . . , αs) we denote the “inversed” Vandermonde determinant

V (α1, . . . , αs) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αs−1
1 αs−1

2 . . . αs−1
s

. . . . . . . . . . . .
α2
1 α2

2 . . . α2
s

α1 α2 . . . αs

1 1 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

; (6)

and also set V (α1) = 1.
The properties of determinants imply the following relations between V (α1, . . . , αs) and

V (α1, . . . , αs):

V (α1, . . . , αs) = (−1)[
s
2 ]V (α1, . . . , αs), (7)

where [x] is the integral part of the number x. And if αi 6= 0, i = 1, ..., s; then

V (α1, . . . , αs) = (α1 · ... · αs)
s−1V (α−1

1 , . . . , α−1
s ) = (α1 · ... · αs)

s−1(−1)[
s
2 ]V (α−1

1 , . . . , α−1
s ). (8)

The next statement relates Hadamard and Vandermonde determinants for the polynomial
P (z) under consideration.

Theorem 1 Let (z1, . . . , zp) be the roots of the polynomial P (z) (2) and
∞
∑

k=0

ckz
k be the Taylor

series (3). For any pair (k, r), k ≥ 0, 0 < r ≤ p the following equality holds

Hk,r = (−1)rr!
∑

j1<j2<···<jr
1≤jr≤p

mj1 · ... ·mjr

(zj1 · ... · zjr)
k+2r−1

[V (zj1 , . . . , zjr)]
2. (9)

In particular,

Hk,p = (−1)p p!m1 · ... ·mp

(

1

z1 · ... · zp

)k+2p−1

[V (z1, . . . , zp)]
2 . (10)

For r > p Hk,r = 0.

Pr o o f. From (3) by a routine calculation one obtains ck = −
∑p

j=1
mj

zk+1
j

, and therefore

Hk,r = (−1)r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p
∑

j=1

mj

zk+1
j

p
∑

j=1

mj

zk+2
j

...
p
∑

j=1

mj

zk+r
j

p
∑

j=1

mj

zk+2
j

... ...
p
∑

j=1

mj

zk+r+1
j

... ... ... ...
p
∑

j=1

mj

zk+r
j

... ...
p
∑

j=1

mj

zk+2r−1
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (11)

Exploiting the determinants properties and taking into account that a determinant possessing
proportional columns (lines) is equal to zero one concludes that (11) implies

Hk,r = (−1)r
∑

j1,j2,...,jr
1≤js≤p
ji 6=js

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

mj1

zk+1
j1

mj2

zk+2
j2

...
mjr

zk+r
jr

mj1

zk+2
j1

... ...
mjr

zk+r+1
jr

... ... ... ...
mj1

zk+r
j1

... ...
mjr

zk+2r−1
jr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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= (−1)r
∑

j1,j2,...,jr
1≤js≤p
ji 6=js

mj1 · ... ·mjr

zk+r
j1

· ... · zk+2r−1
jr

∣

∣

∣

∣

∣

∣

∣

∣

zr−1
j1

zr−1
j2

... zr−1
jr

zr−2
j1

... ... zr−2
jr

... ... ... ...
1 ... ... 1

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)r
∑

j1,j2,...,jr
1≤js≤p
ji 6=js

mj1 · ... ·mjr

zk+r
j1

· ... · zk+2r−1
jr

(−1)sign(j1,...,jr)V (zj̄1 , . . . , zj̄r), (12)

where (j̄1, j̄2, . . . , j̄r) is the ordering of the collection of numbers (j1, j2, . . . , jr): j̄1 < j̄2 < · · · <
j̄r and sign(j1, ..., jr) is the corresponding evenness of the permutation (j1, ..., jr).

Note that
∑

all the permutations

(1,2,...,r)

1

1 · zi2z
2
i3
· ... · zr−1

ir

(−1)sign(i1,...,ir) = V (z−1
1 , . . . , z−1

r ). (13)

Now from (12), and taking into account (13), and relations (7) and (8) one obtains

Hk,r = (−1)r
∑

j1,j2,...,jr
1≤js≤p
ji 6=js

mj1 · ... ·mjr

zk+r
j1

· ... · zk+2r−1
jr

(−1)sign(j1,...,jr)V (zj̄1 , . . . , zj̄r)

= (−1)r
∑

j1,j2,...,jr
1≤js≤p
ji 6=js

mj1 · ... ·mjr

(zj1 · ... · zjr)
k+r

·
1

1 · zj2z
2
j3
· ... · zr−1

jr

(−1)sign(j1,...,jr)V (zj̄1 , . . . , zj̄r)

= (−1)r
∑

j1<j2<···<jr
1≤jr≤p

r!
mj1 · ... ·mjr

(zj1 · ... · zjr)
k+r

V (z−1
j1
, . . . , z−1

jr
)V (zj1, . . . , zjr)

= (−1)rr!
∑

j1<j2<···<jr
1≤jr≤p

mj1 · ... ·mjr

(zj1 · ... · zjr)
k+r

1

(zj1 · ... · zjr)
r−1

·(−1)[
r
2 ]V (zj1, . . . , zjr)·(−1)[

r
2 ]V (zj1, . . . , zjr)

= (−1)rr!
∑

j1<j2<···<jr
1≤jr≤p

mj1 · ... ·mjr

(zj1 · ... · zjr)
k+2r−1

[V (zj1 , . . . , zjr)]
2.

The proof is complete.

The formula (10) implies that

Hk,p

Hk+1,p
= z1 · ... · zp . (14)

And for r < p we have the following observation.

Theorem 2 Let 0 < |z1| ≤ |z2| ≤ ... ≤ |zr| < |zr+1| ≤ |zr+2| ≤ ... ≤ |zp| (for r = p − 1 the

condition is written as 0 < |z1| ≤ |z2| ≤ ... ≤ |zp−1| < |zp|). Then

lim
k→∞

Hk,r

Hk+1,r
= z1 · ... · zr . (15)

And herewith
∣

∣

∣

∣

Hk,r

Hk+1,r

− z1 · ... · zr

∣

∣

∣

∣

< Cqk+2r−1, (16)

4



where

0 < q =
|zr|

|zr+1|
< 1,

i.e. the sequence (15) converges as a geometric progression.

And once k is such that qk+2rD < ε < 1
2
, where

D =
∑

j1<j2<···<jr
1≤jr≤p

(j1,j2,...,jr) 6=(1,2,...,r)

dj1...jr , dj1...jr =
mj1 · ... ·mjr

m1 · ... ·mr

·

[

V (zj1 , . . . , zjr)

V (z1, . . . , zr)

]2

, (17)

one can take C = |z1 · ... · zr|2D(1 + 2ε).

Pr o o f. By means of (9) one has

Hk,r

Hk+1,r
=

∑

j1<j2<···<jr
1≤jr≤p

mj1
·...·mjr

(zj1 ·...·zjr)
k+2r−1 [V (zj1 , . . . , zjr)]

2

∑

j1<j2<···<jr
1≤jr≤p

mj1
·...·mjr

(zj1 ·...·zjr )
k+2r [V (zj1 , . . . , zjr)]

2

= (z1 · ... · zr)



1 +
∑

j1<j2<···<jr
1≤jr≤p

(j1,j2,...,jr) 6=(1,2,...,r)

dj1...jr q
k+2r−1
j1...jr







1 +
∑

j1<j2<···<jr
1≤jr≤p

(j1,j2,...,jr) 6=(1,2,...,r)

dj1...jr q
k+2r
j1...jr





, (18)

where

dj1...jr =
mj1 · ... ·mjr

m1 · ... ·mr

·

[

V (zj1 , . . . , zjr)

V (z1, . . . , zr)

]2

, qj1...jr =
z1 · ... · zr
zj1 · ... · zjr

. (19)

The conditions of the theorem imply that for (j1, j2, ..., jr) 6= (1, 2, ..., r) one has

0 < |qj1...jr| ≤
|zr|

|zr+1|
=: q < 1. (20)

This along with (18), and (19) implies

lim
k→∞

Hk,r

Hk+1,r

= z1 · ... · zr ,

i.e. (15) is true.
Now let us verify the estimate (16).
Exploiting (18), (19), and (20) one has

∣

∣

∣

∣

Hk,r

Hk+1,r
− z1 · ... · zr

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(z1 · ... · zr)



1 +
∑

j1<j2<···<jr
1≤jr≤p

(j1,j2,...,jr) 6=(1,2,...,r)

dj1...jr q
k+2r−1
j1...jr







1 +
∑

j1<j2<···<jr
1≤jr≤p

(j1,j2,...,jr) 6=(1,2,...,r)

dj1...jr q
k+2r
j1...jr





− z1 · ... · zr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (21)
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From (21), relaxing for brevity of the record the indexes under the summation sign
∑

, one
obtains

∣

∣

∣

∣

Hk,r

Hk+1,r

− z1 · ... · zr

∣

∣

∣

∣

= |z1 · ... · zr|

∣

∣

∣

∣

∣

[
∑

dj1...jr q
k+2r−1
j1...jr

−
∑

dj1...jr q
k+2r
j1...jr

]

[

1 +
∑

dj1...jr q
k+2r
j1...jr

]

∣

∣

∣

∣

∣

≤ |z1 · ... · zr|

∑

dj1...jr |qj1...jr|
k+2r−1 |1− qj1...jr|

∣

∣

∣
1−

∑

dj1...jr |qj1...jr|
k+2r

∣

∣

∣

≤ |z1 · ... · zr|
2
∑

dj1...jr q
k+2r−1

|1−
∑

dj1...jr q
k+2r|

= |z1 · ... · zr|

(

2
∑

dj1...jr
1− qk+2r

∑

dj1...jr

)

qk+2r−1 ≤ C qk+2r−1 , (22)

that proves (16).
Clearly the denominator

(

1− qk+2r
∑

dj1...jr
)

in the latter expression is positive for suffi-

ciently large k. Introducing the notation D :=
∑

dj1...jr we conclude that once qk+2rD < ε < 1
2
,

then 1
1−qk+2rD

< 1 + 2ε. And therefore

|z1 · ... · zr|

(

2
∑

dj1...jr
1− qk+2r

∑

dj1...jr

)

< |z1 · ... · zr| 2D(1 + 2ε),

thus one can take the constant C in (22) to be |z1 · ... · zr| 2D(1+2ε). The proof of the theorem
is complete.

Note that Hk,1 = ck. Therefore for calculation of the minimal in modulus root one obtains
the following statement that constitutes (for polynomials with real coefficients and their real
roots) the essence of L. Euler’s observation in Chapter 17 [Eul1748]. Euler did not give an
estimate of the speed of approximations.

Corollary 1 Let (z1, . . . , zp) – the roots of the polynomial P (z) (2), 0 < |z1| < |z2| ≤ ... ≤ |zp|

and
∞
∑

k=0

ckz
k is the Taylor series (3). Then

lim
k→∞

ck
ck+1

= z1 . (23)

And herewith
∣

∣

∣

∣

ck
ck+1

− z1

∣

∣

∣

∣

< Cqk+1, (24)

where

0 < q =
|z1|

|z2|
< 1,

i.e. the sequence (23) converges as a geometric progression.

And once k is such that qk+2(n− 1) < 1
2
, one can take C = |z1|4(n− 1).

Pr o o f. One needs only to verify the final formula for the constant C. It follows from the
estimates for C in the statement of Theorem 2. Namely, in the situation under consideration
the formula (17) implies

D =

p
∑

j=2

mj

m1

≤ n− 1,

and by the statement of Theorem 2 one can take C = |z1|2D(1 + 2 · 1
2
)) = |z1|4(n− 1).

In essence Theorem 2 describes not only sufficient but also necessary conditions of existence
of the limits under consideration. Namely, the next observation holds.
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Theorem 3 Let 0 < |z1| ≤ |z2| ≤ ... ≤ |zr| = |zr+1| ≤ |zr+2| ≤ ... ≤ |zp|. Then there does not

exist a limit limk→∞
Hk,r

Hk+1,r
.

Pr o o f. In view of (18) the existence (nonexistence) of a limit of the sequence
Hk,r

Hk+1,r
is

equivalent to the existence (nonexistence) of a limit of the sequence

Ak :=



1 +
∑

j1<j2<···<jr
1≤jr≤p

(j1,j2,...,jr) 6=(1,2,...,r)

dj1...jr q
k+2r−1
j1...jr







1 +
∑

j1<j2<···<jr
1≤jr≤p

(j1,j2,...,jr) 6=(1,2,...,r)

dj1...jr q
k+2r
j1...jr





, (25)

where dj1...jr and qj1...jr are described in (19). The summands with |qj1...jr| < 1 do not influence
the existence (nonexistence) of a limit of this sequence. By the condition of the theorem in
the sums in (25) there are summands with |qj1...jr| = 1, for example, |q12...(r−1)(r+1)| = 1 and
herewith q12...(r−1)(r+1) 6= 1 since zr 6= zr+1.

Relaxing in (25) the summands with |qj1...jr| < 1, and denoting for brevity of the record
multiindexes j1...jr by s, one concludes that the existence of a limit of the sequence Ak (25) is
equivalent to the existence of a limit of the sequence

Ãk :=

[

1 +
∑

s ds q
k+2r−1
s

]

[1 +
∑

s ds q
k+2r
s ]

, (26)

where |qs| = 1 and there is s0 such that qs0 6= 1.
Since |qs| = 1 then qs = eiϕs , 0 < ϕs ≤ 2π.
One can come across the following two situations.

1) All ϕs are rationally commensurable with 2π, i.e. ϕs

2π
= ms

ns
, ms, ns ∈ N.

In this case Ãk is a periodic sequence of period N = LCM{ns} and it is not a constant
sequence as there is s0 for which qs0 6= 1 (it can happen that some terms of this sequence are
not defined, if

[

1 +
∑

s ds q
k+2r
s

]

= 0). Thus there is no limit for Ãk.

2) There is ϕs which is rationally incommensurable with 2π, i.e. ϕs

2π
∈ R \Q.

Let us separate the indexes s into two groups {s} = {t} ⊔ {v}, where ϕt are rationally
commensurable with 2π, and ϕv are rationally incommensurable with 2π. With these notation
Ãk is written in the form

Ãk :=

[

1 +
∑

t dt q
k+2r−1
t +

∑

v dv q
k+2r−1
v

]

[

1 +
∑

t dt q
k+2r
t +

∑

v dv q
k+2r
v

] . (27)

Let ϕt

2π
= mt

nt
, mt, nt ∈ N and N = LCM{nt}.

Consider the subsequence Ăl := Ãk, k + 2r − 1 = Nl, l = 1, 2, .... To finish the proof it is
enough to establish nonexistence of a limit for Ăl.

By the choice of N the sequence Ăl has the form

Ăl =

[

C1 +
∑

v dv q
Nl
v

]

[C2 +
∑

v dv q
Nl+1
v ]

, (28)

where C1, and C2 are some constants.
Let m be the number of indexes v, and T

m be the m-dimensional torus in Cm: T
m =

S1 × ... × S1 = {(λ1, ..., λm) : |λi| = 1, i = 1, ..., m}. The collection {qNv }v is a point on
the torus T

m; and the closure of the set of the points {qNl
v }v, l = 1, 2, ... is a submanifold

7



(isomorphic to a torus) of dimension m′ ≥ 1 of the torus T
m (m′ is the number of rationally

independent numbers in the collection {ϕv

2π
}v). This along with the explicit form (28) of the

sequence Ăl implies nonexistence of a limit of this sequence. The proof is complete.

This theorem uncovers the noted in introduction L. Euler’s observation ([Eul1748], Ch.17)
on the fact that under the existence (for a polynomial with real coefficients) of a pair of the
largest in modulus complex conjugate roots the Bernoulli’s type method may not work. Note
herewith that the pairs of roots do not need to be complex conjugate (they can be anything –
and, in particular, real). As an example one can consider the polynomial P (z) = z2 − 1. Here

P ′(z)

P (z)
=

1

z − 1
+

1

z + 1
=

∞
∑

k=0

[(−1)k − 1]zk.

Hk,1 = [(−1)k − 1] and the sequence
Hk,1

Hk+1,1
does not possess a limit.

The results presented above give us a possibility to calculate the roots of a polynomial P (z)
starting for the minimal in modulus 0 < |z1| < |z2| < .... Henceforth we describe the analogous
procedure of calculation of the roots of a polynomial starting from the largest one.

Consider the expansion of the function P ′(z)
P (z)

into the Laurent series in the neighbourhood of

the infinity (i.e. for |z| > max1≤j≤p |zj |).

P ′(z)

P (z)
=

p
∑

j=1

mj

z − zj
=

∞
∑

k=0

bk
zk+1

. (29)

For the coefficients of the series (29) one can built the corresponding Hadamar determinants.
Namely, for each pair of natural numbers (k, r), k ≥ 0, r > 0 the Hadamar determinant Hk,r

is given by

Hk,r :=

∣

∣

∣

∣

∣

∣

∣

∣

bk bk+1 . . . bk+r−1

bk+1 bk+2 . . . bk+r

. . . . . . . . . . . .
bk+r−1 bk+r . . . bk+2(r−1)

∣

∣

∣

∣

∣

∣

∣

∣

. (30)

An analogue of Theorem 1 for the Laurent series (29) is the following

Theorem 4 Let (z1, . . . , zp) be the roots of a polynomial P (z) (2) and
∞
∑

k=0

bk
zk+1 be the Laurent

series (29). For any pair (k, r), k ≥ 0, 0 < r ≤ p the following equality holds

Hk,r = r!
∑

j1<j2<...<jr
1≤jr≤p

mj1 · ... ·mjr (zj1 · ... · zjr)
k [V (zj1 , . . . , zjr)]

2 . (31)

In particular,

Hk,p = p!m1 · ... ·mp (z1 · ... · zp)
k [V (z1, . . . , zp)]

2 , (32)

For r > p Hk,r = 0.

Pr o o f. By an explicit computation one obtains from (29) that bk =
∑p

j=1mjz
k
j , and therefore

Hk,r =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p
∑

j=1

mjz
k
j

p
∑

j=1

mjz
k+1
j ...

p
∑

j=1

mjz
k+r−1
j

p
∑

j=1

mjz
k+1
j ... ...

p
∑

j=1

mjz
k+r
j

... ... ... ...
p
∑

j=1

mjz
k+r−1
j ... ...

p
∑

j=1

mjz
k+2(r−1)
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (33)
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Denoting ξj :=
1
zj

one rewrites (33) in the form

Hk,r =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p
∑

j=1

mj

ξkj

p
∑

j=1

mj

ξk+1
j

...
p
∑

j=1

mj

ξk+r−1
j

p
∑

j=1

mj

ξk+1
j

... ...
p
∑

j=1

mj

ξk+r
j

... ... ... ...
p
∑

j=1

mj

ξk+r−1
j

... ...
p
∑

j=1

mj

ξ
k+2(r−1)
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (34)

Comparing (34), and (11), and using the formula (9) one concludes that

Hk,r = r!
∑

j1<j2<...<jr
1≤jr≤p

mj1 · ... ·mjr (zj1 · ... · zjr)
k+2(r−1) [V (z−1

j1
, . . . , z−1

jr
)]2 .

This along with relations (8) between V (z−1
j1
, . . . , z−1

jr
) and V (zj1, . . . , zjr) implies the equality

(31). The proof is complete.
The formula (32) implies that

Hk+1,p

Hk,p

= z1 · ... · zp . (35)

And for r < p one has the next analogue of Theorem 2.

Theorem 5 Let |zp| ≥ |zp−1| ≥ ... ≥ |zp−r+1| > |zp−r| ≥ |zp−r−1| ≥ ... ≥ |z1| > 0 (for r = p− 1
the condition is written as 0 < |z1| < |z2| ≤ ... ≤ |zp|). Then

lim
k→∞

Hk+1,r

Hk,r

= zp−r+1 · ... · zp . (36)

And herewith
∣

∣

∣

∣

Hk+1,r

Hk,r

− zp−r+1 · ... · zp

∣

∣

∣

∣

< Cqk, (37)

where

0 < q =

∣

∣

∣

∣

zp−r

zp−r+1

∣

∣

∣

∣

< 1,

i.e. the sequence (36) converges as a geometric progression.

And once k is such that qkD < ε < 1
2
, where

D =
∑

j1>j2>...>jr
1≤j1≤p

j1,j2,...,jr 6= p,p−1,...,p−r+1

dj1...jr , dj1...jr =
mj1 · ... ·mjr

mp · ... ·mp−r+1

·

[

V (zj1 , . . . , zjr)

V (zp, . . . , zp−r+1)

]2

, (38)

one can take C = |zp · ... · zp−r+1|2D(1 + 2ε).

Pr o o f. The proof goes along the scheme of the proof of Theorem 2.
The formula (31) implies

Hk+1,r

Hk,r

=

∑

j1>j2>...>jr
1≤j1≤p

mj1 · ... ·mjr(zj1 · ... · zjr)
k+1[V (zj1 , . . . , zjr)]

2

∑

j1>j2>...>jr
1≤j1≤p

mj1 · ... ·mjr(zj1 · ... · zjr)
k[V (zj1 , . . . , zjr)]

2
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= (zp · zp−1 · ... · zp−r+1)



1 +
∑

j1>j2>...>jr
1≤j1≤p

(j1,j2,...,jr) 6=(p,p−1,...,p−r+1)

dj1...jr q
k+1
j1...jr







1 +
∑

j1>j2>...>jr
1≤jr≤p

(j1,j2,...,jr) 6=(p,p−1,...,p−r+1)

dj1...jr q
k
j1...jr





, (39)

where

dj1...jr =
mj1 · ... ·mjr

mp · ... ·mp−r+1
·

[

V (zj1 , . . . , zjr)

V (zp, . . . , zp−r+1)

]2

, qj1...jr =
zj1 · ... · zjr

zp · ... · zp−r+1
. (40)

From the conditions of the theorem it follows that for (j1, j2, ..., jr) 6= (p, p− 1, ..., p− r+ 1)
one has

0 < |qj1...jr | ≤

∣

∣

∣

∣

zp−r

zp−r+1

∣

∣

∣

∣

=: q < 1. (41)

This along with (39), and (40) implies

lim
k→∞

Hk+1,r

Hk,r

= zp−r+1 · ... · zp ,

i.e. (36) is true.
The estimate (37) and the estimate for the constant C is carried out according to the

scheme of the proof of the estimate (16). Namely, by the argument exploited in derivation of
the estimate (22), and taking into account (39), (40), and (41), and relaxing for brevity of the
record the indexes under the summation sign

∑

, one obtains

∣

∣

∣

∣

Hk+1,r

Hk,r

− zp−r+1 · ... · zp

∣

∣

∣

∣

= |zp−r+1 · ... · zp|

∣

∣

∣

∣

∣

[
∑

dj1...jr q
k+1
j1...jr

−
∑

dj1...jr q
k
j1...jr

]

[

1 +
∑

dj1...jr q
k
j1...jr

]

∣

∣

∣

∣

∣

≤ |zp−r+1 · ... · zp|

(

2
∑

dj1...jr
1− qk

∑

dj1...jr

)

qk ≤ C qk , (42)

that proves (37).
Introducing the notation D :=

∑

dj1...jr we conclude that once qkD < ε < 1
2
, then

|zp−r+1 · ... · zp|

(

2
∑

dj1...jr
1− qk

∑

dj1...jr

)

qk < |zp−r+1 · ... · zp| 2D(1 + 2ε) ,

that is one can take the constant C in (42) to be equal |zp−r+1 · ... · zp| 2D(1 + 2ε). The proof
is complete.

Note that Hk,1 = bk. Therefore for the calculation of the largest in modulus root one has the
next (similar to Corollary 1) statement that constitutes (for polynomials with real coefficients
and their real roots) the essence of L. Euler’s observation in Chapter 17 [Eul1748]. Euler did
not give an estimate of the speed of approximations.

Corollary 2 Let (z1, . . . , zp) be the roots of the polynomial P (z) (2), |zp| > |zp−1| ≥ ... ≥ |z1| >

0 and
∞
∑

k=0

bk
zk+1 be the Laurent series (29). Then

lim
k→∞

bk+1

bk
= zp . (43)
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And herewith
∣

∣

∣

∣

bk+1

bk
− zp

∣

∣

∣

∣

< Cqk, (44)

where

0 < q =
|zp−1|

|zp|
< 1,

i.e. the sequence (43) converges as a geometric progression.

Once k is such that qk(n− 1) < 1
2
, one can take C = |zp|4(n− 1).

Here to derive the constant C we note that in the situation under consideration (38) implies

D =

p−1
∑

j=1

mj

mp

≤ n− 1 .

Similar to Theorem 2, Theorem 5 in essence describes not only sufficient but also necessary
conditions for existence of the limits under consideration. Namely, the next observation holds.

Theorem 6 Let |zp| ≥ |zp−1| ≥ ... ≥ |zp−r+1| = |zp−r| ≥ |zp−r−1| ≥ ... ≥ |z1| > 0. Then there

does not exist a limit limk→∞
Hk+1,r

Hk,r
.

The proof can be derived by the same argument as the proof of Theorem 3.
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