

УΔК 512.542

ХАРАКТЕРИЗАЦИЯ σ -ЛОКАЛЬНЫХ ФОРМАЦИЙ ФИШЕРА

Н.Т. Воробьёв, А.А. Стайнова, С.Н. Воробьёв

Учреждение образования «Витебский государственный университет имени П.М. Машерова»

Материал и методы. В исследовании используются методы абстрактной теории групп. В частности, методы теории формаций и классов Фишера.

Результаты и их обсуждение. Классом Фишера называется класс Фиттинга \mathfrak{F} , если из условия, что $G \in \mathfrak{F}$, $K \leq H \leq G$, $K \leq G$ и H/K-p-группа, где p — некоторое простое число, следует $H \in \mathfrak{F}$.

Пусть σ – некоторое разбиение множества всех простых чисел \mathbb{P} . Тогда класс Фиттинга \mathfrak{F} называется σ -классом Фишера, если для $G \in \mathfrak{F}$, $K \leq H \leq G$, $K \leq G$ и H/K – нильпотентная σ_i -группа для некоторого $\sigma_i \in \sigma$, выполняется $H \in \mathfrak{F}$. Формация \mathfrak{F} σ -локальна, если существует такая формационная σ -функция f, что $\mathfrak{F} = LF_{\sigma}(f) = (G|G=1)$ или $G \neq 1$ и $G/O_{\sigma_i',\sigma_i}(G) \in f(\sigma_i)$ для всех $\sigma_i \in \sigma(G)$).

В настоящей работе доказано, что *о*-локальная формация является *о*-классом Фишера тогда и только тогда, когда все значения ее канонической *о*-функции *о*-классы Фишера.

Заключение. Найдена характеризация *о-локальных формаций Фишера, которые определяются разбиениями простых нисеа.*

Ключевые слова: формация, класс Фишера, σ -локальная формация, формационная σ -функция.

CHARACTERIZATION OF σ -LOCAL FISCHER FORMATIONS

N.T. Vorobyev, A.A. Stainova, S.N. Vorobyev

Education Establishment "Vitebsk State P.M. Masherov University"

Material and methods. Methods of the abstract theory of groups are used in this work. In particular, the methods of the theory of formations and Fischer classes.

Findings and their discussion. A Fitting class \mathfrak{F} is called a Fischer class if from the conditions $G \in \mathfrak{F}$, $K \leq H \leq G$, $K \leq G$ and H/K-p-group, where p is some prime number, follows $H \in \mathfrak{F}$.

Let σ be some partition of the set of all primes $\mathbb P$. Then Fitting class $\mathfrak F$ is called a Fischer σ -class if for $G\in \mathfrak F$, $K\le H\le G$, $K\le G$ and H/K – nilpotent σ_i -group for some $\sigma_i\in \sigma$ it is true that $H\in \mathfrak F$. Formation $\mathfrak F$ is called σ -local if there is a σ -function f, that $\mathfrak F=LF_\sigma(f)=(G|G=1 \text{ or } G\ne 1 \text{ u } G/O_{\sigma_i',\sigma_i}(G)\in f(\sigma_i)$ for all $\sigma_i\in \sigma(G)$).

In this paper, we prove that a σ -local formation is a Fisher σ -class if and only if all values of its canonical σ -function are Fisher σ -classes.

Conclusion. In this paper characterization of σ -local Fischer formations, that are defined by partitions of prime numbers, is found. **Key words:** formation, Fischer class, σ -local formation, formation σ -function.

настоящей работе все рассматриваемые группы предполагаются конечными. В терминологии и обозначениях будем следовать [1].

В исследовании структуры классов конечных групп известны своими приложениями наследственные классы групп. Класс групп называется наследственным, если наряду с каждой своей группой он содержит все ее подгруппы. Понятие наследственного класса Фиттинга было обобщено Хартли [2], где определены так называемые классы Фишера. Классом Фишера называется класс Фиттинга \mathfrak{F} , если из условий, что $G \in \mathfrak{F}$, $K \leq H \leq G$, $K \leq G$ и H/K-p-группа, где p есть некоторое простое число, следует $H \in \mathfrak{F}$. Очевидно, что любой наследственный класс Фиттинга является классом Фишера, однако обратное в общем случае неверно. Возникает задача характеризации классов Фишера. Такая задача была решена К. Дерком и Т. Хоуксом для случая локальных формаций разрешимых групп, которые одновременно являются классами Фишера. Такие формации естественно называть локальными формациями Фишера.

В работе А.Н. Скибы [3] было обобщено понятие локальной формации при помощи разбиений множеств простых чисел. Пусть σ — разбиение множества всех простых чисел \mathbb{P} , т.е. $\sigma = \{\sigma_i | i \in I\}$, где $\mathbb{P} = \bigcup_{i \in I} \sigma_i$, $\sigma_i \cap \sigma_j = \emptyset$ для всех $i \neq j$. Группа G называется: σ -примарной, если G является σ_i -группой для некоторого $i \in I$; σ -нильпотентной, если $G = G_1 \times G_2 \times ... \times G_n$ для некоторых σ -примарных групп $G_1, G_2, ..., G_n$. Обозначим через \mathfrak{G}_{σ_i} класс всех σ_i -групп, через $\mathfrak{G}_{\sigma_i'}$ класс всех σ_i' -групп. Класс всех групп $\mathfrak{G}_{\sigma_i} \cap \mathfrak{N}$ будем обозначать символом \mathfrak{N}_{σ_i} .

Согласно [4], отображение вида $f:\sigma \to \{$ формации групп $\}$ называют формационной σ -функцией и полагают $LF_{\sigma}(f)=(G|G=1)$ или $G\neq 1$ и $G/O_{\sigma'_i,\sigma_i}(G)\in f(\sigma_i)$ для всех $\sigma_i\in \sigma(G)$). Пусть f-формационная σ -функция. Множество всех σ_i , для которых $f(\sigma_i)\neq \emptyset$, называют носителем функции f и обозначают символом Supp(f).

Формация $\mathfrak F$ называется σ -локальной, если существует такая формационная σ -функция f, что $\mathfrak F=LF_\sigma(f)$. Если $\mathfrak F=LF_\sigma(f)$ и $\Pi=Supp(f)$, то по лемме из работы [5, лемма 2.3] справедливо равенство $\mathfrak F=\mathfrak G_\Pi\cap(\bigcap_{\sigma_i\in\Pi}\mathfrak G_{\sigma_i'}\mathfrak G_{\sigma_i}f(\sigma_i))$. Следуя [5, предложение 2.1], любая σ -локальная формация $\mathfrak F$ определяется единственной формационной σ -функцией F, причем такой, что выполняется $F(\sigma_i)=\mathfrak G_{\sigma_i}F(\sigma_i)\subseteq LF_\sigma(F)=\mathfrak F$. Данную формационную σ -функцию называют *канонической* формационной σ -функцией.

Возникает задача нахождения характеризации σ -локальных формаций Фишера произвольных групп. Решение этой задачи — цель настоящей работы. Доказана теорема: σ -локальная формация является σ -классом Фишера тогда и только тогда, когда все значения ее канонической формационной σ -функции σ -классы Фишера.

Материал и методы. В настоящем исследовании используются методы абстрактной теории групп, в частности методы теории конечных групп и их классов, а также методы теории формаций и классов Фишера.

Классом групп называют совокупность групп, которая наряду с каждой группой содержит ей изоморфную. Класс групп, замкнутый относительно гомоморфных образов и подпрямых произведений, называется формацией. Класс групп \mathfrak{F} называется классом Фиттинга, если он замкнут относительно нормальных подгрупп и произведений нормальных \mathfrak{F} -подгрупп.

Если \mathfrak{F} — непустой класс Фиттинга, то для любой группы G существует наибольшая нормальная \mathfrak{F} -подгруппа. Ее обозначают символом $G_{\mathfrak{F}}$ и называют \mathfrak{F} -радикалом G. Пусть \mathfrak{F} и \mathfrak{H} — классы Фиттинга, тогда произведением классов Фиттинга называют класс групп $\mathfrak{F} \circ \mathfrak{H} = (G:G/G_{\mathfrak{F}} \in \mathfrak{H})$. Если \mathfrak{F} и \mathfrak{H} являются формациями, то класс групп $\mathfrak{F} \circ \mathfrak{H} = (G:G^{\mathfrak{H}} \in \mathfrak{F})$ называют произведением формаций. В этом случае символом $G^{\mathfrak{H}}$ обозначают \mathfrak{H} -корадикал группы G, т.е. наименьшую нормальную подгруппу группы G такую, что $G/G^{\mathfrak{H}} \in \mathfrak{H}$.

Будем называть класс Фиттинга $\mathfrak F$ σ -классом Фишера, если из того, что $G \in \mathfrak F$, $K \leq H \leq G$, $K \leq G$ и H/K — нильпотентная σ_i -группа для некоторого $\sigma_i \in \sigma$, следует $H \in \mathfrak F$. В частности, если $\sigma = \sigma^1 = \{\{2\}, \{3\}, \{5\}, \dots\}$, мы получаем в точности определение класса Фишера.

Предварительные сведения. В качестве лемм приведем известные утверждения, которые будем использовать для доказательства основного результата.

Лемма 1.1. Справедливы следующие утверждения:

1) [1, гл. IX, теорема 1.12 (а)]. Если \mathfrak{F} и \mathfrak{H} – классы Фиттинга, то их произведение $\mathfrak{F} \diamond \mathfrak{H}$ также является классом Фиттинга.

2) [1, гл. IV, теорема 1.8 (a)]. Если $\mathfrak F$ и $\mathfrak H$ — формации, то их произведение $\mathfrak F \diamond \mathfrak H$ также является формацией.

Лемма 1.2 [1, гл. А, теорема 2.1 (b), (c)]. Справедливы следующие утверждения:

- 1) если U и N подгруппы группы G , а V нормализует N , то имеет место изоморфизм $VN/N\cong V/V\cap N$;
- 2) если M , N нормальные подгруппы группы G и $N \subseteq M$, то имеет место изоморфизм $(G/N)/(M/N) \cong G/M$.
- **Лемма 1.3** [1, гл. А, тождество Дедекинда 1.3]. Пусть U, V, W подгруппы группы G, причем $V \subseteq U$. Тогда справедливо равенство $U \cap VW = V(U \cap W)$.
- **Лемма 1.4** [1, гл. IX, лемма 1.1 (а)]. Пусть \mathfrak{F} непустой класс Фиттинга и N нормальная подгруппа группы G. Тогда $N_{\mathfrak{F}}=N\cap G_{\mathfrak{F}}$.
- **Лемма 1.5** [1, гл. IX, лемма 1.7, теорема 1.9]. Пусть $\mathfrak{F} \sigma$ -класс Фишера. Тогда справедливы следующие утверждения:
 - 1) $Char(\mathfrak{F}) = \sigma(\mathfrak{F})$, где $\sigma(\mathfrak{F})$ множество всех простых делителей порядков всех групп из класса \mathfrak{F} ; 2) $\mathfrak{R}_{\sigma(\mathfrak{F})} \subseteq \mathfrak{F} \subseteq \mathfrak{G}_{\sigma(\mathfrak{F})}$.
- **Лемма 1.6** [1, гл. IX, лемма 1.13]. Пусть N_1 и N_2 нормальные подгруппы группы G такие, что $N_1 \cap N_2 = 1$, а факторгруппа G/N_1N_2 нильпотентная группа. Если \mathfrak{F} класс Фиттинга $G/N \in \mathfrak{F}$, то $G \in \mathfrak{F}$ тогда и только тогда, когда $G/N_2 \in \mathfrak{F}$.

Лемма 1.7. Пусть \mathfrak{F} и $\mathfrak{H} - \sigma$ -классы Фишера. Тогда произведение $\mathfrak{F} \diamond \mathfrak{H}$ также является σ -классом Фишера.

 \mathcal{J} о к а з а т е л ь с т в о. Так как \mathfrak{F} и \mathfrak{H} – классы Фиттинга, то по утверждению 1) леммы 1.1 их произведение $\mathfrak{F} \diamond \mathfrak{H}$ является классом Фиттинга. Остается выяснить, что если G группа из $\mathfrak{F} \diamond \mathfrak{H}$ и K ее нормальная подгруппа, содержащаяся в подгруппе H группы G такая, что H/K является нильпотентной σ_i -группой для некоторого $\sigma_i \in \sigma$, то $H \in \mathfrak{F} \diamond \mathfrak{H}$. Доказательство представим в виде нескольких этапов.

Вначале докажем, что из предположения $H/K \in \mathfrak{N}_{\sigma_i}$ следует, что факторгруппы $HG_{\mathfrak{F}}/KG_{\mathfrak{F}}$ и $H \cap G_{\mathfrak{F}}/K \cap G_{\mathfrak{F}}$ являются группами из класса \mathfrak{N}_{σ_i} . Так как по условию $K \trianglelefteq H$ и $K \trianglelefteq G$, то подгруппа $HG_{\mathfrak{F}} = HKG_{\mathfrak{F}}$. Следовательно, факторгруппа $HG_{\mathfrak{F}}/KG_{\mathfrak{F}} = HKG_{\mathfrak{F}}/KG_{\mathfrak{F}} \cong H/H \cap KG_{\mathfrak{F}}$ по утверждению 1) леммы 1.2. Тогда, применяя утверждение 2) леммы 1.2, имеем изоморфизм $(H/K)/((H \cap KG_{\mathfrak{F}})/K)) \cong H/H \cap KG_{\mathfrak{F}}$. Так как по условию $H/K \in \mathfrak{N}_{\sigma_i}$ и класс всех нильпотентных σ_i -групп является формацией, то группа $(H/K)/(H \cap KG_{\mathfrak{F}})/K \in \mathfrak{N}_{\sigma_i}$. Следовательно, изоморфная ей группа $H/H \cap KG_{\mathfrak{F}} \in \mathfrak{N}_{\sigma_i}$. Кроме того, $H/H \cap KG_{\mathfrak{F}} \cong HG_{\mathfrak{F}}/KG_{\mathfrak{F}}$. Значит, $HG_{\mathfrak{F}}/KG_{\mathfrak{F}} \in \mathfrak{N}_{\sigma_i}$.

Покажем, что $H \cap G_{\mathfrak{F}}/K \cap G_{\mathfrak{F}} \in \mathfrak{N}_{\sigma_i}$. Так как $K \unlhd H$, то $H \cap G_{\mathfrak{F}}/K \cap G_{\mathfrak{F}} = (H \cap G_{\mathfrak{F}})/(H \cap G_{\mathfrak{F}}) \cap K$. Применяя теперь утверждение 1) леммы 1.2, имеем изоморфизм $H \cap G_{\mathfrak{F}}/K \cap G_{\mathfrak{F}} \cong (H \cap G_{\mathfrak{F}})K/K$. Поскольку $(H \cap G_{\mathfrak{F}})K/K$ — нормальная подгруппа группы $H/K \in \mathfrak{N}_{\sigma_i}$ и \mathfrak{N}_{σ_i} — класс Фиттинга, то группа $(H \cap G_{\mathfrak{F}})K/K \in \mathfrak{N}_{\sigma_i}$. Следовательно, изоморфная группа $H \cap G_{\mathfrak{F}}/K \cap G_{\mathfrak{F}} \in \mathfrak{N}_{\sigma_i}$.

Далее докажем, что $H/H \cap G_{\mathfrak{F}} \in \mathfrak{H}$. Пусть $\bar{G} = G/G_{\mathfrak{F}}$, $\bar{K} = KG_{\mathfrak{F}}/G_{\mathfrak{F}}$, $\bar{H} = HG_{\mathfrak{F}}/G_{\mathfrak{F}}$. Тогда из $G \in \mathfrak{F}\mathfrak{H}$ следует $\bar{G} \in \mathfrak{H}$. Кроме того, $\bar{K} \trianglelefteq \bar{G}$ и по лемме $1.2\ \bar{H}/\bar{K} \cong HG_{\mathfrak{F}}/KG_{\mathfrak{F}}$. Таким образом, ввиду доказанного выше, $\bar{G} \in \mathfrak{H}$, $\bar{K} \trianglelefteq \bar{G}$, $\bar{K} \subseteq \bar{H} \subseteq \bar{G}$ и $\bar{H}/\bar{K} \in \mathfrak{N}_{\sigma_i}$. Поскольку \mathfrak{H} является σ -классом Фишера, $\bar{H} = HG_{\mathfrak{F}}/G_{\mathfrak{F}} \in \mathfrak{H}$ и поэтому по утверждению 1) леммы $1.2\ HG_{\mathfrak{F}}/G_{\mathfrak{F}} \cong H/H \cap G_{\mathfrak{F}} \in \mathfrak{H}$.

Теперь докажем равенство $H_{\mathfrak{F}}\cap \big(H\cap G_{\mathfrak{F}}\big)K=H\cap G_{\mathfrak{F}}$. Вначале заметим, что $G_{\mathfrak{F}}\in \mathfrak{F}$, $K\cap G_{\mathfrak{F}}\trianglelefteq G_{\mathfrak{F}}$, $K\cap G_{\mathfrak{F}}\subseteq G_{\mathfrak{F}}$ и $H\cap G_{\mathfrak{F}}/K\cap G_{\mathfrak{F}}\in \mathfrak{N}_{\sigma_i}$. Следовательно, из того, что $\mathfrak{F}-\sigma$ -класс Фишера, вытекает $H\cap G_{\mathfrak{F}}\in \mathfrak{F}$. Но $H\cap G_{\mathfrak{F}}\trianglelefteq H$ и поэтому по определению \mathfrak{F} -радикала группы H заключаем, что $H\cap G_{\mathfrak{F}}\subseteq H_{\mathfrak{F}}$. Далее, используя лемму 1.3, получаем равенство $H_{\mathfrak{F}}\cap \big(H\cap G_{\mathfrak{F}}\big)K=(H\cap G_{\mathfrak{F}})(H_{\mathfrak{F}}\cap K)$. Так как $K\trianglelefteq H$, то по лемме 1.4 $H_{\mathfrak{F}}\cap K=K_{\mathfrak{F}}$. Следовательно, $H_{\mathfrak{F}}\cap \big(H\cap G_{\mathfrak{F}}\big)K=(H\cap G_{\mathfrak{F}})K_{\mathfrak{F}}$. Очевидно, $K_{\mathfrak{F}}\subseteq H\cap G_{\mathfrak{F}}$. Значит, $H_{\mathfrak{F}}\cap \big(H\cap G_{\mathfrak{F}}\big)K=H\cap G_{\mathfrak{F}}$.

Установим, что $H/(H\cap G_{\Im})K\in \mathfrak{H}$. По предположению $H/K\in \mathfrak{N}_{\sigma_i}$ и класс \mathfrak{N}_{σ_i} является формацией. Следовательно, по утверждению 2) леммы 1.5 $H/K/(H\cap G_{\Im})K/K\cong H/(H\cap G_{\Im})K\in \mathfrak{N}_{\sigma_i}$. Легко видеть, ввиду теоремы Лагранжа, что

 $|H/(H \cap G_{\mathfrak{F}})| = |H/(H \cap G_{\mathfrak{F}})/(H \cap G_{\mathfrak{F}})K/H \cap G_{\mathfrak{F}}| \cdot |(H \cap G_{\mathfrak{F}})K/H \cap G_{\mathfrak{F}}|.$

Значит, множество всех простых делителей σ содержится во множестве всех простых делителей порядка группы $|H/(H\cap G_{\mathfrak{F}})|$. Но факторгруппа $H/H\cap G_{\mathfrak{F}}$ является \mathfrak{H} -группой и поэтому $\sigma_i\subseteq\sigma(\mathfrak{H})$. Теперь, применяя лемму 1.5, получаем включения $\mathfrak{N}_{\sigma_i}\subseteq\mathfrak{N}_{\sigma(\mathfrak{H})}\subseteq\mathfrak{H}$. Отсюда следует, что $H/(H\cap G_{\mathfrak{F}})K\in\mathfrak{H}$.

Наконец, применяя доказанное выше, покажем, что $H \in \mathfrak{F} \diamond \mathfrak{H}$. Для этого применим лемму 1.6 для групп: $\overline{G} = H/H \cap G_{\mathfrak{F}}$, $\overline{K_1} = (H \cap G_{\mathfrak{F}})K/H \cap G_{\mathfrak{F}}$, $\overline{K_2} = H_{\mathfrak{F}}/H \cap G_{\mathfrak{F}}$. Вначале проверим выполнимость всех условий леммы 1.6 для групп \overline{G} , $\overline{K_1}$ и $\overline{K_2}$. Очевидно, что $\overline{K_1} \trianglelefteq \overline{G}$ и $\overline{K_2} \trianglelefteq \overline{G}$. Рассмотрим пересечение $\overline{K_1} \cap \overline{K_2} = ((H \cap G_{\mathfrak{F}})K/H \cap G_{\mathfrak{F}}) \cap (H_{\mathfrak{F}}/H \cap G_{\mathfrak{F}})$. Ввиду того, что $H_{\mathfrak{F}} \cap (H \cap G_{\mathfrak{F}})K = H \cap G_{\mathfrak{F}}$, получаем

$$\overline{K_1} \cap \overline{K_2} = (H_{\mathfrak{F}} \cap (H \cap G_{\mathfrak{F}})K)/(H \cap G_{\mathfrak{F}}) = (H \cap G_{\mathfrak{F}})/(H \cap G_{\mathfrak{F}}) = 1.$$

Составим факторгруппу $\bar{G}/\overline{K_1}$ $\overline{K_2}$ и покажем ее нильпотентность. Действительно,

$$\bar{G}/\overline{K_1}\;\overline{K_2}=(H/H\cap G_{\mathfrak{F}})/((H\cap G_{\mathfrak{F}})K/(H\cap G_{\mathfrak{F}})(H_{\mathfrak{F}}/H\cap G_{\mathfrak{F}})=(H_{\mathfrak{F}}/H\cap G_{\mathfrak{F}})/((H\cap G_{\mathfrak{F}})KH_{\mathfrak{F}})/(H\cap G_{\mathfrak{F}}).$$

Учитывая, что $H \cap G_{\mathfrak{F}} \subseteq H_{\mathfrak{F}}$, по утверждению 2) леммы 1.2 мы имеем

$$\bar{G}/\overline{K_1}\ \overline{K_2} = (H/H \cap G_{\mathfrak{R}})/(H_{\mathfrak{R}}K/H \cap G_{\mathfrak{R}}) \cong H/H_{\mathfrak{R}}K \in \mathfrak{N}_{\sigma_i} \subseteq \mathfrak{N}.$$

Остается проверить $\bar{G}/\overline{K_1} \in \mathfrak{H}$. Применяя лемму 1.3, получаем

$$\bar{G}/\overline{K_1} = (H/H \cap G_{\mathfrak{F}})/((H \cap G_{\mathfrak{F}})K/H \cap G_{\mathfrak{F}}) \cong H/(H \cap G_{\mathfrak{F}})K.$$

Но $H/(H \cap G_{\mathfrak{F}})K \in \mathfrak{H}$ и поэтому $\overline{G}/\overline{K_1} \in \mathfrak{H}$. Таким образом, все условия леммы 1.6 выполняются. Теперь $\overline{G} \in \mathfrak{H}$, и по лемме 1.6 это равносильно тому, что $\overline{G}/\overline{K_2} \in \mathfrak{H}$. Это означает по утверждению 2) леммы 1.2, что $(H/H \cap G_{\mathfrak{F}})/(H_{\mathfrak{F}}/H \cap G_{\mathfrak{F}}) \cong H/H_{\mathfrak{F}} \in \mathfrak{H}$. Следовательно, $H \in \mathfrak{F} \diamond \mathfrak{H}$ и произведение $\mathfrak{F} \diamond \mathfrak{H}$ является σ -классом Фишера. Теорема доказана.

В случае, когда $\sigma = \sigma^1 = \{\{2\}, \{3\}, \{5\}, ...\}$, получаем следующий результат Локетта [5]

Следствие 1.8. Произведение двух любых классов Фишера является классом Фишера.

Для разрешимых групп получаем

Следствие 1.9. Произведение двух любых классов Фишера разрешимых групп является классом Фишера.

Мы будем использовать следующую формулу для σ -локальной формации, которую представляет **Лемма 1.10** [5, лемма 2.3]. Пусть $\mathfrak{F} = LF_{\sigma}(f)$ и $\Pi = Supp(f)$. Тогда справедливо равенство $\mathfrak{F} = \mathfrak{G}_{\Pi} \cap (\bigcap_{\sigma_i \in \Pi} \mathfrak{G}_{\sigma_i'} \mathfrak{G}_{\sigma_i} f(\sigma_i))$.

Лемма 1.11. Пересечение множества σ -классов Фишера является σ -классом Фишера.

Доказательство этого утверждения следует непосредственно из определения σ -класса Фишера.

Каноническое определение σ -локальной формации описывает следующая

Лемма 1.12 [5, предложение 2.1 (2)]. Пусть f — формационная σ -функция, $\mathfrak{F} = LF_{\sigma}(f)$. Тогда $\mathfrak{F} = LF_{\sigma}(F)$, где F — такая формационная σ -функция, что $F(\sigma_i) = \mathfrak{G}_{\sigma_i}(f(\sigma_i) \cap \mathfrak{F}) = \mathfrak{G}_{\sigma_i}F(\sigma_i)$.

Основной результат

Определение 2.1. Формацию Фишера \Im назовем σ -локальной, если \Im является σ -локальной формацией.

В частности, если $\sigma = \sigma^1$, получаем определение локальной формации Фишера.

Основной результат представляет следующая

Теорема 2.2. σ -Локальная формация является σ -классом Фишера тогда и только тогда, когда все значения ее канонической формационной σ -функции являются σ -классами Фишера.

 $\mathcal D$ о к а з а т е л ь с т в о. Пусть все значения канонической формационной σ -функции F являются σ -классами Фишера. Покажем, что σ -локальная формация $\mathfrak F$ в этом случае также является σ -классом Фишера. Так как формация $\mathfrak F$ σ -локальна, то по лемме 1.10, используя формулу σ -локальной формации, получаем, что $\mathfrak F=\mathfrak G_\Pi\cap (\cap_{\sigma_i\in\Pi}\mathfrak G_{\sigma_i'}\mathfrak G_{\sigma_i}f(\sigma_i))$, где $\Pi=Supp(f)$. Заметим, что $F(\sigma_i)-\sigma$ -класс Фишера. Поскольку фиттинговы формации $\mathfrak G_{\sigma_i}$ и $\mathfrak G_{\sigma_i'}$ являются наследственными, то $\mathfrak G_{\sigma_i}$ и $\mathfrak G_{\sigma_i'}$ – тоже σ -классы Фишера. Тогда произведение $\mathfrak G_{\sigma_i'}\mathfrak G_{\sigma_i}f(\sigma_i)$ также является σ -классом Фишера для всех $\sigma_i\in\Pi$

по лемме 1.7. Следовательно, по лемме 1.11 пересечение $\mathfrak{F} = \mathfrak{G}_\Pi \cap (\bigcap_{\sigma_i \in \Pi} \mathfrak{G}_{\sigma_i'} \mathfrak{G}_{\sigma_i} f(\sigma_i))$ σ -классов Фишера является σ -классом Фишера. Отсюда заключаем, что $\mathfrak{F} - \sigma$ -класс Фишера.

Докажем обратное. Пусть $\mathfrak{F}-\sigma$ -локальная формация Фишера с канонической формационной σ -функцией F, т.е. $\mathfrak{F}=LF_{\sigma}(F)$. По лемме 1.12 $F(\sigma_i)=\mathfrak{G}_{\sigma_i}F(\sigma_i)$. Покажем, что все значения формационной σ -функции F являются σ -классами Фишера.

Пусть $G \in F(\sigma_i)$ и $K \trianglelefteq G, K \le H \le G$. Предположим, что $H/K \in \mathfrak{N}_{\sigma_i}$. Докажем, что $H \in F(\sigma_i)$. Рассмотрим регулярное сплетение $W = A \wr G$, где $A - \sigma_i$ -группа. Тогда $W = A^{\sharp}G$, где A^{\sharp} – базисная группа сплетения W. Отсюда следует, что $W/A^{\sharp} \cong G$. Но $G \in F(\sigma_i)$. Следовательно, $W \in \mathfrak{G}_{\sigma_i}F(\sigma_i)$. Так как F - каноническая формационная σ -функция \mathfrak{F} , то $\mathfrak{G}_{\sigma_i}F(\sigma_i) = F(\sigma_i) \subseteq \mathfrak{F}$. Таким образом, $W \in \mathfrak{F}$. Ввиду нормальности подгрупп K и A^{\sharp} в группах G и W соответственно следует, что $A^{\sharp}K \trianglelefteq W$. Действительно, пусть $X = ag \in W$, где $X \in A^{\sharp}$ и $X \in G$. Тогда $X^{-1}A^{\sharp}KX = G^{-1}A^{-1}A^{\sharp}KX$. Отсюда имеем, что $X \in G$ 0 и поэтому $X \in G$ 1. Тогда, используя изоморфизмы

$$(HA^{\dagger})/(KA^{\dagger}) = (HKA^{\dagger})/(KA^{\dagger}) \cong H/(H \cap KA^{\dagger})$$
 и
$$(H/K)(H \cap KA^{\dagger}/K) \cong H/(H \cap KA^{\dagger}),$$

получаем $H/(H \cap KA^{\sharp}) \in \mathfrak{F}$. Итак, $W \in \mathfrak{F}$, $KA^{\sharp} \triangleleft W$, $KA^{\sharp} \leq HA^{\sharp} \leq W$ и $(HA^{\sharp})/(KA^{\sharp}) \in \mathfrak{F}$.

Поскольку по условию $\mathfrak F$ является σ -классом Фишера, то $HA^{\sharp} \in \mathfrak F$. Теперь ввиду σ -локальности формации $\mathfrak F$ и определения канонической формационной σ -функции F получаем $\mathfrak F \subseteq \mathfrak G_{\sigma'_i}F(\sigma_i)$. Следовательно, $HA^{\sharp} \in \mathfrak G_{\sigma_i}F(\sigma_i)$. Но по лемме $[1, \ \text{гл.}\ A, \ \text{лемма}\ 18.8\ (a)]$ $A^{\sharp}H \cong A^{|G:H|} \wr H = W_1$. Значит, $W_1 = A^{\sharp\sharp}H$, где $A^{\sharp\sharp}$ – базисная группа сплетения W_1 . Пусть $O_{\sigma'_i}(W_1)$ – наибольшая нормальная σ'_i -подгруппа группы W_1 . Так как базисная группа $A^{\sharp\sharp}$ группы W_1 является σ_i -группой, то $O_{\sigma'_i}(W_1) \cap A^{\sharp\sharp} = 1$. Таким образом, по лемме $[1, \ \text{гл.}\ A, \ \text{лемма}\ 18.8\ (b)]$, $O_{\sigma'_i}(W_1) = 1$ и поэтому $O_{\sigma'_i}(HA^{\sharp}) = 1$. Но тогда из $HA^{\sharp} \in \mathfrak G_{\sigma_i}F(\sigma_i)$ следует, что $HA^{\sharp} = HA^{\sharp}/O_{\sigma'_i}(HA^{\sharp}) \in F(\sigma_i)$. Итак, $HA^{\sharp} \in F(\sigma_i)$. Таким образом, $HA^{\sharp}/A^{\sharp} \cong H/H \cap A^{\sharp} = H \in F(\sigma_i)$ и поэтому $F(\sigma_i) - \sigma$ -класс Фишера. Теорема доказана.

В случае разбиения $\sigma = \sigma^1 = \{\{2\}, \{3\}, \{5\}, ...\}$ мы получаем следующее

Следствие 2.3. Локальная формация является классом Фишера, когда все значения ее канонической формационной функции классы Фишера.

В случае разрешимых групп получаем результат [1, гл. ІХ, предложение (3.6)] как

Следствие 2.4. Локальная формация разрешимых групп является классом Фишера, когда все значения ее канонической формационной функции классы Фишера.

Заключение. В работе найдена характеризация σ -локальных формаций Фишера, которая определяется разбиениями простых чисел.

ЛИТЕРАТУРА

- 1. Doerk, K. Finite solvable groups / K. Doerk, T. Hawkes. Berlin–New York: Walter de Gruyter, 1992. P. 891.
- 2. Hartley, B. On Fischer's dualization of formation theory / B. Hartley // Proc. London Math. Soc. 1969. Vol. 3, № 2. P. 193–207.
- 3. Skiba, A.N. On one generalization of local formations / A.N. Skiba // Probl. Phys., Math. and Techn. 2018. № 1(34). P. 76–81.
- 4. Чжан Чи. О Σ_{τ}^{σ} -замкнутых классах конечных групп / Чи Чжан, А.Н. Скиба // Укр. мат. жур. 2018. Т. 70, № 12. Р. 1707-1715.
- 5. Lockett, F.P. On the theory of Fitting classes of finite solvable groups: Ph. D. thesis / F.P. Lockett. University of Warwick, 1971. P. 91.

REFERENCES

- 1. Doerk, K. Finite solvable groups / K. Doerk, T. Hawkes. Berlin–New York: Walter de Gruyter, 1992. P. 891.
- 2. Hartley, B. On Fischer's dualization of formation theory / B. Hartley // Proc. London Math. Soc. − 1969. − Vol. 3, № 2. − P. 193–207.
- 3. Skiba, A. N. On one generalization of local formations / A.N. Skiba // Probl. Phys., Math. and Techn. 2018. № 1(34). P. 76–81.
- 4. Jang Chi, Skiba A.N. Ukr. mat. zhur. [Ukrainian Mathematical Journal], 2018, 70(12), pp. 1707–1715.
- 5. Lockett, F.P. On the theory of Fitting classes of finite solvable groups: Ph. D. thesis / F.P. Lockett. University of Warwick, 1971. P. 91.

Поступила в редакцию 06.07.2023

Адрес для корреспонденции: e-mail: stainova.aa@mail.ru — Стайнова А.А.