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ON HAWKES'S  C O N J E C T U R E  FOR R A D I C A L  CLASSES?) 
N. T.  Vorobq~v UDC 512.542 

Solving a series of classification problems of the theory of finite soluble groups is connected with 
studying totally local or primitive saturated formations (see, for instance, [1, Chapter 5; 2, Chapter 
11]). Recall that, in accord with the definition of a multiply-local formation which is proposed by 
A. N. Skiba [3], every formation is assumed 0-local. A formation ~ is n-local (with n a natural number) 
if all nonempty values of its local screen are (n - 1)-local formations. A formation ~ is totally local 
(or, which is the same, primitive saturated in the sense of Hawkes [4]) if ~ is an n-local formation for 
every natural n. 

For soluble formations of finite groups, Hawkes [4] established in 1971 that every totally local 
formation is hereditary and radical and conjectured that the totally local formations are exactly 
the hereditary radical saturated formations (see [4, p. 586]). 

The conjecture was corroborated by Bryce and Cossey who demonstrated [5, Theorems A and 4] 
that every soluble hereditary radical saturated formation is totally local. Recall that a formation 
is a radical formation [2] if ~ is simultaneously a radical class (a Fitting class), i.e., N is closed under 
the taking of normal subgroups and products of normal subgroups. 

In the present article we validate Hawkes's conjecture for soluble radical classes: we prove that 
a soluble radical class is totally local if and only if it is hereditary. To this end, we use the principally 
new local method for constructing radicals and radical classes of finite soluble groups which was 
proposed by Hartley [6]. In line with [6], let f be a mapping from the set P of all prime numbers into 
the set of soluble radical classes F and let r = Supp f stand for the support of f ;  i.e., ~r = {p E P [ 
f (p)  :/: e} .  We call f (at L. A. Shemetkov's suggestion) a local IIartley function or a local If-function. 
Denote by LR(f)  the class of those ~r-groups whose quotient groups by f(p)-radicals are extensions of 
p-groups by p'-groups for all prime p E 7r. A radical class ~ is called local [7] if N = LR(f)  for some 
local H-function f .  Involving the notion of product of radical classes, observe that 

p e r  

Recall that the product of radical classes ~ and D is the class of all groups G such that G/G~ E Y3 
where G~ is the product of all normal J-subgroups of G. In line with [3], introduce the notion of 
a multiply-local radical class: every radical class is assumed 0-local. Call a radical class ~ n-local 
(with n a natural number) if all nonempty values of its local H-function are (n - 1)-local radical 
classes. Call :~ totally local if N is n-local for every natural n. 

In the article we deal with only finite soluble groups. The unrevealed definitions and notations 
can be found in [2, 8]. 

A radical class is called hereditary or S-closed if it is closed under the taking of subgroups. 
In Lemma 1 we present simplest properties of hereditary radical classes which are of service in the ar- 
ticle. 

L e m m a  1. The following assertions hold: 
(1) if {~i ] i E I} is a set of hereditary radical classes then the intersection ~d - NieI  ~i is 

a hereditary radical class; 
(2) each finite product ~ = 1-Ii~l ~i of hereditary radical classes ~i is a hereditary radical class. 
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PROOF. The first assertion of the lemma is obvious. To prove item (2), by associativity of 
the product of radical classes (see [2, IX.I.12, c]), it suffices to validate the claim for n = 2. Let G 
be a group in the class 3132 and let H be an arbitrary subgroup of G. Then G/G~I E 32 and since 
the radical class 32 is hereditary, we have 

H / H  n G~ '~ H G ~ / G ~  E 32. 

Since H n G~ ~ H and 31 is a hereditary class, it follows that H n G~ c H~I. Since the radical class 
32 is hereditary, the Bryce-Cossey theorem (see [2, XI.I.1]) implies that 32 is a formation. Therefore, 
H / H n G ~ a / H ~ / H n G ~  ~- H/H,% E 32. Hence, H E 3132, which completes the proof of the lemma. 

Call a local H-function f hereditary if f(p) is a hereditary radical class for all prime p. 

L e m m a  2. Each finite product 3 = 1-Iin--_l 3i (n >__ 2) of radical classes, where 3i = G,q for some 
set 7ri of prime numbers, is a radical class determined by a hereditary local H-function f such that 
the following equality holds for every prime p: 

{ 31 i fp E ~1 \ (r2 U ~r3 U--. Urn) ,  

3132 i f p E  a '2 \ (~ '3Ur4U'"U~ 'n ) ,  

f(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
"~" if p E ~r,, 

if p E (rl U r2 U . . . U 7rn) ~. 

PROOF. Let 3 = 3132. . .  3 ,  be a product of radical classes; moreover, the following equalities 
hold for some sets ~rl,~r2,...,~rn of prime numbers: 31 = ~5,-1,32 = ~ , r~ , . - . ,3n  = ~ ,  and al = 
~l \ (~2 u ~ 3  u . - - u  ~ , ) ,  o~ = ~2 \ (~3 u . . .  u ~ , ) ,  . . . ,  ~ ,  : ~ , ,  o =  ~ u ~ 2  u . - .  u ~ , .  

Define a local H-function f on ~' as follows: 

. . ( 3~ if p E 0"1, 

3132 i fpEo '2 ,  

f(p) . . . . . . . . . . . . . . .  
3 if p E a . ,  

if p E a'. 

Since the radical class 3~ is hereditary for every i E {1,2, . . .  ,n}, item (2) of Lemma 1 implies 
that f is a hereditary local H-function. 

We demonstrate that f determines the radical class 3. Put ff)l = LR(f).  By Lemma 5 of [9], 
7r(3132.. .  3n) = O" and a = Supp f; therefore, 

9"9l = ~a  n (f") f(p)92vESp, ) . 
pea 

Leaning on the definition of f and using Lemma 1 of [10], we obtain 

F/ e,,)) 
peal pea2 pEan 

It is easy to see that ["]pEa, ~p' = ~Sa~ for every i E { 1 ,2 , . . . ,  n}. In consequence, 

Since 3 2 . . - 3 ,  C_ 6a l  , 3 3 . . - 3 -  C_ 6a~, . -- ,  3 ,  C_ |  we have 31~a l  = 3 ~ a l  , 3132~a~ 

�9 " ,  3132' ' '3---115a~_ l = 36a '_~.  Using Lemma 1 of [10] once again, we hence infer that 

= 3 6 a ~ ,  

= ~a  n ~ (~a l  n ea l  n . . .  n ~a,. ) = ~a  n 3~a,  = ~. 
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In the case of a = ~ we have 3 = 6 ,  with ~ the identity local radical class, and the lemma is obvious. 
This completes the proof of the lemma. 

In line with [11], call a local H-function f of a radical class 
(1) inner if f(p) C_ 3 for all prime numbers p; 
(2) full if f(p)9lp = f(p) for every prime p; 
(3) full inner if f is simultaneously a full and inner local H-function. 

L e m m a  3. If 3 = LR(f)  for some hereditary local H-function f then 3 is hereditary and 3 = 
LR(~,) = LR(~b) = LR(h), where qo, ~b, and h are respectively full, inner, and full inner local 
H-functions. 

PROOF. By hypothesis, 3 = 15~-N (["lpe~-f(p)9lp6r and f(p) is hereditary and local for all prime 
p �9 7r (Tr = Supp f) .  

Therefore, by Lemma 1 the radical class 3 is hereditary. Now, construct local H-functions ~o, ~/,, 
and h as follows: io(p) = f(p)9lp, ~l,(p) = f(p) N 5, and h(p) = ~(p)9lp for every prime p. Since 
the product of radical classes is associative, it follows that ~(p)9lp = f(p)glp for all prime p. Hence, 
3 = LR(~o). Since ~/,(p) C_ f(p) for all prime p, we have LR(~b) C: 3. Let G be a group in 3. Then 
G%~p ' �9 f(p) o 3 = g'(p) for all prime p �9 7r. Moreover, it is easily seen that G �9 (5~., 7r = Supp ~,. 
Hence, G �9 ~5~-N (Npe,~ ~b(p)9l,(hp,) = LR(~b). Thus, 3 = LR(~b). But then since by Lemma 1 of [11] 
(also see [12, Lemma 6]) every local radical class is determined by a full inner local H-function, we 
conclude that 3 = LR(h). The fact that each of the local H-functions ~O, ~, and h is hereditary follows 
from Lamina 1. The lamina is proven. 

Suppose that 3 = LR(f)  for some hereditary local H-function f and let 12 be the set of all full 
hereditary local H-functions of the class 3. In line with [8], define some order < on 12 as follows: if 
f,  ~o �9 12 then f _< ~o if and only if f(p) C_ ~(p) for all prime p. Call a minimal element of 12 a minimal 
full 'vereditary local H-f, tnction of the class 3. 

If .~ is a set of groups then denote by SFit s~ the hereditary radical class that  is generated by 3E. 

L e r n m a  4. Assume that 3 = LR(h)for  sor~e hereditary local H-function h. Then the following 
assertions hold: 

(1) 3 is determined by a unique minima/full  hereditary local H-function f such that the following 
equality is valid for every prime p: 

(SFit{G �9 31G = OP' (G)})91p if p �9 ~r(N), 
f ( p ) =  / e ifp �9 ~r'(~); 

(1) 

(2) if 31 and 32 are radical classes determined by minimal full local H-functions fl  and f2 then 
31 C__ 32 if and only if f l  _< f2. 

PROOF. By hypothesis, the radical class 3 is determined by a hereditary local H-function h; 
therefore, by Lemma 3, 3 is also determined by some full hereditary local H-function. In consequence, 
the set 12 of all full hereditary local H-functions of the class 3 is nonempty. Let ~ be an arbitrary 
element in f~. Then 3 = LR(~); moreover, T(p) = ~(p)9lp and ~(p) is a hereditary radical class for all 
prime p. In view of Hartley's result (see [6, 3.1.1]) claiming that the condition p �9 rr(3) is equivalent 
to ~ ,  C_ 3, we easily see that ~(~) = Supp 4. 

Take p �9 7r(3). Define the set 

! 

= {c, �9 31 a = op ( a ) } .  

Let (SFit •(p))9lp = f(p). If X �9 ~/,(p) then X = 0P(X) and X �9 3. Therefore, X/X~,(p) �9 6 r  
and X �9 r Thus, r C_ ~(p). But then f(p) C_ SFit (p(p) = ~(p) for all prime p �9 rr(3). Hence, 
f _< ~p, and therefore 
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We now establish the reverse inclusion ~ C ffJt. Let Y be an arbitrary group in ~. Since 
0v'(0P'(Y)) = 0P'(Y) and 0P'(Y) E ~ for all prime p E r(~),  it follows that Y is an extension of 
a r by a p'-group for some p E ~r(~). However, ~b _< f .  Therefore, Y E ["]per(~) f(P)~ '' 
Furthermore, Y E ~. In consequence, Y E ~5~-(3). Hence, Y E 931 and ~ = ~, completing the proof 
of the first assertion of the lemma. 

If ~a _C ~'2 then, by item (1) and the definition of the operator SFit, we have fa _< ]'2. The converse 
assertion is obvious. The lemma is proven. 

L e m m a  5. The union of an arbitrary chain of radical classes each of which is determined by 
a hereditary local H-function is a radical class determined by a hereditary local H-function. 

PROOF. Let {~i [ i E I )  be an arbitrary nonempty chain of radical classes each of which is 
determined by a hereditary local H-function. By Lemma 4, each radical class ~i is determined by 
a unique minimal full hereditary local H-function fi (i E I). Let ~ = UiEI ~i and f = Uiel fi. 
We first establish that f is a local H-function. Take G E f(p) (p is a prime) and let K be a normal 
subgroup of G. Then G E rio(P) for some i0 E I. Since rio is a local H-function, it follows that 
K E fio(P), and hence K E f(p). Therefore, the group class f(p) is normally hereditary. Now, if 
L = K1K2, with KI and K2 normal f(p)-subgroups of L, then IQ E fik(P) and I(2 E fir(P) for some 
ik, it E I. Since either fik <- fir or fir <- fik and fik and fir are local H-functions, we see that L is 
either an fik (p)-group or an fi,(p)-group. However, in each of these cases it is obvious that  L E f(p). 
Thus, f is a local H-function. The fact that ~ is a radical class is proved by analogy. 

We verify that f locally determines ~. Let 93l = LR(f).  Since fi <_ f and 3i = LR(fi) for all 
i E I, it is obvious that ~" C_ 9Yr. Now, take M E 9Yr. Then MmP~p ' E f(p) for all prime p E Supp f .  
It is easy to see that Suppf  = 7r(~). Therefore, M~tP~p ' E fir(P) for it E I and all prime p E ~r(~). 
Thereby M E Np6~(;~r)fir(p)91p~y. Since M E | it follows that M E | for some im E I. 
However, since ~'i~ and ~i,~ are elements of a chain, either :~i~ _ ~i~ or ~i~ C ~i~. Consequently, 
either | c_ ~5,~(3~,,) or |  C_ | and by item (2) of Lemma 4 either f~ <_ fz,~ or 
fi,,, <_ fi~. In each of these cases We obtain M E-~. Thus, ~ = ~. 

It remains to demonstrate that the local H-function f is hereditary. Indeed, if R E f(p) and U 
is an arbitrary subgroup in R then R E f i ,  (p) for some is E I. However, the local H-function fi, is 
hereditary. Hence, U E f i ,  (P) C_ f(p), which completes the proof of the lemma. 

The next lemma is a consequence of the familiar results by Bryce and Cossey [5, 13, 14] and 
Hawkes [4]. 

L e m m a  6. I f~  is a hereditary radical class such that ~ C_ 9] ~ for some natural k then ~ = ~i~176 ~i, 
where ~i is the finite product of radical classes ~,q,  ~,~2,. . . ,  ~ , ,  for some sets zr~, ~r2,..., ~n of prime 
I] u m  b e t s .  

PROOV. Since the radical class ~ is hereditary, Theorem 1.1 of [13] implies that ~ is a formation. 
But then, by Theorem 4 of [5], the formation ~ is totally local. Now, the claim is immediate from 
the condition ~ C_ 92 k in view of Lemma 2.3 of [14]. 

The following theorem classifies hereditary radical classes in terms of local Hartley classes and 
corroborates Hawkes's conjecture which is mentioned in the introduction for radical classes. 

T h e o r e m .  Let q~ be a nonempty radical class. The following assertions hold: 
(1) ~ is hereditary if and only if ~ = LR(f) for the local H-function f whose values are defied 

by (1); 
(2) ~ is toeally local if and only if ~ is hereditary. 
PROOF. Let ~ be the hereditary class determined by the local H-function f whose values are given 

by the formula (1). Then we have the equality ~ = ~San (["]p6a f(p)glpOp,), where er = Supp f = ~r(;~), 
and by Lemma 1 ~ is a hereditary radical class. 

Suppose that  a nonempty radical class ~ is hereditary. If ~ has bounded nilpotent length, i.e., 
C_ 91 ~ for some natural k, then in this event Lemma 6 yields ~ = Ni~176 1 ~i, where ~i is some product 

of radical classes ~3,~, ~5,2, . . . ,  ~3,, for some sets ~rl, ~r2,..., ~r~ of natural numbers and some natural 
number n. By Lemma 2, each of the products ~i is determined by a hereditary local H-function fi. 
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Then by Lemma 3 of [10] ~ is local and radical and its local H-function is ~o = NieI fi (see the proof of 
Lemma 3 in [10]). Thus, ~ = LR(~) and the local H-function ~ is hereditary byLemma  1. Hence, by 
item (1) of Lemma 4 ~ = LR(f) for the local H-function f whose values are given by the formula (1). 

To prove the first assertion of the theorem, we are left with settling the case in which the nilpotent 
length of the class ~ is unbounded. Let ~i = ~ f'l 9l i, i > 1. Then, for each natural i, the class ~i has 
bounded nilpotent length and is hereditary by Lemma 1. It follows that, as before, ~i = LR(fi) for 
some hereditary H-function fi. But then ~ = Ui~176 3i is the union of a chain of radical classes each of 
which is determined by a local H-function. Hence, by Lemma 5 3 = LR(r for some hereditary local 
H-function r But then by item (1) of Lemma 4 ~ = LR(f) and the values of the local H-function f 
are defined by the formula (1). The first assertion of the theorem is proven. 

If ~ is hereditary then ~ is totally local by item (1) of the theorem. Prove the converse. To this 
end, in line with [4] (also see [2, VII.3]) describe the family T of all totally local radical classes 
as follows: Let ~'0 = {~, ~5, ~5}. For every natural i > 0, define the family .T" of radical classes by 
induction: ~ E 5 v if and only if 3~ E .T'i-1 or .~ = LR(x) for a local H-function x such that  x(p) E .T'i-1 
for all prime p E Supp x. Then T is the family, of all radical classes 3E such that .~ = Uj 3~j, where 
:~j E Uj 5ri and :~j c_ :~j+l. 

Suppose that ~ r ~ and ~ E 7-. Then:~ = Ui~=lNi, whereN1 c_ 32 c_ . . .  and ~i E .T'~ = 
U~0 ~-i. Clearly, ~'0 consists of sets of hereditary radical classes. Using induction on i and item (1) 
of the theorem, we easily infer that all radical classes in .T'i are hereditary for all natural i. But then 
the radical class U too is hereditary as the union of a chain of hereditary radical classes. 

The above-proven theorem shows that the family of local radical classes is rather wide: it contains 
all nonempty hereditary radical classes. However, not every local radical class is hereditary, as we see 
from the following 

EXAMPLE. Suppose that ~ C r C IP and let 2s 'r be the class of all groups G whose r-radicals 
are hypercentral in G. Then by [2, IX.2.5,a] ~ is a nonhereditary radmal class. Let ~ = ~,r~.  It is 
easy that  ~ = LR(f)  for a local H-function f such that f(p) = ~ r  for all prime p. Demonstrate that 
the class ~ is not hereditary. Since the radical cl~s :~,r is not hereditary, there is a group G E 3E 'r such 
that some subgroup H of G does not belong to 3U. Let p be a prime number not dividing IG[ and 
let W = G I Cp be the regular wreath product of G with a cyclic group of order p. It is obvious that 
W E 3. If we suppose that ~ is hereditary then I" = H I Cp E 3. By Claim X.1.25 of [2] the radical 
class .~,r is a Lockett class; i.e., (X x X)x ,  = X~r x X~, for every group X. Therefore, by Lemma 2.2 
of [15] (also see [2, X.2.1,a]) F~:, = (H~,)*, where (g~,)* is the base of the wreath product H~, ICp. 
Now, from F E 3 and Hx, ~_ H, it follows that [2, A.18.2,d] (H/Hx,)ICp ~- F/(Hx,)*  E 92. But then 
the fact that p does not divide ]GI implies that H = H.~,, which contradicts the choice of H. Hence, 
3 is nonhereditary local radical class. 

Observe that the condition of solubility of the radical class 3 in the theorem is essential, since 
by L. A. Shemetkov and A. F. Vasil%v's results [16] there exist nonsoluble hereditary radical classes 
which are nonlocal. 

The proven theorem implies in particular that the main result of [10] claiming that every nonempty 
soluble hereditary radical class is local fails in general for soluble formations. 
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