Southeast Asian Bulletin of Mathematics © SEAMS. 2013

On the Lattices of Saturated and Solubly Saturated Formations of Finite Groups

Alexander N. Skiba Department of Mathematics, F. Skorina Gomel State University, 246019 Gomel, Belarus Email: alexander.skiba49@gmail.com

Nikolay N. Vorob'ev Department of Mathematics, P.M. Masherov Vitebsk State University, Vitebsk 210038, Belarus Email: vornic2001@yahoo.com

Received 1 March 2013 Accepted 1 August 2013

Communicated by Wenbin Guo

AMS Mathematics Subject Classification(2000): 20D10, 20F17

Abstract. It is proved that the lattice of all saturated formations of finite groups is a complete sublattice of the lattice of all solubly saturated formations of finite groups.

Keywords: Finite group; Formation of groups; Saturated formation; Solubly saturated formation; Algebraic lattice; Compact element of a lattice.

1. Introduction

Throughout this paper, all groups are finite. We write R(G) to denote the largest soluble normal subgroup of the group G.

Let \mathfrak{F} be a class of groups. If $1 \in \mathfrak{F}$, then we write $G^{\mathfrak{F}}$ to denote the intersection of all normal subgroups N of G with $G/N \in \mathfrak{F}$. The class \mathfrak{F} is called a *formation* if either $\mathfrak{F} = \emptyset$ or $1 \in \mathfrak{F}$ and every homomorphic image of $G/G^{\mathfrak{F}}$ belongs to \mathfrak{F} for every group G.

The most useful for applications of the formation theory (in particular, in the theory of formal languages [7, 8, 9, 28, 14] and in the theory of lattices of group

classes [10, 13, 15, 27, 33, 40]) are so-called saturated and solubly saturated formations.

Recall that the formation \mathfrak{F} is said to be: saturated if $G \in \mathfrak{F}$ whenever $G/\Phi(G) \in \mathfrak{F}$; solubly saturated if $G \in \mathfrak{F}$ whenever $G/\Phi(R(G)) \in \mathfrak{F}$.

A non-empty set Θ of formations is called a *complete lattice of formations* [33] if the intersection of every set of formations in Θ belongs to Θ and there is a formation \mathfrak{F} in Θ such that $\mathfrak{M} \subseteq \mathfrak{F}$ for each other formation \mathfrak{M} in Θ . In what follows, Θ denotes a complete lattice of formations.

It is clear that the sets of all formations \mathcal{F} , of all saturated formations \mathcal{L} and of all solubly saturated formations \mathcal{C} are examples of complete lattices of formations. These three lattices are algebraic and modular (see [33, 35]). Let's also note, in passing, that the modularity of these lattices has found wide applications in questions of classification of formations [27, 33, 15, 40]. Further, many other classes of algebraic and modular lattices of formations have been found (see, in particular, [1, 28, 19, 30, 21, 37, 29, 38, 39] and the recent book [40]). Nevertheless, it is necessary to note that the connections between different lattices of formations are still a little studied.

This circumstance is the main motivation for results of this paper.

Our first result is the following observation.

Theorem 1.1. The lattice \mathcal{L} is a complete sublattice of the lattice \mathcal{C} .

Let's recall that the product \mathfrak{MH} of the non-empty formations \mathfrak{M} and \mathfrak{H} is the class of all groups G such that $G^{\mathfrak{H}} \in \mathfrak{M}$. Such an operation on the set \mathcal{F} is associative (W. Gaschütz). Moreover, the sets of all saturated formations and of all hereditary (in the sense of A.I. Mal'cev [25]) solubly saturated formations are subsemigroups of the semigroup of all formations \mathcal{F} . A great number of researches in the formation theory are connected with studying of factorizations of elements of these two subsemigroups (see, in particular, [31, 36, 32, 42, 2, 34, 16, 17, 18, 19, 20, 22, 11, 3, 24, 5, 6, 41] and the recent book [26]).

Every representation of the formation \mathfrak{F} in the form $\mathfrak{F} = \mathfrak{F}_1 \dots \mathfrak{F}_t$, where $\mathfrak{F} \neq \mathfrak{F}_1 \dots \mathfrak{F}_{i-1} \mathfrak{F}_{i+1} \dots \mathfrak{F}_t$ for all *i*, is called an *irreducible factorization* of \mathfrak{F} .

In the book by A.N. Skiba [33] the description of all irreducible factorizations of saturated formations \mathfrak{F} contained in a compact element of the lattice \mathcal{L} was obtained. Further, in the work by W. Guo and K.P. Shum [20], all irreducible factorizations of a formations \mathfrak{F} was described under condition that \mathfrak{F} is solubly saturated and \mathfrak{F} is contained in some compact element of the lattice \mathcal{C} . Since every saturated formation is solubly saturated, these two results are the motivation for the following question: Suppose that a solubly saturated formation \mathfrak{F} is contained in a compact element of the lattice \mathcal{L} . Does it true then that \mathfrak{F} is contained in some compact element of the lattice \mathcal{C} ?

Our next result gives the positive answer to this question.

Theorem 1.2. Every solubly saturated formation contained in a compact element

Lattices of Saturated and Solubly Saturated Formations

of the lattice \mathcal{L} is also contained in some compact element of the lattice \mathcal{C} .

Therefore, in view of this result, the above-mentioned result of A.N. Skiba in [33] is a consequence of the main result in [20, Theorem 4.1].

All unexplained notations and terminologies are standard. The reader is refereed to [27, 10, 15, 4] if necessary.

2. Preliminaries

Recall that $\pi(G)$ denotes the set of all prime divisors of the order of a group G. For any collection of groups \mathfrak{X} we denote by $\operatorname{Com}(\mathfrak{X})$ the class of all abelian groups A such that $A \cong H/K$, for some composition factor H/K of a group $G \in \mathfrak{X}$.

Recall that $C^{p}(G)$ is the intersection of the centralizers of all the abelian *p*-chief factors of G ($C^{p}(G) = G$ if G has no abelian *p*-chief factors).

The symbols \mathfrak{G} , \mathfrak{G}_p , $\mathfrak{G}_{p'}$ and \mathfrak{S} denote the class of all groups, the class of all *p*-groups, the class of all *p'*-groups and the class of all soluble groups, respectively.

Let $\mathbb P$ be the set of all primes. Then for any formation function

$$f: \mathbb{P} \to \{\text{group formations}\},\tag{1}$$

the symbol LF(f) denotes the collection of all groups G such that either G = 1or $G \neq 1$ and $G/O_{p',p}(G) \in f(p)$ for every $p \in \pi(G)$. If for a formation \mathfrak{F} we have $\mathfrak{F} = LF(f)$, then f is called a *local satellite* of \mathfrak{F} .

In the following lemma, the symbol $\mathfrak{G}_p F(p)$ denotes the set of all groups A such that $A^{F(p)}$ is a p-group.

Lemma 2.1. [10] For any non-empty saturated formation \mathfrak{F} , there is a unique formation function F such that $\mathfrak{F} = LF(F)$ and $F(p) = \mathfrak{G}_pF(p) \subseteq \mathfrak{F}$ for all primes p.

The formation function F in Lemma 2.1 is called the *canonical local satellite* of \mathfrak{F} .

For any function f of the form

$$f: \mathbb{P} \cup \{0\} \to \{\text{group formations}\}$$
(2)

we put, following [35], $CF(f) = (G \text{ is a group } | G/R(G) \in f(0) \text{ and } G/C^p(G) \in f(p) \text{ for all } p \in \pi(\text{Com}(G)))$. If for a formation \mathfrak{F} we have $\mathfrak{F} = CF(f)$, then f is called a *composition satellite* of \mathfrak{F} .

In the papers [28, 35], the following useful facts are proved.

Lemma 2.2.

- (a) For any function f of the form (1), the class LF(f) is a saturated formation.
- (b) For any function f of the form (2), the class CF(f) is a solubly saturated formation.
- (c) For any non-empty solubly saturated formation \mathfrak{F} , there is a unique function F of the form (2) such that $\mathfrak{F} = CF(F)$, $F(p) = \mathfrak{G}_pF(p) \subseteq \mathfrak{F}$ for all primes p, and $F(0) = \mathfrak{F}$.

If $\mathfrak{F} = LF(f)$ and $f(p) \subseteq \mathfrak{F}$ for all $p \in \mathbb{P}$, then f is called an *inner local satellite* of \mathfrak{F}.

The function F in Lemma 2.2 is called the *canonical composition* satellite of \mathfrak{F} . If $\mathfrak{F} = CF(f)$ and $f(p) \subseteq \mathfrak{F}$ for all $p \in \mathbb{P}$, then f is called an *inner composition* satellite of \mathfrak{F} .

A formation function f of the form (1) or (2) is called Θ -valued if all its values belong to the lattice Θ . We denote by Θ^l the set of all formations having a local Θ -valued satellite (see [27]); analogously we denote by Θ^c the set of all formations having a composition Θ -valued satellite.

The symbol Θ form(\mathfrak{X}) denotes the intersection of all formations in Θ containing the collection \mathfrak{X} of groups. In the case, when $\Theta = \mathcal{F}$ is the lattice of all formations, we write form(\mathfrak{X}) instead of Θ form(\mathfrak{X}).

For any collection $\{\mathfrak{F}_i \mid i \in I\}$ of formations in Θ we put

$$\forall_{\Theta}(\mathfrak{F}_i \mid i \in I) = \Theta \text{ form } \big(\bigcup_{i \in I} \mathfrak{F}_i\big).$$

In the case, when $\Theta = \mathcal{F}$, we write $\lor (\mathfrak{F}_i \mid i \in I)$ instead of $\lor_{\Theta}(\mathfrak{F}_i \mid i \in I)$.

The complete lattice of formations Θ^l is called *inductive* [33], if for any collection $\{\mathfrak{F}_i \mid i \in I\}$ of formations \mathfrak{F}_i in Θ^l and for any collection $\{f_i \mid i \in I\}$, where f_i is an inner local satellite of \mathfrak{F}_i , we have $\bigvee_{\Theta^l}(\mathfrak{F}_i \mid i \in I) = LF(\bigvee_{\Theta}(f_i \mid i \in I))$, where $\bigvee_{\Theta}(f_i \mid i \in I)$ is a local satellite of the formation $\bigvee_{\Theta^l}(\mathfrak{F}_i \mid i \in I)$ such that $f(p) = \bigvee_{\Theta}(f_i(p) \mid i \in I)$ for all $p \in \mathbb{P}$.

Lemma 2.3. [33] The lattice \mathcal{L} is inductive.

The complete lattice of formations Θ^c is called *inductive* [33], if for any collection $\{\mathfrak{F}_i \mid i \in I\}$ of formations \mathfrak{F}_i in Θ^c and for any collection $\{f_i \mid i \in I\}$, where f_i is an inner composition satellite of \mathfrak{F}_i , we have $\bigvee_{\Theta^c}(\mathfrak{F}_i \mid i \in I) = CF(\bigvee_{\Theta}(f_i \mid i \in I))$, where $\bigvee_{\Theta}(f_i \mid i \in I)$ is a composition satellite of the formation $\bigvee_{\Theta^l}(\mathfrak{F}_i \mid i \in I)$ such that $f(a) = \bigvee_{\Theta}(f_i(a) \mid i \in I)$ for all $a \in \mathbb{P} \cup \{0\}$.

Lemma 2.4. [37] The lattice C is inductive.

A group class closed under taking homomorphic images is called a *semifor*mation [27].

774

Lattices of Saturated and Solubly Saturated Formations

Lemma 2.5. [39] Let \mathfrak{M} be a semiformation and $A \in \text{form } \mathfrak{M}$.

- (a) If $O_p(A) = 1$, then $A \in \text{form}(\mathfrak{M}_1)$, where $\mathfrak{M}_1 = (G/O_p(G) \mid G \in \mathfrak{M})$.
- (b) If R(A) = 1, then $A \in \text{form}(\mathfrak{M}_2)$, where $\mathfrak{M}_2 = (G/R(G) \mid G \in \mathfrak{M})$.

Lemma 2.6. [35] Let \mathfrak{X} be a non-empty collection of groups and $\mathfrak{F} = C$ form (\mathfrak{X}) . Let $\pi = \pi(Com(\mathfrak{X}))$. Then $\mathfrak{F} = CF(f)$, where:

- (a) $f(p) = \text{form}(G/C^p(G) \mid G \in \mathfrak{X})$ for all $p \in \pi$.
- (b) $f(p) = \emptyset$ for all $p \in \mathbb{P} \setminus \pi$.
- (c) $f(0) = \text{form}(G/R(G) \mid G \in \mathfrak{X}).$
- (d) $\pi = \pi(\operatorname{Com}(\mathfrak{F})).$

The satellite f in Lemma 2.6 is called the *minimal* composition satellite of \mathfrak{F} [27].

Lemma 2.7. [28] Let \mathfrak{X} be a non-empty collection of groups and $\mathfrak{F} = \mathcal{L}$ form (\mathfrak{X}) . Let $\pi = \pi(\mathfrak{X})$. Then $\mathfrak{F} = CF(f)$, where:

(a) $f(p) = \text{form}(G/O_{p',p}(G) \mid G \in \mathfrak{X})$ for all $p \in \pi$ (b) $f(p) = \emptyset$ for all $p \in \mathbb{P} \setminus \pi$. (c) $\pi = \pi(\mathfrak{F})$.

The satellite f in Lemma 2.7 is called the *minimal* local satellite of \mathfrak{F} [27].

Lemma 2.8. Let Z_p be a group of prime order p, and G be a group with $O_p(G) = 1$. Suppose that $T = Z_p \wr G$ is the regular wreath product, where K is the base group of T. Then $K = C^p(T) = O_p(T)$.

Proof. Let $1 = K_0 \leq K_1 \leq \ldots \leq K_t = K$ be a chief series of T below K. Let $C_i = C_T(K_i/K_{i-1})$ and $D = C_1 \cap \ldots \cap C_t$. Clearly, $K \leq D$. Consequently, $D = D \cap KG = K(D \cap G)$. Suppose $K \neq D$. Then $D \cap G$ is a non-identity group. But $D \cap G$ is a stable group of automorphisms of K. By [12, Chapter V, Corollary 3.3], $D \cap G$ is a normal p-subgroup of G, a contradiction. Thus $D = K = C^p(T) = O_p(T)$.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let $\{\mathfrak{F}_i \mid i \in I\}$ be a collection of saturated formations and let F_i be the canonical local satellite of \mathfrak{F}_i . Let $\mathfrak{F} = \bigvee_{\mathcal{L}}(\mathfrak{F}_i \mid i \in I)$ and $\mathfrak{H} = \bigvee_{\mathcal{C}}(\mathfrak{F}_i \mid i \in I)$. It is clear that $\bigcap_{i \in I} \mathfrak{F}_i$ is a saturated formation and this formation is the greatest lower bound for $\{\mathfrak{F}_i \mid i \in I\}$ in \mathcal{L} . On the other hand, clearly, \mathfrak{F} is the least upper bound for $\{\mathfrak{F}_i \mid i \in I\}$ in \mathcal{L} and \mathfrak{H} is the least upper bound for $\{\mathfrak{F}_i \mid i \in I\}$ in \mathcal{C} . Therefore, in fact, we need only prove that $\mathfrak{F} = \mathfrak{H}$. The inclusion $\mathfrak{H} \subseteq \mathfrak{F}$ is evident. Hence, we need only show that $\mathfrak{F} \subseteq \mathfrak{H}$.

775

Let $\mathfrak{H}_i = CF(H_i)$, where H_i is a composition satellite such that

$$H_i(a) = \begin{cases} \mathfrak{F}_i & \text{if } a = 0, \\ F_i(a) & \text{if } a = p \in \mathbb{P}. \end{cases}$$

First we show that $\mathfrak{F}_i = \mathfrak{H}_i$ for all i.

Suppose $\mathfrak{H}_i \not\subseteq \mathfrak{F}_i$. Let G be a group of minimal order in $\mathfrak{H}_i \setminus \mathfrak{F}_i$. Then G is a monolithic group and $R = G^{\mathfrak{F}_i}$ is the monolith of G. If R is non-abelian, then R(G) = 1. Therefore, $G = G/1 = G/R(G) \in H_i(0) = \mathfrak{F}_i$. This contradicts the choice of G. Hence, R is an abelian p-group, where $p \in \pi(R)$. Since \mathfrak{F}_i is saturated, it follows that $R \not\leq \Phi(G)$. Therefore, by [10, Chapter A, Theorem 15.2], $R = C_G(R) = O_p(G)$. Hence, $R = C^p(G) = O_{p',p}(G)$. Consequently, $G/O_{p',p}(G) = G/C^p(G) \in H_i(p) = F_i(p)$. Hence, $G \in \mathfrak{F}_i$, a contradiction. Therefore, $\mathfrak{H}_i \subseteq \mathfrak{F}_i$.

Now we show that $\mathfrak{F}_i \subseteq \mathfrak{H}_i$. Assume this is false and let G be a group of minimal order in $\mathfrak{F}_i \setminus \mathfrak{H}_i$ with $R = G^{\mathfrak{H}_i}$. Let $p \in \pi(R)$. If R is non-abelian, then $O_{p',p}(G) = 1$. Hence, $G \cong G/1 = G/O_{p',p}(G) \in F_i(p) = H_i(p) \subseteq \mathfrak{H}_i$, a contradiction. Consequently, R is an abelian p-group. Let $T = R \rtimes (G/C_G(R))$. Since $G \in \mathfrak{F}_i$, using [10, Chapter IV, Proposition 1.5], we have $T \in \mathfrak{F}_i$. If |T| < |G|, then $T \in \mathfrak{H}_i$, by the choice of G. It follows that $G/C_G(R) \cong T/R = T/C_G(R) = T/C_T(R) = T/C^p(T) \in H_i(p)$. Hence, $G \in \mathfrak{H}_i$, a contradiction. Therefore, |T| = |G|, so $R = C_G(R) = O_p(G) = C^p(G) = O_{p',p}(G)$. Therefore, $G/C^p(G) = G/O_{p',p}(G) \in F_i(p) = H_i(p)$. Hence, $G \in \mathfrak{H}_i$, a contradiction. Consequently, $\mathfrak{F}_i \subseteq \mathfrak{H}_i$ for all $i \in I$.

Since by Lemma 2.3 the lattice \mathcal{L} is inductive, we have $\mathfrak{F} = \bigvee_{\mathcal{L}} (\mathfrak{F}_i \mid i \in I) = LF(\bigvee(F_i \mid i \in I))$. Since by Lemma 2.4 the lattice \mathcal{C} is inductive, we have $\mathfrak{H} = \bigvee_{\mathcal{C}} (\mathfrak{F}_i \mid i \in I) = CF(\bigvee(H_i \mid i \in I))$.

Now assume that $\mathfrak{F} \not\subseteq \mathfrak{H}$. Let G be a group of minimal order in $\mathfrak{F} \setminus \mathfrak{H}$ with $R = G^{\mathfrak{H}}$. Let $p \in \pi(R)$.

If R is non-abelian, then $O_{p',p}(G) = 1$. Hence, since the canonical local satellite F_i is inner,

$$G \cong G/1 = G/O_{p',p}(G) \in (\lor(F_i \mid i \in I))(p)$$

= $\lor(F_i(p) \mid i \in I) \subseteq \lor(\mathfrak{F}_i \mid i \in I) \subseteq \lor_{\mathcal{C}}(\mathfrak{F}_i \mid i \in I)$
= $\mathfrak{H}.$

This contradicts the choice of G. Hence, R is an abelian p-group. Let $T = R \rtimes (G/C_G(R))$. Since $G \in \mathfrak{F}$, using [10, Chapter IV, Proposition 1.5], we have $T \in \mathfrak{F}$. If |T| < |G|, then $T \in \mathfrak{H}$, by the choice of G. Consequently,

$$G/C_G(R) \cong T/R = T/C_G(R) = T/C_T(R) = T/C^p(T) \in (\lor(H_i \mid i \in I))(p).$$

Hence, $G \in \mathfrak{H}$, a contradiction. Thus, |T| = |G|, so $R = C_G(R) = O_p(G) = C^p(G) = O_{p',p}(G)$. Therefore, since $\mathfrak{F}_i = \mathfrak{H}_i$ for all $i \in I$,

$$G/C^{p}(G) = G/O_{p',p}(G) \in (\lor(F_{i} \mid i \in I))(p) = \lor(F_{i}(p) \mid i \in I)$$

= $\lor(H_{i}(p) \mid i \in I) = (\lor(H_{i} \mid i \in I))(p).$

776

Lattices of Saturated and Solubly Saturated Formations

Hence, $G \in \mathfrak{H}$. Consequently, $\mathfrak{F} \subseteq \mathfrak{H}$. Thus, $\mathfrak{F} = \mathfrak{H}$, and the theorem is proved.

4. Proof of Theorem 1.2

The formation \mathfrak{F} is called a *one-generated* Θ -formation if \mathfrak{F} is the intersection of all formations in Θ such which contain a fixed group G.

Lemma 4.1.

- (a) Every compact elements in Θ is a one-generated Θ -formation.
- (b) Every one-generated C-formation is a compact elements in C.

Proof. (a) It is clear that for any formation $\mathfrak{R} \in \Theta$, there is a set $\{G_i \in I\}$ of groups $G_i \in \mathfrak{R}$ such that $\mathfrak{R} = \bigvee_{\Theta}(\Theta \text{form}(G_i) \mid i \in I)$. Therefore, if \mathfrak{R} is a compact element in Θ , then there exist $i_1, \ldots, i_t \in I$ such that

$$\mathfrak{R} \subseteq \Theta \text{form}(G_{i_1}) \vee_{\Theta} \ldots \vee_{\Theta} \Theta \text{form}(G_{i_t}) = \Theta \text{form}(G_{i_1} \times \ldots \times G_{i_t}) \subseteq \mathfrak{R}.$$

Hence $\Re = \Theta \text{form}(G_{i_1} \times \ldots \times G_{i_t})$ is a one-generated Θ -formation, as desired. (b) This assertion is proved in [35].

Proof of Theorem 1.2. Let \mathfrak{F} be a solubly saturated formation contained in the compact element \mathfrak{H} of the lattice of \mathcal{L} . Then, by Lemma 4.1, there is a group G such that $\mathfrak{H} = \mathcal{L}$ form(G). Let $\pi = \pi(G) = \{p_1, \ldots, p_t\}$ and $\mathfrak{K} = \mathcal{C}$ form (G^*) , where

$$G^* = G \times (Z_{p_1} \wr (G/O_{p_1}(G))) \times \ldots \times (Z_{p_t} \wr (G/O_{p_t}(G)))$$

In view of Lemma 4.1, in order to prove the result, it is enough to show that $\mathfrak{F} \subseteq \mathfrak{K}$.

Let f and k be the minimal composition satellites of \mathfrak{F} and \mathfrak{K} respectively, and let h be the minimal local satellite of \mathfrak{H} .

To prove the inclusion $\mathfrak{F} \subseteq \mathfrak{K}$ it is enough to show $f \leq k$, i.e., $f(0) \subseteq k(0)$ and $f(p) \subseteq k(p)$ for all $p \in \mathbb{P}$.

First we shall prove that $f(0) \subseteq k(0)$. By Lemma 2.6, $f(0) = \text{form}(A \mid A \in \mathfrak{F} \text{ and } R(A) = 1)$ and $k(0) = \text{form}(G^*/R(G^*))$.

Therefore, in view of Lemma 2.5, in order to prove the inclusion $f(0) \subseteq k(0)$, it is enough to show that for any group $A \in \mathfrak{F}$ with R(A) = 1 we have $A \in$ form G^* .

Let $\operatorname{Soc}(A) = N_1 \times \ldots \times N_k$, where N_i is a minimal normal subgroup of A $(i = 1, \ldots, k)$. Since R(A) = 1, N_i is non-abelian for all $i = 1, \ldots, t$. If t = 1 and p is a prime dividing $|N_1|$, then $O_{p',p}(A) = 1$ and so we have, at once, by Lemma 2.7, $A \cong A/O_{p',p}(A) \in h(p) = \operatorname{form}(G/O_{p',p}(G)) \subseteq \operatorname{form} G \subseteq \operatorname{form} G^*$.

Now assume that t > 1. Let M_i be the largest normal subgroup of A containing $N_1 \times \ldots \times N_{i-1} \times N_{i+1} \times \ldots \times N_k$, but not containing N_i . Then $N_i M_i / M_i$ is

a unique minimal normal subgroup of G/M_i , N_iM_i/M_i is G-isomorphic to N_i , and $A/M_i \in \mathfrak{F}$ since $A/M_i \in \mathfrak{F}$. Hence, $C_A(N_iM_i/M_i) = M_i$, and so for any prime p dividing $|N_iM_i/M_i|$ we have

$$A/M_i \cong (A/M_i)/O_{p',p}(A/M_i) \in h(p) = \text{form}(G/O_{p',p}(G)) \subseteq \text{form}G \subseteq \text{form}G^*.$$

Therefore, $A \cong A/1 = A/M_1 \cap \ldots \cap M_k \in \text{form} G^*$. It follows that $A \in k(0)$. Thus, $f(0) \subseteq k(0)$.

Now we prove that $f(p) \subseteq k(p)$ for all $p \in \mathbb{P}$. If $f(p) = \emptyset$, then the inclusion is obvious. Let $f(p) \neq \emptyset$. But in this case we have $p \in \pi$. Indeed, from $f(p) \neq \emptyset$ we have $Z_{p_1} \in \mathfrak{F} \subseteq \mathfrak{H} = \mathcal{L}$ form G. Hence $p \in \pi$ by Lemma 2.7. Hence, $p = p_i$ for some $i \in \{1, \ldots, t\}$.

By Lemma 2.6, $f(p) = \text{form}(A/C^p(A) \mid A \in \mathfrak{F})$. Therefore, in order to prove the inclusion $f(p) \subseteq k(p)$, it is enough to show that for any group $A \in \mathfrak{F}$ we have $\overline{A} = A/C^p(A) \in k(p)$.

First note that $\overline{A} \in \text{form}G$. Indeed, since $O_{p',p}(A) \leq C^p(A)$, $\overline{A} = A/C^p(A)$ is a homomorphic image of $A/O_{p',p}(A)$. On the other hand, since $A \in \mathfrak{F} \subseteq \mathfrak{H}$, $A/O_{p',p}(A) \in h(p) = \text{form}(G/O_{p',p}(G))$. Hence, $\overline{A} \in h(p) = \text{form}(G/O_{p',p}(G)) \subseteq$ form G.

Since $T = Z_p \wr (G/O_p(G)) = K \rtimes (G/O_p(G)) \in \mathfrak{K}$, where K is the base group of the regular wreath product T, we have $G/O_p(G) \cong T/K = T/C^p(T) \in k(p)$ x by Lemma 2.8. Note also that in view of [10, Chapter A, Lemma 13.6], $O_p(\overline{A}) = 1$. Therefore from $\overline{A} \in \text{form}G$ we get $\overline{A} \in \text{form}(G/O_p(G))$ by Lemma 2.5. Hence, $\overline{A} \in k(p)$. Consequently, $f(p) \subseteq k(p)$.

Thus, $f(a) \subseteq k(a)$ for all $a \in \mathbb{P} \cup \{0\}$. Hence, $\mathfrak{F} \subseteq \mathfrak{K}$. This proves the theorem.

5. Some Open Questions

Every formation is 0-multiply saturated, by definition. For n > 0, a formation \mathfrak{F} is called *n*-multiply saturated if $\mathfrak{F} = LF(f)$ and all non-empty values of f are (n-1)-multiply saturated formations [27]. If a formation \mathfrak{F} is *n*-multiply saturated for all natural n, then \mathfrak{F} is called *totally* saturated. *n*-Multiply solubly saturated formations and totally solubly saturated formations are defined analogously [35].

Now, we mention the following open questions in the theory of lattices of group classes.

Question 5.1. Is any complete lattice of formations algebraic?

Question 5.2. Let Θ be a complete lattice of formations. Does true then that every one-generated Θ -formation is a compact element in Θ ?

Question 5.3. Does it true that the lattice \mathcal{L}_n of all *n*-multiply saturated formations is a complete sublattice of the lattice \mathcal{C}_n of all *n*-multiply solubly saturated

formations?

Question 5.4. Does it true that the lattice \mathcal{L}_{∞} of all totally saturated formations is a complete sublattice of the lattice \mathcal{C}_{∞} of all totally solubly saturated formations?

Question 5.5. Suppose that an *n*-multiply solubly saturated formation \mathfrak{F} is contained in a compact element of the lattice \mathcal{L}_n . Does it true then that \mathfrak{F} is contained in some compact element of the lattice \mathcal{C}_n ?

Question 5.6. Suppose that a totally solubly saturated formation \mathfrak{F} is contained in a compact element of the lattice \mathcal{L}_{∞} . Does it true then that \mathfrak{F} is contained in some compact element of the lattice \mathcal{C}_{∞} ?

References

- A. Ballester-Bolinches, L.A. Shemetkov, On lattices of p-local formations of finite groups, Math. Nachr. 186 (1997) 57–65.
- [2] A. Ballester-Bolinches, M.D. Pérez-Ramos, Some questions of the kourovka notebook concerning formation products, *Comm. Algebra* 26 (5) (1998) 1581–1587.
- [3] A. Ballester-Bolinches, C. Calvo, R. Esteban-Romero, A question of the kourovka notebook on formation products, *Bull. Austral. Math. Soc.* 68 (2003) 461–470.
- [4] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006.
- [5] A. Ballester-Bolinches, C. Calvo, R. Esteban-Romero, Products of formations of finite groups, J. Algebra 299 (2006) 602–615.
- [6] A. Ballester-Bolinches, K. Calvo, Factorizations of one-generated X-local formations, Sib. Math. J. 50 (3) (2009) 385–394.
- [7] A. Ballester-Bolinches, J.-É. Pin, X. Soler-Escrivà, Formations of finite monoids and formal languages: Eilenberg's variety theorem revisited, *Forum Math.*, doi: 10.1515/forum-2012-0055.
- [8] A. Ballester-Bolinches, J.-É. Pin, X. Soler-Escrivà, Languages associated with saturated formations of groups, *Forum Math.*, doi: 10.1515/forum-2013-0161.
- [9] C. Behle, A. Krebs, S. Reifferscheid, An approach to characterize the regular languages in TC⁰ with linear wires, *Electronic Colloquium on Computational Complexity* 16 (85) (2009) 1–7.
- [10] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter & Co., New York, 1992.
- [11] A.B. Elovikov, Factorization of one-generator formations, Math. Notes 73 (5) (2003) 643-655.
- [12] D. Gorenstein, Finite Groups, Harper & Row Publishers, New York, 1968.
- [13] W.B. Guo, K. Al-sharo, L.A. Shemetkov, On *F*-covering subgroups of finite groups, *Southeast Asian Bull. Math.* **29** (2005) 97–103.
- [14] W.B. Guo, K.P. Shum, Minimal formation of universal algebra, Discuss. Math. Gen. Algebra Appl. 21 (2001) 201–205.
- [15] W.B. Guo, The Theory of Classes of Groups, Science Press, London, 2000.
- [16] W.B. Guo, On one question of the kourovka notebook, Comm. Algebra 28 (10) (2000) 4767–4782.

- [17] W.B. Guo, A.N. Skiba, Factorizations of one-generated composition formations, Algebra and Logic 40 (5) (2001) 306–314.
- [18] W.B. Guo, K.P. Shum, Problems on product of formations, Manuscripta Math. 108 (2) (2002) 205–215.
- [19] W.B. Guo, K.P. Shum, On totally local formations of groups, Comm. Algebra 30 (5) (2002) 2117–2131.
- [20] W.B. Guo, K.P. Shum, Uncancellative factorizations of Bear-local formations, J. Algebra 267 (2003) 654–672.
- [21] W.B. Guo, On a problem of the theory of multiply local formations, Sib. Math. J. 45 (6) (2004) 1036–1040.
- [22] W.B. Guo, V.M. Sel'kin, K.P. Shum, Factorization theory of 1-generated ω -composition formations, Comm. Algebra **35** (9) (2007) 2901–2931.
- [23] X.Y. Guo, K.P. Shum, On finite supersolvable groups and saturated formations, *Int. Math. J.* 1 (2002) 621–630.
- [24] J.J. Jaraden, On factorizations of Bear-local formations, Comm. Algebra 31 (10) (2003) 4697–4711.
- [25] A.I. Mal'tsev, Algebraic Systems, Springer-Verlag, Berlin, 1973.
- [26] V.M. Sel'kin, One-Generated Formations, Gomel University Press, Gomel, 2011.
- [27] L.A. Shemetkov, A.N. Skiba, Formations of Algebraic Systems, Nauka, Moscow, 1989.
- [28] L.A. Shemetkov, A.N. Skiba, Multiply ω-local formations and fitting classes of finite groups, Sib. Adv. Math. 10 (2) (2000) 112–141.
- [29] L.A. Shemetkov, A.N. Skiba, N.N. Vorob'ev, On lattices of formations of finite groups, Algebra Colloquium 17 (4) (2010) 557–564.
- [30] Y. Skachkova, Lattices of Ω-foliated formations, Discrete Math. Appl. 12 (3) (2002) 269–278.
- [31] A.N. Skiba, On products of formations, Algebra and Logic 22 (5) (1983) 414–420.
- [32] A.N. Skiba, On nontrivial factorizations of a one-generated local formation of finite groups, *Contemp. Math.* 131 (1992) 363–374.
- [33] A.N. Skiba, Algebra of Formations, Belaruskaya Navuka, Minsk, 1997.
- [34] A.N. Skiba, On factorizations of composition formations, Math. Notes 65 (3) (1999) 326–330.
- [35] A.N. Skiba, L.A. Shemetkov, Multiply *L*-composition formations of finite groups, Ukr. Math. J. 52 (6) (2000) 898–913.
- [36] V.A. Vedernikov, Local formations of finite groups, Math. Notes 46 (5) (1989) 910–913.
- [37] N.N. Vorob'ev, A.A. Tsarev, On the modularity of a lattice of τ -closed *n*-multiply ω -composite formations, *Ukr. Math. J.* **62** (4) (2010) 518–529.
- [38] N.N. Vorob'ev, A.N. Skiba, A.A. Tsarev, Identities of lattices of partially compositional formations, Dokl. Nats. Akad. Nauk Belarusi 55 (2) (2011) 10–14.
- [39] N.N. Vorob'ev, A.N. Skiba, A.A. Tsarev, Laws of the lattices of partially composition formations, Sib. Math. J. 52 (5) (2011) 802–812.
- [40] N.N. Vorob'ev, Algebra of Classes of Finite Groups, Vitebsk University Press, Vitebsk, 2012.
- [41] N.N. Vorob'ev, On factorizations of subformations of one-generated saturated finite varieties, Comm. Algebra 41 (3) (2013) 1087–1093.
- [42] N.T. Vorob'ev, On factorizations of nonlocal formations of finite groups, Vopr. Algebry 6 (1992) 21–24.