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1. Introduction

Throughout this paper, all groups are finite. We write R(G) to denote the largest
soluble normal subgroup of the group G.

Let F be a class of groups. If 1 ∈ F, then we write GF to denote the inter-
section of all normal subgroups N of G with G/N ∈ F. The class F is called
a formation if either F = ∅ or 1 ∈ F and every homomorphic image of G/GF

belongs to F for every group G.

The most useful for applications of the formation theory (in particular, in the
theory of formal languages [7, 8, 9, 28, 14] and in the theory of lattices of group
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classes [10, 13, 15, 27, 33, 40]) are so-called saturated and solubly saturated
formations.

Recall that the formation F is said to be: saturated if G ∈ F whenever
G/Φ(G) ∈ F; solubly saturated if G ∈ F whenever G/Φ(R(G)) ∈ F.

A non-empty set Θ of formations is called a complete lattice of formations

[33] if the intersection of every set of formations in Θ belongs to Θ and there is
a formation F in Θ such that M ⊆ F for each other formation M in Θ. In what
follows, Θ denotes a complete lattice of formations.

It is clear that the sets of all formations ℱ , of all saturated formations ℒ
and of all solubly saturated formations C are examples of complete lattices of
formations. These three lattices are algebraic and modular (see [33, 35]). Let’s
also note, in passing, that the modularity of these lattices has found wide ap-
plications in questions of classification of formations [27, 33, 15, 40]. Further,
many other classes of algebraic and modular lattices of formations have been
found (see, in particular, [1, 28, 19, 30, 21, 37, 29, 38, 39] and the recent book
[40]). Nevertheless, it is necessary to note that the connections between different
lattices of formations are still a little studied.

This circumstance is the main motivation for results of this paper.

Our first result is the following observation.

Theorem 1.1. The lattice ℒ is a complete sublattice of the lattice C.

Let’s recall that the product Mℌ of the non-empty formations M and ℌ is
the class of all groups G such that Gℌ ∈ M. Such an operation on the set ℱ is
associative (W. Gaschütz). Moreover, the sets of all saturated formations and
of all hereditary (in the sense of A.I. Mal’cev [25]) solubly saturated formations
are subsemigroups of the semigroup of all formations ℱ . A great number of
researches in the formation theory are connected with studying of factorizations
of elements of these two subsemigroups (see, in particular, [31, 36, 32, 42, 2, 34,
16, 17, 18, 19, 20, 22, 11, 3, 24, 5, 6, 41] and the recent book [26]).

Every representation of the formation F in the form F = F1 . . .Ft, where
F ∕= F1 . . .Fi−1Fi+1 . . .Ft for all i, is called an irreducible factorization of F.

In the book by A.N. Skiba [33] the description of all irreducible factorizations
of saturated formations F contained in a compact element of the lattice ℒ was
obtained. Further, in the work by W. Guo and K.P. Shum [20], all irreducible
factorizations of a formations F was described under condition that F is solubly
saturated and F is contained in some compact element of the lattice C. Since
every saturated formation is solubly saturated, these two results are the moti-
vation for the following question: Suppose that a solubly saturated formation F

is contained in a compact element of the lattice ℒ. Does it true then that F is

contained in some compact element of the lattice C?

Our next result gives the positive answer to this question.

Theorem 1.2. Every solubly saturated formation contained in a compact element
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of the lattice ℒ is also contained in some compact element of the lattice C.

Therefore, in view of this result, the above-mentioned result of A.N. Skiba in
[33] is a consequence of the main result in [20, Theorem 4.1].

All unexplained notations and terminologies are standard. The reader is
refereed to [27, 10, 15, 4] if necessary.

2. Preliminaries

Recall that �(G) denotes the set of all prime divisors of the order of a group
G. For any collection of groups X we denote by Com(X) the class of all abelian
groups A such that A ∼= H/K, for some composition factor H/K of a group
G ∈ X.

Recall that Cp(G) is the intersection of the centralizers of all the abelian
p-chief factors of G (Cp(G) = G if G has no abelian p-chief factors).

The symbols G, Gp, Gp′ and S denote the class of all groups, the class of all
p-groups, the class of all p′-groups and the class of all soluble groups, respectively.

Let ℙ be the set of all primes. Then for any formation function

f : ℙ → {group formations}, (1)

the symbol LF (f) denotes the collection of all groups G such that either G = 1
or G ∕= 1 and G/Op′,p(G) ∈ f(p) for every p ∈ �(G). If for a formation F we
have F = LF (f), then f is called a local satellite of F.

In the following lemma, the symbol GpF (p) denotes the set of all groups A
such that AF (p) is a p-group.

Lemma 2.1. [10] For any non-empty saturated formation F, there is a unique

formation function F such that F = LF (F ) and F (p) = GpF (p) ⊆ F for all

primes p.

The formation function F in Lemma 2.1 is called the canonical local satellite
of F.

For any function f of the form

f : ℙ ∪ {0} → {group formations} (2)

we put, following [35], CF (f) = (G is a group ∣ G/R(G) ∈ f(0) and G/Cp(G) ∈
f(p) for all p ∈ �(Com(G))). If for a formation F we have F = CF (f), then f is
called a composition satellite of F.

In the papers [28, 35], the following useful facts are proved.
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Lemma 2.2.
(a) For any function f of the form (1), the class LF (f) is a saturated forma-

tion.

(b) For any function f of the form (2), the class CF (f) is a solubly saturated

formation.

(c) For any non-empty solubly saturated formation F, there is a unique func-

tion F of the form (2) such that F = CF (F ), F (p) = GpF (p) ⊆ F for all

primes p, and F (0) = F.

If F = LF (f) and f(p) ⊆ F for all p ∈ ℙ, then f is called an inner local

satellite of F.

The function F in Lemma 2.2 is called the canonical composition satellite of
F. If F = CF (f) and f(p) ⊆ F for all p ∈ ℙ, then f is called an inner composition

satellite of F.

A formation function f of the form (1) or (2) is called Θ-valued if all its
values belong to the lattice Θ. We denote by Θl the set of all formations having
a local Θ-valued satellite (see [27]); analogously we denote by Θc the set of all
formations having a composition Θ-valued satellite.

The symbol Θform(X) denotes the intersection of all formations in Θ con-
taining the collection X of groups. In the case, when Θ = ℱ is the lattice of all
formations, we write form(X) instead of Θform(X).

For any collection {Fi ∣ i ∈ I} of formations in Θ we put

∨Θ(Fi ∣ i ∈ I) = Θ form
(

∪

i∈I

Fi

)

.

In the case, when Θ = ℱ , we write ∨(Fi ∣ i ∈ I) instead of ∨Θ(Fi ∣ i ∈ I).

The complete lattice of formations Θl is called inductive [33], if for any collec-
tion {Fi ∣ i ∈ I} of formations Fi in Θl and for any collection {fi ∣ i ∈ I}, where
fi is an inner local satellite of Fi, we have ∨Θl(Fi ∣ i ∈ I) = LF

(

∨Θ(fi ∣ i ∈ I)
)

,
where ∨Θ(fi ∣ i ∈ I) is a local satellite of the formation ∨Θl(Fi ∣ i ∈ I) such that
f(p) = ∨Θ(fi(p) ∣ i ∈ I) for all p ∈ ℙ.

Lemma 2.3. [33] The lattice ℒ is inductive.

The complete lattice of formations Θc is called inductive [33], if for any
collection {Fi ∣ i ∈ I} of formations Fi in Θc and for any collection {fi ∣ i ∈ I},
where fi is an inner composition satellite of Fi, we have ∨Θc(Fi ∣ i ∈ I) =
CF

(

∨Θ(fi ∣ i ∈ I)
)

, where ∨Θ(fi ∣ i ∈ I) is a composition satellite of the
formation ∨Θl(Fi ∣ i ∈ I) such that f(a) = ∨Θ(fi(a) ∣ i ∈ I) for all a ∈ ℙ ∪ {0}.

Lemma 2.4. [37] The lattice C is inductive.

A group class closed under taking homomorphic images is called a semifor-

mation [27].
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Lemma 2.5. [39] Let M be a semiformation and A ∈ form M.

(a) If Op(A) = 1, then A ∈ form(M1), where M1 = (G/Op(G) ∣ G ∈ M).

(b) If R(A) = 1, then A ∈ form(M2), where M2 = (G/R(G) ∣ G ∈ M).

Lemma 2.6. [35] Let X be a non-empty collection of groups and F = Cform(X).
Let � = �(Com(X)). Then F = CF (f), where:

(a) f(p) = form(G/Cp(G) ∣ G ∈ X) for all p ∈ �.

(b) f(p) = ∅ for all p ∈ ℙ ∖ �.

(c) f(0) = form(G/R(G) ∣ G ∈ X).

(d) � = �(Com(F)).

The satellite f in Lemma 2.6 is called the minimal composition satellite of F
[27].

Lemma 2.7. [28] Let X be a non-empty collection of groups and F = ℒform(X).
Let � = �(X). Then F = CF (f), where:

(a) f(p) = form(G/Op′,p(G) ∣ G ∈ X) for all p ∈ �

(b) f(p) = ∅ for all p ∈ ℙ ∖ �.

(c) � = �(F).

The satellite f in Lemma 2.7 is called the minimal local satellite of F [27].

Lemma 2.8. Let Zp be a group of prime order p, and G be a group with Op(G) =
1. Suppose that T = Zp ≀ G is the regular wreath product, where K is the base

group of T. Then K = Cp(T ) = Op(T ).

Proof. Let 1 = K0 ⩽ K1 ⩽ . . . ⩽ Kt = K be a chief series of T below K. Let
Ci = CT (Ki/Ki−1) and D = C1 ∩ . . . ∩ Ct. Clearly, K ⩽ D. Consequently,
D = D ∩ KG = K(D ∩ G). Suppose K ∕= D. Then D ∩ G is a non-identity
group. But D ∩G is a stable group of automorphisms of K. By [12, Chapter V,
Corollary 3.3], D ∩ G is a normal p-subgroup of G, a contradiction. Thus D =
K = Cp(T ) = Op(T ).

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let {Fi ∣ i ∈ I} be a collection of saturated formations
and let Fi be the canonical local satellite of Fi. Let F = ∨ℒ(Fi ∣ i ∈ I) and ℌ =
∨C(Fi ∣ i ∈ I). It is clear that

∩

i∈I Fi is a saturated formation and this formation
is the greatest lower bound for {Fi ∣ i ∈ I} in ℒ. On the other hand, clearly, F
is the least upper bound for {Fi ∣ i ∈ I} in ℒ and ℌ is the least upper bound
for {Fi ∣ i ∈ I} in C. Therefore, in fact, we need only prove that F = ℌ. The
inclusion ℌ ⊆ F is evident. Hence, we need only show that F ⊆ ℌ.
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Let ℌi = CF (Hi), where Hi is a composition satellite such that

Hi(a) =

{

Fi if a = 0,

Fi(a) if a = p ∈ ℙ.

First we show that Fi = ℌi for all i.

Suppose ℌi ∕⊆ Fi. Let G be a group of minimal order in ℌi ∖ Fi. Then
G is a monolithic group and R = GFi is the monolith of G. If R is non-
abelian, then R(G) = 1. Therefore, G = G/1 = G/R(G) ∈ Hi(0) = Fi. This
contradicts the choice of G. Hence, R is an abelian p-group, where p ∈ �(R).
Since Fi is saturated, it follows that R ∕⩽ Φ(G). Therefore, by [10, Chapter
A, Theorem 15.2], R = CG(R) = Op(G). Hence, R = Cp(G) = Op′,p(G).
Consequently, G/Op′,p(G) = G/Cp(G) ∈ Hi(p) = Fi(p). Hence, G ∈ Fi, a
contradiction. Therefore, ℌi ⊆ Fi.

Now we show that Fi ⊆ ℌi. Assume this is false and let G be a group of
minimal order in Fi ∖ ℌi with R = Gℌi . Let p ∈ �(R). If R is non-abelian,
then Op′,p(G) = 1. Hence, G ∼= G/1 = G/Op′,p(G) ∈ Fi(p) = Hi(p) ⊆ ℌi, a
contradiction. Consequently, R is an abelian p-group. Let T = R⋊ (G/CG(R)).
Since G ∈ Fi, using [10, Chapter IV, Proposition 1.5], we have T ∈ Fi. If
∣T ∣ < ∣G∣, then T ∈ ℌi, by the choice of G. It follows that G/CG(R) ∼= T/R =
T/CG(R) = T/CT (R) = T/Cp(T ) ∈ Hi(p). Hence, G ∈ ℌi, a contradiction.
Therefore, ∣T ∣ = ∣G∣, so R = CG(R) = Op(G) = Cp(G) = Op′,p(G). Therefore,
G/Cp(G) = G/Op′,p(G) ∈ Fi(p) = Hi(p). Hence, G ∈ ℌi, a contradiction.
Consequently, Fi ⊆ ℌi. Thus, Fi = ℌi for all i ∈ I.

Since by Lemma 2.3 the lattice ℒ is inductive, we have F = ∨ℒ(Fi ∣ i ∈
I) = LF

(

∨(Fi ∣ i ∈ I)
)

. Since by Lemma 2.4 the lattice C is inductive, we have

ℌ = ∨C(Fi ∣ i ∈ I) = CF
(

∨(Hi ∣ i ∈ I)
)

.

Now assume that F ∕⊆ ℌ. Let G be a group of minimal order in F ∖ ℌ with
R = Gℌ. Let p ∈ �(R).

If R is non-abelian, then Op′,p(G) = 1. Hence, since the canonical local
satellite Fi is inner,

G ∼= G/1 =G/Op′,p(G) ∈
(

∨(Fi ∣ i ∈ I)
)

(p)

= ∨ (Fi(p) ∣ i ∈ I) ⊆ ∨(Fi ∣ i ∈ I) ⊆ ∨C(Fi ∣ i ∈ I)

=ℌ.

This contradicts the choice of G. Hence, R is an abelian p-group. Let T =
R ⋊ (G/CG(R)). Since G ∈ F, using [10, Chapter IV, Proposition 1.5], we have
T ∈ F. If ∣T ∣ < ∣G∣, then T ∈ ℌ, by the choice of G. Consequently,

G/CG(R) ∼= T/R = T/CG(R) = T/CT (R) = T/Cp(T ) ∈ (∨
(

Hi ∣ i ∈ I
)

)(p).

Hence, G ∈ ℌ, a contradiction. Thus, ∣T ∣ = ∣G∣, so R = CG(R) = Op(G) =
Cp(G) = Op′,p(G). Therefore, since Fi = ℌi for all i ∈ I,

G/Cp(G) = G/Op′,p(G) ∈ (∨
(

Fi ∣ i ∈ I
)

)(p) = ∨(Fi(p) ∣ i ∈ I)

= ∨(Hi(p) ∣ i ∈ I) = (∨
(

Hi ∣ i ∈ I
)

)(p).
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Hence, G ∈ ℌ. Consequently, F ⊆ ℌ. Thus, F = ℌ, and the theorem is proved.

4. Proof of Theorem 1.2

The formation F is called a one-generated Θ-formation if F is the intersection of
all formations in Θ such which contain a fixed group G.

Lemma 4.1.

(a) Every compact elements in Θ is a one-generated Θ-formation.

(b) Every one-generated C-formation is a compact elements in C.

Proof. (a) It is clear that for any formation ℜ ∈ Θ, there is a set {Gi ∣∈ I}
of groups Gi ∈ ℜ such that ℜ = ∨Θ(Θform(Gi) ∣ i ∈ I). Therefore, if ℜ is a
compact element in Θ, then there exist i1, . . . , it ∈ I such that

ℜ ⊆ Θform(Gi1 ) ∨Θ . . . ∨Θ Θform(Git) = Θform(Gi1 × . . .×Git) ⊆ ℜ.

Hence ℜ = Θform(Gi1 × . . .×Git) is a one-generated Θ-formation, as desired.

(b) This assertion is proved in [35].

Proof of Theorem 1.2. Let F be a solubly saturated formation contained in the
compact element ℌ of the lattice of ℒ. Then, by Lemma 4.1, there is a group
G such that ℌ = ℒform(G). Let � = �(G) = {p1, . . . , pt} and K = Cform(G∗),
where

G∗ = G× (Zp1
≀ (G/Op1

(G)))× . . .× (Zpt
≀ (G/Opt

(G))).

In view of Lemma 4.1, in order to prove the result, it is enough to show that
F ⊆ K.

Let f and k be the minimal composition satellites of F and K respectively,
and let ℎ be the minimal local satellite of ℌ.

To prove the inclusion F ⊆ K it is enough to show f ⩽ k, i.e., f(0) ⊆ k(0)
and f(p) ⊆ k(p) for all p ∈ ℙ.

First we shall prove that f(0) ⊆ k(0). By Lemma 2.6, f(0) = form(A ∣ A ∈
F and R(A) = 1) and k(0) = form(G∗/R(G∗)).

Therefore, in view of Lemma 2.5, in order to prove the inclusion f(0) ⊆ k(0),
it is enough to show that for any group A ∈ F with R(A) = 1 we have A ∈
formG∗.

Let Soc(A) = N1 × . . . × Nk, where Ni is a minimal normal subgroup of A
(i = 1, . . . , k). Since R(A) = 1, Ni is non-abelian for all i = 1, . . . , t. If t = 1
and p is a prime dividing ∣N1∣, then Op′,p(A) = 1 and so we have, at once, by
Lemma 2.7, A ∼= A/Op′,p(A) ∈ ℎ(p) = form(G/Op′,p(G)) ⊆ formG ⊆ formG∗.

Now assume that t > 1. Let Mi be the largest normal subgroup of A contain-
ing N1× . . .×Ni−1×Ni+1× . . .×Nk, but not containing Ni. Then NiMi/Mi is
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a unique minimal normal subgroup of G/Mi, NiMi/Mi is G-isomorphic to Ni,
and A/Mi ∈ F since A/Mi ∈ F. Hence, CA(NiMi/Mi) = Mi, and so for any
prime p dividing ∣NiMi/Mi∣ we have

A/Mi
∼= (A/Mi)/Op′,p(A/Mi) ∈ ℎ(p) = form(G/Op′,p(G)) ⊆ formG ⊆ formG∗.

Therefore, A ∼= A/1 = A/M1 ∩ . . . ∩ Mk ∈ formG∗. It follows that A ∈ k(0).
Thus, f(0) ⊆ k(0).

Now we prove that f(p) ⊆ k(p) for all p ∈ ℙ. If f(p) = ∅, then the inclusion
is obvious. Let f(p) ∕= ∅. But in this case we have p ∈ �. Indeed, from f(p) ∕= ∅

we have Zp1
∈ F ⊆ ℌ = ℒformG. Hence p ∈ � by Lemma 2.7. Hence, p = pi for

some i ∈ {1, . . . , t}.

By Lemma 2.6, f(p) = form(A/Cp(A) ∣ A ∈ F). Therefore, in order to prove
the inclusion f(p) ⊆ k(p), it is enough to show that for any group A ∈ F we
have A = A/Cp(A) ∈ k(p).

First note that A ∈ formG. Indeed, since Op′,p(A) ⩽ Cp(A), A = A/Cp(A)
is a homomorphic image of A/Op′,p(A). On the other hand, since A ∈ F ⊆ ℌ,
A/Op′,p(A) ∈ ℎ(p) = form(G/Op′,p(G)). Hence, A ∈ ℎ(p) = form(G/Op′,p(G)) ⊆
formG.

Since T = Zp≀(G/Op(G)) = K⋊(G/Op(G)) ∈ K, whereK is the base group of
the regular wreath product T , we haveG/Op(G) ∼= T/K = T/Cp(T ) ∈ k(p) x by
Lemma 2.8. Note also that in view of [10, Chapter A, Lemma 13.6], Op(A) = 1.
Therefore from A ∈ formG we get A ∈ form(G/Op(G)) by Lemma 2.5. Hence,
A ∈ k(p). Consequently, f(p) ⊆ k(p).

Thus, f(a) ⊆ k(a) for all a ∈ ℙ ∪ {0}. Hence, F ⊆ K. This proves the
theorem.

5. Some Open Questions

Every formation is 0-multiply saturated, by definition. For n > 0, a formation F

is called n-multiply saturated if F = LF (f) and all non-empty values of f are (n−
1)-multiply saturated formations [27]. If a formation F is n-multiply saturated
for all natural n, then F is called totally saturated. n-Multiply solubly saturated
formations and totally solubly saturated formations are defined analogously [35].

Now, we mention the following open questions in the theory of lattices of
group classes.

Question 5.1. Is any complete lattice of formations algebraic?

Question 5.2. Let Θ be a complete lattice of formations. Does true then that
every one-generated Θ-formation is a compact element in Θ?

Question 5.3. Does it true that the lattice ℒn of all n-multiply saturated forma-
tions is a complete sublattice of the lattice Cn of all n-multiply solubly saturated
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formations?

Question 5.4. Does it true that the lattice ℒ∞ of all totally saturated forma-
tions is a complete sublattice of the lattice C∞ of all totally solubly saturated
formations?

Question 5.5. Suppose that an n-multiply solubly saturated formation F is con-
tained in a compact element of the lattice ℒn. Does it true then that F is con-
tained in some compact element of the lattice Cn?

Question 5.6. Suppose that a totally solubly saturated formation F is contained
in a compact element of the lattice ℒ∞. Does it true then that F is contained in
some compact element of the lattice C∞?
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