ON LAWS OF LATTICES OF PARTIALLY SATURATED FORMATIONS

Leonid A. Shemetkov*
Department of Mathematics, Francisk Skorina Gomel State University
Gomel 246019, Belarus
shemetkov@gsu.by
Alexander N. Skiba ${ }^{\dagger}$
Department of Mathematics, Francisk Skorina Gomel State University, Gomel 246019, Belarus
alexander.skiba49@gmail.com
Nikolay N. Vorob'ev
Department of Mathematics, Masherov Vitebsk State University, Vitebsk 210038, Belarus
vornic2001@yahoo.com

Communicated by K. P. Shum
Received October 20, 2008
Revised November 21, 2008

Abstract

It is proved that every law of the lattice of all τ-closed formations of finite groups is fulfilled in the lattice of all τ-closed n-multiply ω-saturated formations of finite groups, for every subgroup functor τ and every natural number n.

Keywords: Finite group; subgroup functor; formation of groups; n-multiply ω-saturated formation; law of lattice; modular lattice.

AMS Subject Classification: 20D10, 20F17

1. Introduction

All groups considered are finite.
In the book [4] and in the recent books [9], [10] it was demonstrated that constructions and results of lattice theory are very useful tools to study groups and

[^0]group classes. In particular, it was proved that the lattice of all saturated formations is modular [4]. Further this result was developed in different ways. In the book [1] modularity of the lattice of all τ-closed n-multiply saturated formations was established, for every subgroup functor τ; in [5] it was shown by A. Ballester-Bolinches and L.A. Shemetkov that the lattice of all p-saturated formations is modular; A. N. Skiba and L. A. Shemetkov proved [2], [6] modularity of the lattice of all n multiply ω-saturated formations and the lattice of all n-multiply \mathfrak{L}-composition formations, respectively; I.P. Shabalina proved [7] modularity of the lattice of all τ-closed n-multiply ω-saturated formations.

Since the lattice of all formations is modular [3], all the above-mentioned results are special cases of our first theorem.

Theorem 1. Let $n>0$. Then every law of the lattice of all τ-closed formations is fulfilled in the lattice of all τ-closed n-multiply ω-saturated formations.

The second theorem give a further information about the lattice of all τ-closed n-multiply ω-saturated formations.

Theorem 2. Let $n>0$. If ω is an infinite set, then the law system of the lattice of all τ-closed formations coincides with the law system of the lattice of all τ-closed n-multiply ω-saturated formations.

All unexplained notations and terminologies are standard. The reader is referred to [8], [9] and [10] if necessary.

2. Proof of Theorem 1

Recall that a group class closed under taking homomorphic images and finite subdirect products is called a formation.

In each group G we select a system of subgroups $\tau(G)$. It is said that τ is a subgroup functor if the following conditions hold:

1) $G \in \tau(G)$ for every group G;
2) for every epimorphism $\varphi: A \rightarrow B$ and all groups $H \in \tau(A)$ and $T \in \tau(B)$ we have $H^{\varphi} \in \tau(B)$ and $T^{\varphi^{-1}} \in \tau(A)$.

A formation \mathfrak{F} is called τ-closed if $\tau(G) \subseteq \mathfrak{F}$ for every group G of \mathfrak{F} (see [1]).
Let ω be a nonempty set of primes, $\omega^{\prime}=\mathbb{P} \backslash \omega . \pi(G)$ denotes the set of all prime divisors of the order of a group G. Recall that a group G is called an ωd-group if $\omega \cap \pi(G) \neq \varnothing$. The symbols $\mathfrak{G}, \mathfrak{N}_{p}$ and $\mathfrak{G}_{p^{\prime}}$ denote, respectively, the class of all groups, the class of all p-groups and the class of all p^{\prime}-groups; $\mathfrak{G}_{\omega d}$ denotes the class of all groups in which every composition factor is an ωd-group. For every group class $(1) \subseteq \mathfrak{F}$, by $G_{\mathfrak{F}}$ we denote the product of all normal \mathfrak{F}-subgroups of group G. In particular, we write

$$
G_{\omega d}=G_{\mathfrak{G}_{\omega d}}, F_{p}(G)=G_{\mathfrak{G}_{p^{\prime}}, \mathfrak{N}_{p}} .
$$

Functions of the form

$$
f: \omega \bigcup\left\{\omega^{\prime}\right\} \rightarrow\{\text { formations of groups }\}
$$

are called ω-local satellites (see [2]). For every ω-local satellite f, we define the class

$$
L F_{\omega}(f)=\left(G \mid G / G_{\omega d} \in f\left(\omega^{\prime}\right) \text { and } G / F_{p}(G) \in f(p) \text { for all } p \in \omega \cap \pi(G)\right) .
$$

If \mathfrak{F} is a formation such that $\mathfrak{F}=L F_{\omega}(f)$ for an ω-local satellite f, then the formation \mathfrak{F} is said to be ω-saturated, and f is said to be an ω-local satellite of \mathfrak{F}.

Every formation is 0 -multiply ω-saturated, by definition. For $n>0$, a formation is called n-multiply ω-saturated if $\mathfrak{F}=L F_{\omega}(f)$ and all nonempty values of f are ($n-1$)-multiply ω-saturated formations (see [2]). If a formation \mathfrak{F} is n-multiply ω-saturated for all natural n, then \mathfrak{F} is called totally ω-saturated.

By $l_{\omega_{n}}^{\tau}$ we denote the set of all τ-closed n-multiply ω-saturated formations. With respect to inclusion, an arbitrary nonempty subset $\left\{\mathcal{H}_{i} \mid i \in \Lambda\right\}$ of $l_{\omega_{n}}^{\tau}$ has a greatest lower bound, namely $\cap_{i \in \Lambda} \mathcal{H}_{i}$; besides, $\left\{\mathcal{H}_{i} \mid i \in \Lambda\right\}$ has a least upper bound, the intersections of all elements in $l_{\omega_{n}}^{\tau}$ containing $\cup_{i \in \Lambda} \mathcal{H}_{i}$. Thus, $l_{\omega_{n}}^{\tau}$ is a complete lattice. In particular, $l_{\omega_{0}}^{\tau}$ is the lattice of all τ-closed formations.

A group class closed under taking homomorphic images is called a semiformation [4]. The symbol $l_{\omega_{n}}^{\tau}$ form \mathfrak{X} denotes the intersection of all τ-closed n-multiply ω saturated formations containing a collection \mathfrak{X} of groups.

By [2], Lemma 5 , if $\mathfrak{F}=l_{\omega_{n}}^{\tau}$ form \mathfrak{X}, then $\mathfrak{F}=L F_{\omega}(f)$ where

$$
f(a)= \begin{cases}l_{\omega_{n-1}}^{\tau} \text { form }\left(G / F_{p}(G) \mid G \in \mathfrak{X}\right), & \text { if } a=p \in \omega \bigcap \pi(\mathfrak{X}), \\ \varnothing, & \text { if } a=p \in \omega \backslash \pi(\mathfrak{X}), \\ l_{\omega_{n-1}}^{\tau} \text { form }\left(G / G_{\omega d} \mid G \in \mathfrak{X}\right), & \text { if } a=\omega^{\prime}\end{cases}
$$

The satellite f is called the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of \mathfrak{F} (see [2]).
First we prove the following lemmas.
Lemma 1. Let A be a monolithic group, R a non-abelian socle of $A, \mathfrak{M} a$ semiformation and $A \in l_{\omega_{n}}^{\tau}$ form \mathfrak{M}. Then $A \in \mathfrak{M}$.

Proof. We proceed by induction on n. Let $n=0$. Then

$$
A \in l_{\omega_{0}}^{\tau} \text { form } \mathfrak{M}=\text { form } \mathfrak{M} .
$$

Let $A \notin \mathfrak{M}$. Then, by [1], Corollary 1.2.26, there exists a group H in form \mathfrak{M} and normal subgroups $N, M, N_{1}, \ldots, N_{t}, M_{1}, \ldots, M_{t}(t \geq 2)$ of H such that the following statements hold:

1) $A \simeq H / N$ and $M / N=\operatorname{Soc}(H / N)$;
2) H / N_{i} is a monolithic \mathfrak{M}-group and M_{i} / N_{i} is the socle of H / N_{i} which is H-isomorphic to M / N.

Clearly $C_{H}(M / N)=N$. Hence $N_{i} \subseteq N$. Therefore $A \simeq H / N \in \mathfrak{M}$, a contradiction. This completes the proof of the lemma for $n=0$.

Let $n>0$, and let the lemma holds for $n-1$. Suppose f is the minimal $l_{\omega_{n-1}-}^{\tau}-$ valued ω-local satellite of $\mathfrak{F}=l_{\omega_{n}}^{\tau}$ form \mathfrak{M}. If $\omega \cap \pi(R)=\varnothing$, then $A_{\omega d}=1$, and so, by [2], Lemma 5, we have

$$
A \simeq A / A_{\omega d} \in f\left(\omega^{\prime}\right) \subseteq l_{\omega_{n-1}}^{\tau} \text { form } \mathfrak{M}
$$

Consequently, $A \in \mathfrak{M}$.

Let $\omega \cap \pi(R) \neq \varnothing$ and $p \in \omega \bigcap \pi(R)$. Then $F_{p}(A)=1$, and by [2], Lemma 5, we have

$$
A \simeq A / F_{p}(A) \in f(p) \subseteq l_{\omega_{n-1}}^{\tau} \text { form } \mathfrak{M} .
$$

Hence $A \in \mathfrak{M}$, and the lemma is proved.
Lemma 2 [1], Lemma 4.1.3., Let $N_{1} \times \ldots \times N_{t}=\operatorname{Soc}(G)$ where $t>1$, and G a group with $O_{p}(G)=1$. Let M_{i} be the largest normal subgroup in G containing $N_{1} \times \ldots \times N_{i-1} \times N_{i+1} \times \ldots \times N_{t}$ but not containing $N_{i}(i=1, \ldots, t)$. Then

1) for every $i \in\{1, \ldots, t\}, O_{p}\left(G / M_{i}\right)=1, G / M_{i}$ is monolithic and its socle $N_{i} M_{i} / M_{i}$ is G-isomorphic to N_{i};
2) $M_{1} \bigcap \ldots \bigcap M_{t}=1$.

Lemma 3. Let \mathfrak{M} be a semiformation and $A \in l_{\omega_{n}}^{\tau}$ form \mathfrak{M}. Then the following statements hold:

1) if $O_{p}(A)=1$ and $p \in \omega$, then $A \in l_{\omega_{n}}^{\tau}$ form \mathfrak{M}_{1} where $\mathfrak{M}_{1}=\left\{G / O_{p}(G) \mid G \in\right.$ $\mathfrak{M}\}$;
2) if $A_{\omega d}=1$, then $A \in l_{\omega_{n}}^{\tau}$ form \mathfrak{M}_{2} where $\mathfrak{M}_{2}=\left\{G / G_{\omega d} \mid G \in \mathfrak{M}\right\}$.

Proof. If $A \in \mathfrak{M}$, the result is clear. Hence we may suppose that $A \notin \mathfrak{M}$. Suppose that A is a monolithic group and R is the socle of A. Let $n=0$. Then $A \in l_{\omega_{0}}^{\tau}$ form $\mathfrak{M}=$ form \mathfrak{M}. Hence, by [1], Corollary 1.2.26, there exists a group H in form \mathfrak{M}, normal subgroups $N, M, N_{1}, \ldots, N_{t}, M_{1}, \ldots, M_{t}(t \geq 2)$ in H such that the following statements hold: 1) $H / N \simeq A, M / N=\operatorname{Soc}(H / N)$; 2) $N_{1} \bigcap \ldots \bigcap N_{t}=1$; 3) H / N_{i} is a monolithic \mathfrak{M}-group and M_{i} / N_{i} is the socle of H / N_{i} which is H isomorphic to M / N. Since $O_{p}(A)=1$, we have

$$
A \in \operatorname{QR}_{0}\left\{H / N_{1}, \ldots, H / N_{t}\right\} \subseteq \text { form } \mathfrak{M}_{1}
$$

Let $n>0$. Suppose that $O_{p}(A)=1$. If R is nonabelian, then Lemma 1 implies $A \in \mathfrak{M}$. This contradicts the choice of A. Hence R is a q-group where $q \in \omega \backslash\{p\}$. Consequently, $F_{q}(A)=O_{q}(A)$. Since for every group G we have

$$
\begin{aligned}
& G / G_{\omega d} \simeq\left(G / O_{p}(G)\right) /\left(G_{\omega d} / O_{p}(G)\right) \\
& \quad=\left(G / O_{p}(G)\right) /\left(G / O_{p}(G)\right)_{\omega d}
\end{aligned}
$$

by [2], Lemma 5, it follows that $f\left(\omega^{\prime}\right)=h\left(\omega^{\prime}\right)$ where f and h are minimal $l_{\omega_{n-1}}^{\tau}-$ valued ω-local satellites of $\mathfrak{F}=l_{\omega_{n}}^{\tau}$ form \mathfrak{M} and $\mathfrak{H}=l_{\omega_{n}}^{\tau}$ form \mathfrak{M}_{1} respectively. If $q \notin \omega$, then $A_{\omega d}=1$ and so

$$
A \simeq A / A_{\omega d} \in f\left(\omega^{\prime}\right)=h\left(\omega^{\prime}\right) \subseteq \mathfrak{H} .
$$

Let $q \in \omega$. Since for every group G we have

$$
\begin{gathered}
G / F_{q}(G) \simeq\left(G / O_{p}(G)\right) /\left(F_{q}(G) / O_{p}(G)\right) \\
=\left(G / O_{p}(G)\right) / F_{q}\left(G / O_{p}(G)\right)
\end{gathered}
$$

by [2], Lemma 5, it follows that $f(q)=h(q)$. Hence $A / O_{q}(A) \in \mathfrak{H}$ and

$$
A / F_{r}(A) \simeq\left(A / O_{q}(A)\right) /\left(F_{r}(A) / O_{q}(A)\right)
$$

$$
=\left(A / O_{q}(A)\right) / F_{r}\left(A / O_{q}(A)\right) \in h(r),
$$

for all $r \in \omega \bigcap \pi(A)$. We deduce, that $A \in \mathfrak{H}$. Analogously $A \in l_{\omega_{n}}^{\tau}$ form \mathfrak{M}_{2} where $\mathfrak{M}_{2}=\left\{G / G_{\omega d} \mid G \in \mathfrak{M}\right\}$.

Now suppose that $\operatorname{Soc}(A)=N_{1} \times \ldots \times N_{t}$ where $t>1$. Let M_{i} be the largest normal subgroup of A containing $N_{1} \times \ldots \times N_{i-1} \times N_{i+1} \times \ldots \times N_{t}$ but not containing $N_{i}, i=1, \ldots, t$. Using Lemma 2, we have $A \in \mathrm{R}_{0}\left(A / M_{1}, \ldots, A / M_{t}\right)$ where A / M_{i} is monolithic, $N_{i} M_{i} / M_{i}$ is the socle of A / M_{i} and $O_{p}\left(A / M_{i}\right)=1$. Clearly $A / M_{i} \in$ $l_{\omega_{n}}^{\tau}$ form \mathfrak{M}. As we proved above, $A / M_{i} \in l_{\omega_{n}}^{\tau}$ form \mathfrak{M}_{1}. Consequently, $A \in \mathfrak{H}$, as claimed.

Let $\left\{\mathfrak{F}_{i} \mid i \in I\right\}$ be an arbitrary collection of τ-closed n-multiply ω-saturated formations. We denote

$$
\vee_{\omega_{n}}^{\tau}\left(\mathfrak{F}_{i} \mid i \in I\right)=l_{\omega_{n}}^{\tau} \text { form }\left(\bigcup_{i \in I} \mathfrak{F}_{i}\right)
$$

In particular,

$$
\mathfrak{M} \vee_{\omega_{n}}^{\tau} \mathfrak{H}=l_{\omega_{n}}^{\tau} \text { form }(\mathfrak{M} \bigcup \mathfrak{H})
$$

A function $f: \omega \bigcup\left\{\omega^{\prime}\right\} \rightarrow$ \{formations of groups $\}$ is called $l_{\omega_{n}}^{\tau}$-valued if all its values belong to the lattice $l_{\omega_{n}}^{\tau}$.

Let $\left\{f_{i} \mid i \in I\right\}$ be a collection of $l_{\omega_{n}}^{\tau}$-valued functions of the form

$$
f_{i}: \omega \bigcup\left\{\omega^{\prime}\right\} \rightarrow\{\text { formations of groups }\}
$$

In this case, by $\vee_{\omega_{n}}^{\tau}\left(f_{i} \mid i \in I\right)$ we denote a function f such that $f\left(\omega^{\prime}\right)=$ $l_{\omega_{n}}^{\tau}$ form $\left(\bigcup_{i \in I} f_{i}\left(\omega^{\prime}\right)\right)$. In particular,

$$
\left(f_{1} \vee_{\omega_{n}}^{\tau} f_{2}\right)\left(\omega^{\prime}\right)=l_{\omega_{n}}^{\tau} \text { form }\left(f_{1}\left(\omega^{\prime}\right) \bigcup f_{2}\left(\omega^{\prime}\right)\right)
$$

and for $p \in \omega$ we have $f(p)=l_{\omega_{n}}^{\tau}$ form $\left(\bigcup_{i \in I} f_{i}(p)\right)$. In particular,

$$
\left(f_{1} \vee_{\omega_{n}}^{\tau} f_{2}\right)(p)=l_{\omega_{n}}^{\tau} \text { form }\left(f_{1}(p) \bigcup f_{2}(p)\right)
$$

if at least one of the formations $f_{i}(p) \neq \varnothing$. If $f_{i}(p)=\varnothing$ for all $i \in I$, then we suppose that $f(p)=\varnothing$.

Lemma 4. Let f_{i} be the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of a τ-closed n-multiply ω-saturated formation \mathfrak{F}_{i} where $i \in I$. Then $\vee_{\omega_{n-1}}^{\tau}\left(f_{i} \mid i \in I\right)$ is the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of $\mathfrak{F}=\vee_{\omega_{n}}^{\tau}\left(\mathfrak{F}_{i} \mid i \in I\right)$.

Proof. Observe that

$$
\pi\left(\bigcup_{i \in I} \mathfrak{F}_{i}\right)=\bigcup_{i \in I} \pi\left(\mathfrak{F}_{i}\right)=\pi(\mathfrak{F}) .
$$

Let $f=\vee_{\omega_{n-1}}^{\tau}\left(f_{i} \mid i \in I\right)$, and let h be the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of \mathfrak{F}. Let $p \in \omega \backslash \pi(\mathfrak{F})$. In this case, for every $i \in I$, we have $f_{i}(p)=\varnothing$. Hence $f(p)=\varnothing$. Clearly $h(p)=\varnothing$.

Let $p \in \omega \cap \pi(\mathfrak{F})$. In this case, there is $i \in I$ such that $f_{i}(p) \neq \varnothing$. Using [2], Lemma 5, we have

$$
\begin{gathered}
h(p)=l_{\omega_{n-1}}^{\tau} \text { form }\left(G / F_{p}(G) \mid G \in \bigcup_{i \in I} \mathfrak{F}_{i}\right)= \\
l_{\omega_{n-1}}^{\tau} \text { form }\left(\bigcup_{i \in I} l_{\omega_{n-1}}^{\tau} \text { form }\left(G / F_{p}(G) \mid G \in \mathfrak{F}_{i}\right)\right)= \\
l_{\omega_{n-1}}^{\tau} \text { form }\left(\bigcup_{i \in I} f_{i}(p)\right)=\left(\vee_{\omega_{n-1}}^{\tau}\left(f_{i} \mid i \in I\right)\right)(p) .
\end{gathered}
$$

Moreover, by [2], Lemma 5, we have

$$
\begin{gathered}
h\left(\omega^{\prime}\right)=l_{\omega_{n-1}}^{\tau} \text { form }\left(G / G_{\omega d} \mid G \in \bigcup_{i \in I} \mathfrak{F}_{i}\right)= \\
l_{\omega_{n-1}}^{\tau} \text { form }\left(\bigcup_{i \in I} l_{\omega_{n-1}}^{\tau} \text { form }\left(G / G_{\omega d} \mid G \in \mathfrak{F}_{i}\right)\right)= \\
l_{\omega_{n-1}}^{\tau} \text { form }\left(\bigcup_{i \in I} f_{i}\left(\omega^{\prime}\right)\right)=\left(\vee_{\omega_{n-1}}^{\tau}\left(f_{i} \mid i \in I\right)\right)\left(\omega^{\prime}\right) .
\end{gathered}
$$

Thus $\vee_{\omega_{n-1}}^{\tau}\left(f_{i} \mid i \in I\right)$ is the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of $\mathfrak{F}=\vee_{\omega_{n}}^{\tau}\left(\mathfrak{F}_{i} \mid\right.$ $i \in I)$, and the lemma is proved.

If $\mathfrak{F}=L F_{\omega}(f)$ and $f(a) \subseteq \mathfrak{F}$ for all $a \in \omega \bigcup\left\{\omega^{\prime}\right\}$, then f is called an inner satellite of \mathfrak{F}.

Lemma 5. If $\left\{\mathfrak{F}_{i}=L F_{\omega}\left(f_{i}\right) \mid i \in I\right\}$ is a set of τ-closed ω-saturated formations \mathfrak{F}_{i} where f_{i} is an inner $l_{\omega_{n-1}}^{\tau}$-valued satellite of \mathfrak{F}_{i}, then

$$
\vee_{\omega_{n}}^{\tau}\left(\mathfrak{F}_{i} \mid i \in I\right)=L F_{\omega}\left(\vee_{\omega_{n-1}}^{\tau}\left(f_{i} \mid i \in I\right)\right) .
$$

Proof. Let $\left\{\mathfrak{F}_{i} \mid i \in I\right\}$ be a set of τ-closed n-multiply ω-saturated formations and f_{i} be an inner $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of \mathfrak{F}_{i}. Let $\mathfrak{F}=\vee_{\omega_{n}}^{\tau}\left(\mathfrak{F}_{i} \mid i \in I\right)$, $\mathfrak{M}=L F_{\omega}\left(\mathrm{V}_{\omega_{n-1}}^{\tau}\left(f_{i} \mid i \in I\right)\right)$ and h_{i} be the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of \mathfrak{F}_{i}. Then by Lemma 4 we have that $h=\vee_{\omega_{n-1}}^{\tau}\left(h_{i} \mid i \in I\right)$ is the minimal $l_{\omega_{n-1}}^{\tau}-$ valued ω-local satellite of τ-closed formation \mathfrak{F}. Clearly $h \leq f=\vee_{\omega_{n-1}}^{\tau}\left(f_{i} \mid i \in I\right)$. Hence $\mathfrak{F} \subseteq \mathfrak{M}$. Suppose that the converse inclusion is false. Let G be a group of minimal order in $\mathfrak{M} \backslash \mathfrak{F}$. Let R be the socle of G. Then $R=G^{\mathfrak{F}}$. Let $p \in \pi(R) \bigcap \omega$.

Suppose that R is nonabelian. Then $F_{p}(G)=1$. Therefore

$$
G \simeq G / F_{p}(G) \in\left(\vee_{\omega_{n-1}}^{\tau}\left(f_{i} \mid i \in I\right)\right)(p)=l_{\omega_{n-1}}^{\tau} \text { form }\left(\bigcup_{i \in I} f_{i}(p)\right) .
$$

Hence, by Lemma 1, Lemma 5, we have

$$
G \in \bigcup_{i \in I} f_{i}(p) \subseteq \bigcup_{i \in I} \mathfrak{F}_{i} \subseteq \mathfrak{F},
$$

a contradiction. Consequently, R is a p-group. Then $O_{p}(G)=F_{p}(G)$. But $G \in$ $\mathfrak{M}=L F_{\omega}\left(\vee_{\omega_{n-1}}^{\tau}\left(f_{i} \mid i \in I\right)\right)$. Hence $G / O_{p}(G) \in l_{\omega_{n-1}}^{\tau}$ form $\left(\bigcup_{i \in I} f_{i}(p)\right)$. Since $O_{p}\left(G / O_{p}(G)\right)=1$, Lemma 3 and [2], imply

$$
\begin{aligned}
& G / O_{p}(G) \in l_{\omega_{n-1}}^{\tau} \text { form }\left(A / O_{p}(A) \mid A \in \bigcup_{i \in I} f_{i}(p)\right) \\
= & l_{\omega_{n-1}}^{\tau} \text { form }\left(\bigcup_{i \in I} l_{\omega_{n-1}}^{\tau} \text { form }\left(A / O_{p}(A) \mid A \in f_{i}(p)\right)\right) \\
= & l_{\omega_{n-1}}^{\tau} \text { form }\left(\bigcup_{i \in I} h_{i}(p)\right)=\left(\vee_{\omega_{n-1}}^{\tau}\left(h_{i} \mid i \in I\right)\right)(p)=h(p) .
\end{aligned}
$$

Hence, by [2], Lemma 4, we have $G \in \mathfrak{F}$, a contradiction. Consequently, $\omega \bigcap \pi(R)=$ \varnothing. Therefore $G_{\omega d}=1$. Applying Lemma 3 and [2], Lemma 5, we have

$$
\begin{gathered}
G \simeq G / G_{\omega d} \in l_{\omega_{n-1}}^{\tau} \text { form }\left(A / A_{\omega d} \mid A \in \bigcup_{i \in I} f_{i}\left(\omega^{\prime}\right)\right) \\
=l_{\omega_{n-1}}^{\tau} \text { form }\left(\bigcup_{i \in I} l_{\omega_{n-1}}^{\tau} \text { form }\left(A / A_{\omega d} \mid A \in f_{i}\left(\omega^{\prime}\right)\right)\right) \\
=l_{\omega_{n-1}}^{\tau} \text { form }\left(\bigcup_{i \in I} h_{i}\left(\omega^{\prime}\right)\right)=\left(\vee_{\omega_{n-1}}^{\tau}\left(h_{i} \mid i \in I\right)\right)\left(\omega^{\prime}\right)=h\left(\omega^{\prime}\right) .
\end{gathered}
$$

Consequently, $\mathfrak{F}=\mathfrak{M}$. This proves the lemma.
A subgroup functor τ is said to be closed [1] if $H \in \tau(G)$ always implies $\tau(H) \subseteq$ $\tau(G)$. If τ is a subgroup functor, we denote by $\bar{\tau}$ the intersection of all closed functors τ_{i} such that $\tau \leq \tau_{i}$.

For every collection of groups \mathfrak{X}, by $\mathrm{S}_{\tau} \mathfrak{X}$ we denote the set of all groups H such that $H \in \tau(G)$ for a group $G \in \mathfrak{X}$ (see [1]).

Lemma 6 [1]. Let \mathfrak{X} be a collection of groups. Then

$$
\tau \text { form } \mathfrak{X}=\mathrm{QR}_{0} \mathrm{~S}_{\bar{\tau}}(\mathfrak{X}) .
$$

The intersection of all τ-closed semiformations containing \mathfrak{X} is called the τ-closed semiformation generated by \mathfrak{X} [1].

Lemma 7 [1]. Let \mathfrak{F} be a τ-closed semiformation generated by \mathfrak{X}. Then

$$
\mathfrak{F}=\mathrm{QS}_{\bar{\tau}} \mathfrak{X} .
$$

Recall that a set of formations θ is called a complete lattice of formations (see [1]) if an intersection of every set of formations in θ belongs to θ and there is a formation \mathfrak{F} in θ such that $\mathfrak{M} \subseteq \mathfrak{F}$ for every formation \mathfrak{M} of θ. A formation in θ is called a θ-formation. By θ form G we denote the intersection of all θ-formations containing a group G.

If θ is a complete lattice of formations and $\mathfrak{M}, \mathfrak{H} \in \theta$, then $\mathfrak{M} \cap \mathfrak{H}$ is the greatest lower bound for $\{\mathfrak{M}, \mathfrak{H}\}$ in θ, and $\mathfrak{M} \vee_{\theta} \mathfrak{H}$ is the least upper bound for $\{\mathfrak{M}, \mathfrak{H}\}$ in θ.

A complete lattice of formations θ is called \mathfrak{X}-separated if for every term $\xi\left(x_{1}, \ldots, x_{m}\right)$ of the signature $\left\{\bigcap, \vee_{\theta}\right\}$, every θ-formations $\mathfrak{F}_{1}, \ldots, \mathfrak{F}_{m}$ and every $\operatorname{group} A \in \mathfrak{X} \bigcap \xi\left(\mathfrak{F}_{1}, \ldots, \mathfrak{F}_{m}\right)$ there exist \mathfrak{X}-groups $A_{1} \in \mathfrak{F}_{1}, \ldots, A_{m} \in \mathfrak{F}_{m}$ such that $A \in \xi\left(\theta\right.$ form A_{1}, \ldots, θ form $\left.A_{m}\right)$.

Lemma 8. The lattice $l_{\omega_{n}}^{\tau}$ is \mathfrak{G}-separated.
Proof. Let $\xi\left(x_{1}, \ldots, x_{m}\right)$ be a term of the signature $\left\{\bigcap, \vee_{\omega_{n}}^{\tau}\right\}, \mathfrak{F}_{1}, \ldots, \mathfrak{F}_{m}$ be formations in $l_{\omega_{n}}^{\tau}$ and $A \in \xi\left(\mathfrak{F}_{1}, \ldots, \mathfrak{F}_{m}\right)$. We proceed by induction on the number r of occurrences of the symbols in $\left\{\bigcap, \vee_{\omega_{n}}^{\tau}\right\}$ into the term ξ. We show that there exist groups $A_{i} \in \mathfrak{F}_{i} \quad(i=1, \ldots, m)$ such that $A \in \xi\left(\mathfrak{M}_{1}, \ldots, \mathfrak{M}_{m}\right)$ where $\mathfrak{M}_{i}=$ $l_{\omega_{n}}^{\tau}$ form A_{i}. It is obvious for $r=0$. We prove the assertion for $r=1$ by induction on n. Let $n=0$, i.e., either $A \in \mathfrak{F}_{1} \bigcap \mathfrak{F}_{2}$ or

$$
A \in \mathfrak{F}_{1} \vee_{\omega_{0}}^{\tau} \mathfrak{F}_{2}=l_{\omega_{0}}^{\tau} \text { form }\left(\mathfrak{F}_{1} \bigcup \mathfrak{F}_{2}\right)=\text { form }\left(\mathfrak{F}_{1} \bigcup \mathfrak{F}_{2}\right) .
$$

In the first case $A \in$ form $A \bigcap$ form A. In the second case, by Lemma 6 , we have $A \simeq H / N$ where

$$
H \in \mathrm{R}_{0}\left(\mathfrak{F}_{1} \bigcup \mathfrak{F}_{2}\right)
$$

Clearly $H^{\mathfrak{F}_{1}} \bigcap H^{\mathfrak{F}_{2}}=1$. Hence

$$
\begin{aligned}
& A \in \text { form }\left(H / H^{\mathfrak{F}_{1}}, H / H^{\mathfrak{F}_{2}}\right)=\text { form }\left(H / H^{\mathfrak{F}_{1}}\right) \vee \\
& \text { form }\left(H / H^{\mathfrak{F}_{2}}\right) \subseteq \mathfrak{F}_{1} \vee_{\omega_{0}}^{\tau} \mathfrak{F}_{2} .
\end{aligned}
$$

Let $n>0,\left\{p_{1}, \ldots, p_{t}\right\}=\pi(A)$ and $A \in \mathfrak{F}_{1} \vee_{\omega_{n}}^{\tau} \mathfrak{F}_{2}$. Then using [2], Lemma 5, and Lemma 4 we have

$$
A / F_{p_{i}}(A) \in f_{1}\left(p_{i}\right) \vee_{\omega_{n-1}}^{\tau} f_{2}\left(p_{i}\right), \quad A / A_{\omega d} \in f_{1}\left(\omega^{\prime}\right) \vee_{\omega_{n-1}}^{\tau} f_{2}\left(\omega^{\prime}\right),
$$

where f_{j} is the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of \mathfrak{F}_{j} where $j=1,2$. By induction there exist groups $A_{i_{1}} \in f_{1}\left(p_{i}\right), A_{i_{2}} \in f_{2}\left(p_{i}\right), T_{1} \in f_{1}\left(\omega^{\prime}\right), T_{2} \in f_{2}\left(\omega^{\prime}\right)$ such that

$$
\begin{gathered}
A / F_{p_{i}}(A) \in\left(l_{\omega_{n-1}}^{\tau} \text { form } A_{i_{1}}\right) \vee_{\omega_{n-1}}^{\tau}\left(l_{\omega_{n-1}}^{\tau} \text { form } A_{i_{2}}\right), \\
A / A_{\omega d} \in\left(l_{\omega_{n-1}}^{\tau} \text { form } T_{1}\right) \vee_{\omega_{n-1}}^{\tau}\left(l_{\omega_{n-1}}^{\tau} \text { form } T_{2}\right) .
\end{gathered}
$$

Clearly,

$$
\begin{gathered}
\left(l_{\omega_{n-1}}^{\tau} \text { form } A_{i_{1}}\right) \vee_{\omega_{n-1}}^{\tau}\left(l_{\omega_{n-1}}^{\tau} \text { form } A_{i_{2}}\right)=l_{\omega_{n-1}}^{\tau} \text { form }\left(A_{i_{1}}, A_{i_{2}}\right) . \\
\left(l_{\omega_{n-1}}^{\tau} \text { form } T_{1}\right) \vee_{\omega_{n-1}}^{\tau}\left(l_{\omega_{n-1}}^{\tau} \text { form } T_{2}\right)=l_{\omega_{n-1}}^{\tau} \text { form }\left(T_{1}, T_{2}\right) .
\end{gathered}
$$

Let \mathfrak{M}_{1} be a semiformation generated by $A_{i_{1}}$, and \mathfrak{M}_{2} be a semiformation generated by $A_{i_{2}}$. By Lemma 7 we have $\mathfrak{M}_{1}=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathfrak{M}_{2}=\left(B_{1}, \ldots, B_{r}\right)$ where $A_{1}, \ldots, A_{t} \in \operatorname{QS}_{\bar{\tau}}\left(A_{i_{1}}\right)$ and $B_{1}, \ldots, B_{r} \in \operatorname{QS}_{\bar{\tau}}\left(A_{i_{2}}\right)$. Clearly $\mathfrak{M}_{1} \bigcup \mathfrak{M}_{2}$ is a τ-closed semiformation and

$$
A / F_{p_{i}}(A) \in l_{\omega_{n-1}}^{\tau} \text { form }\left(A_{i_{1}}, A_{i_{2}}\right)=l_{\omega_{n-1}}^{\tau} \text { form }\left(\mathfrak{M}_{1} \bigcup \mathfrak{M}_{2}\right) .
$$

Hence, by Lemma 3, we may suppose that

$$
\left|O_{p_{i}}\left(A_{k}\right)\right|=1=\left|O_{p_{i}}\left(B_{l}\right)\right|
$$

for all $k=1, \ldots, t$ and $l=1, \ldots, r$. Applying Lemma 3 and analogous argument we may suppose that $\left(T_{i}\right)_{\omega d}=1, i=1,2$.

Let $D_{i_{1}}=A_{1} \times \ldots \times A_{t}$ and $D_{i_{2}}=B_{1} \times \ldots \times B_{r}$. Then

$$
\left|O_{p_{i}}\left(D_{i_{1}}\right)\right|=1=\left|O_{p_{i}}\left(D_{i_{2}}\right)\right| .
$$

Besides,

$$
A / F_{p_{i}}(A) \in l_{\omega_{n-1}}^{\tau} \text { form }\left(D_{i_{1}}, D_{i_{2}}\right) \subseteq l_{\omega_{n-1}}^{\tau} \text { form }\left(A_{i_{1}}, A_{i_{2}}\right) .
$$

Let Z_{i} be a group of order $p_{i}, B_{i_{1}}=Z_{i}$ 乙 $D_{i_{1}}$ and $B_{i_{2}}=Z_{i}$ 乙 $D_{i_{2}}$. Using [2] we have $B_{i_{1}} \in \mathfrak{F}_{1}, B_{i_{2}} \in \mathfrak{F}_{2}$. Hence

$$
A_{1}=B_{1_{1}} \times B_{2_{1}} \times \ldots \times B_{t_{1}} \times T_{1} \in \mathfrak{F}_{1}, \quad A_{2}=B_{1_{2}} \times B_{2_{2}} \times \ldots \times B_{t_{2}} \times T_{2} \in \mathfrak{F}_{2}
$$

We show that

$$
A \in \mathfrak{F}=\left(l_{\omega_{n}}^{\tau} \text { form } A_{1}\right) \vee_{\omega_{n}}^{\tau}\left(l_{\omega_{n}}^{\tau} \text { form } A_{2}\right) .
$$

It suffices to prove $A / A_{\omega d} \in f\left(\omega^{\prime}\right)$ and $A / F_{p_{i}}(A) \in f\left(p_{i}\right)$ where f is the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of \mathfrak{F}. Clearly $B_{i_{1}} \in \mathfrak{F}$. Hence $B_{i_{1}} / F_{p_{i}}\left(B_{i_{1}}\right) \in f\left(p_{i}\right)$. Since $O_{p_{i}}\left(D_{i_{1}}\right)=1$, we have $B_{i_{1}} / F_{p_{i}}\left(B_{i_{1}}\right) \simeq D_{i_{1}}$, i.e. $D_{i_{1}} \in f\left(p_{i}\right)$. Analogously we deduce that $D_{i_{2}} \in f\left(p_{i}\right)$. Consequently,

$$
A / F_{p_{i}}(A) \in l_{\omega_{n-1}}^{\tau} \text { form }\left(D_{i_{1}}, D_{i_{2}}\right) \subseteq f\left(p_{i}\right)
$$

Clearly $T_{1}, T_{2} \in \mathfrak{F}$. Hence, by [2], Lemma 5 , we have

$$
T_{i} \simeq T_{i} /\left(T_{i}\right)_{\omega d} \in f\left(\omega^{\prime}\right)=l_{\omega_{n-1}}^{\tau} \text { form }\left(G / G_{\omega d} \mid G \in \mathfrak{F}\right)=f\left(\omega^{\prime}\right) .
$$

Consequently, $l_{\omega_{n-1}}^{\tau}$ form $\left(T_{1}, T_{2}\right) \subseteq f\left(\omega^{\prime}\right)$. Therefore $A / A_{\omega d} \in f\left(\omega^{\prime}\right)$. This completes the proof of the lemma for $r=1$.

Let a term ξ have $r>1$ occurrences of the symbols in $\left\{\bigcap, \vee_{\omega_{n}}^{\tau}\right\}$. We suppose proving by induction that the lemma holds for terms with less number of occurrences. Assume that ξ is of the form

$$
\xi_{1}\left(x_{i_{1}}, \ldots, x_{i_{a}}\right) \triangle \xi_{2}\left(x_{j_{1}}, \ldots, x_{j_{b}}\right)
$$

where $\triangle \in\left\{\bigcap, \vee_{\omega_{n}}^{\tau}\right\}$ and

$$
\left\{x_{i_{1}}, \ldots, x_{i_{a}}\right\} \bigcup\left\{x_{j_{1}}, \ldots, x_{j_{b}}\right\}=\left\{x_{1}, \ldots, x_{m}\right\} .
$$

By \mathfrak{H}_{1} we denote the formation $\xi_{1}\left(\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}}\right)$, and by \mathfrak{H}_{2} the formation $\xi_{2}\left(\mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}\right)$. Then, as it was proved above, there are groups $A_{1} \in \mathfrak{H}_{1}$ and $A_{2} \in \mathfrak{H}_{2}$ such that $A \in l_{\omega_{n}}^{\tau}$ form $A_{1} \Delta l_{\omega_{n}}^{\tau}$ form A_{2}. On the other hand, since the number of operations in the term ξ_{1} is less than r, it follows by induction that there exist groups $B_{1} \in \mathfrak{F}_{i_{1}}, \ldots, B_{a} \in \mathfrak{F}_{i_{a}}$ such that $A_{1} \in \xi_{1}\left(l_{\omega_{n}}^{\tau}\right.$ form $B_{1}, \ldots, l_{\omega_{n}}^{\tau}$ form $\left.B_{a}\right)$. Analogously there exist groups $C_{1} \in \mathfrak{F}_{j_{1}}, \ldots, C_{b} \in \mathfrak{F}_{j_{b}}$ such that $A_{2} \in$ $\xi_{2}\left(l_{\omega_{n}}^{\tau}\right.$ form $C_{1}, \ldots, l_{\omega_{n}}^{\tau}$ form $\left.C_{b}\right)$.

Let $x_{i_{t+1}}, \ldots, x_{i_{a}} \in\left\{x_{j_{1}}, \ldots, x_{j_{b}}\right\}$ and let $\left\{x_{i_{1}}, \ldots, x_{i_{t}}\right\} \cap\left\{x_{j_{1}}, \ldots, x_{j_{b}}\right\}=\varnothing$. Assume that

$$
D_{i_{k}}= \begin{cases}B_{k}, & \text { for } k<t+1 \\ B_{k} \times C_{q}, & \text { where } x_{i_{k}}=x_{j_{q}}, \\ & \text { for some } q \in\{1, \ldots, b\} \text { provided that } k \geq t+1\end{cases}
$$

Let $D_{j_{k}}=C_{k}$ if $x_{j_{k}} \notin\left\{x_{i_{t+1}}, \ldots, x_{i_{a}}\right\}$. By \mathfrak{M}_{p} we denote the formation $l_{\omega_{n}}^{\tau}$ form $D_{i_{p}}$ where $p=1, \ldots, a$, and by \mathfrak{X}_{c} the formation $l_{\omega_{n}}^{\tau}$ form $D_{j_{c}}$ where $c=1, \ldots, b$. Thus

$$
\begin{gathered}
A_{1} \in \xi_{1}\left(l_{\omega_{n}}^{\tau} \text { form } B_{1}, \ldots, l_{\omega_{n}}^{\tau} \text { form } B_{a}\right) \subseteq \\
\subseteq \xi_{1}\left(l_{\omega_{n}}^{\tau} \text { form } D_{i_{1}}, \ldots, l_{\omega_{n}}^{\tau} \text { form } D_{i_{a}}\right)=\xi_{1}\left(\mathfrak{M}_{1}, \ldots, \mathfrak{M}_{a}\right), \\
A_{2} \in \xi_{2}\left(l_{\omega_{n}}^{\tau} \text { form } C_{1}, \ldots, l_{\omega_{n}}^{\tau} \text { form } C_{b}\right) \subseteq \\
\subseteq \xi_{2}\left(l_{\omega_{n}}^{\tau} \text { form } D_{j_{1}}, \ldots, l_{\omega_{n}}^{\tau} \text { form } D_{j_{b}}\right)=\xi_{2}\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{b}\right) .
\end{gathered}
$$

Consequently, there exist formations $\mathfrak{K}_{1}, \ldots, \mathfrak{K}_{m}$ such that

$$
A \in \xi_{1}\left(\mathfrak{K}_{i_{1}}, \ldots, \mathfrak{K}_{i_{a}}\right) \triangle \xi_{2}\left(\mathfrak{K}_{j_{1}}, \ldots, \mathfrak{K}_{j_{b}}\right)=\xi\left(\mathfrak{K}_{1}, \ldots, \mathfrak{K}_{m}\right)
$$

where $\mathfrak{K}_{i}=l_{\omega_{n}}^{\tau}$ form K_{i} for $K_{i} \in \mathfrak{F}_{i}$. This proves the claim.
For every term ξ of the signature $\left\{\bigcap, \vee_{\omega_{n}}^{\tau}\right\}$ we denote by $\bar{\xi}$ a term of the signature $\left\{\bigcap, \vee_{\omega_{n-1}}^{\tau}\right\}$ obtained from ξ by replacing of every symbol $\vee_{\omega_{n}}^{\tau}$ by the symbol $\vee_{\omega_{n-1}}^{\tau}$.

Lemma 9. Let $\xi\left(x_{1}, \ldots, x_{m}\right)$ be a term of the signature $\left\{\bigcap, \vee_{\omega_{n}}^{\tau}\right\}$ and f_{i} be an inner $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of a formation \mathfrak{F}_{i} where $i=1, \ldots, m$. Then

$$
\xi\left(\mathfrak{F}_{1}, \ldots, \mathfrak{F}_{m}\right)=L F_{\omega}\left(\bar{\xi}\left(f_{1}, \ldots, f_{m}\right)\right) .
$$

Proof. We proceed by induction on the number r of occurrences of the symbols in $\left\{\bigcap, \vee_{\omega_{n}}^{\tau}\right\}$ into ξ. Let

$$
\xi\left(x_{1}, \ldots, x_{m}\right)=\xi_{1}\left(x_{i_{1}}, \ldots, x_{i_{a}}\right) \triangle \xi_{2}\left(x_{j_{1}}, \ldots, x_{j_{b}}\right)
$$

where $\triangle \in\left\{\bigcap, \vee_{\omega_{n}}^{\tau}\right\}$,

$$
\left\{x_{i_{1}}, \ldots, x_{i_{a}}\right\} \bigcup\left\{x_{j_{1}}, \ldots, x_{j_{b}}\right\}=\left\{x_{1}, \ldots, x_{m}\right\}
$$

Assume that the lemma holds for the terms ξ_{1} and ξ_{2}. Then

$$
\begin{aligned}
& \xi_{1}\left(\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}}\right)=L F_{\omega}\left(\bar{\xi}_{1}\left(f_{i_{1}}, \ldots, f_{i_{a}}\right)\right), \\
& \xi_{2}\left(\mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}\right)=L F_{\omega}\left(\bar{\xi}_{2}\left(f_{j_{1}}, \ldots, f_{j_{b}}\right)\right) .
\end{aligned}
$$

It is clear that $\bar{\xi}_{1}\left(f_{i_{1}}, \ldots, f_{i_{a}}\right)$ and $\bar{\xi}_{2}\left(f_{j_{1}}, \ldots, f_{j_{b}}\right)$ are inner $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellites of the formations $\xi_{1}\left(\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}}\right)$ and $\xi_{2}\left(\mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}\right)$, respectively. Hence
by induction we have

$$
\begin{aligned}
& \xi\left(\mathfrak{F}_{1}, \ldots, \mathfrak{F}_{m}\right)=\xi_{1}\left(\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}}\right) \triangle \xi_{2}\left(\mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}\right) \\
& \quad=L F_{\omega}\left(\bar{\xi}_{1}\left(f_{i_{1}}, \ldots, f_{i_{a}}\right) \bar{\triangle} \bar{\xi}_{2}\left(f_{j_{1}}, \ldots, f_{j_{b}}\right)\right)=L F_{\omega}\left(\bar{\xi}\left(f_{1}, \ldots, f_{m}\right)\right)
\end{aligned}
$$

where $\bar{\triangle}=\bigcap$ if $\triangle=\bigcap$ and $\bar{\triangle}=\vee_{\omega_{n-1}}^{\tau}$ if $\triangle=\vee_{\omega_{n}}^{\tau}$, as claimed.
Lemma 10. Let θ be a \mathfrak{X}-separated complete lattice of formations and η be a sublattice of θ such that η contains all one-generated θ-subformations of the form θ form A, where $A \in \mathfrak{X}$, of every formation $\mathfrak{F} \in \eta$. Suppose that a law $\xi_{1}=\xi_{2}$ of the signature $\left\{\bigcap, \vee_{\theta}\right\}$ is true for all one-generated θ-formations belonging to η. Then the law $\xi_{1}=\xi_{2}$ is true for all θ-formations belonging to η.

Proof. Let $x_{i_{1}}, \ldots, x_{i_{a}}$ be arguments occurring in the term ξ_{1}, let $x_{j_{1}}, \ldots, x_{j_{b}}$ be arguments occurring in the term ξ_{2}, and let $\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}} ; \mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}} \in \eta$. We show that

$$
\mathfrak{F}=\xi_{1}\left(\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}}\right) \subseteq \xi_{2}\left(\mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}\right)=\mathfrak{M} .
$$

Without loss of generality we may suppose that

$$
x_{j_{1}}, \ldots, x_{j_{t}} \in\left\{x_{i_{1}}, \ldots, x_{i_{a}}\right\}
$$

and

$$
\left\{x_{j_{t+1}}, \ldots, x_{j_{b}}\right\} \bigcap\left\{x_{i_{1}}, \ldots, x_{i_{a}}\right\}=\varnothing .
$$

Let $A \in \mathfrak{F}$. Then, by assumption there exist \mathfrak{X}-groups $A_{i_{1}}, \ldots, A_{i_{a}}$ such that $A_{i_{k}} \in$ $\mathfrak{F}_{i_{k}}($ where $k=1, \ldots, a)$ and

$$
A \in \xi_{1}\left(\theta \text { form } A_{i_{1}}, \ldots, \theta \text { form } A_{i_{a}}\right)
$$

Let

$$
\mathfrak{H}_{i_{k}}=\theta \text { form } A_{i_{k}},
$$

and let

$$
\mathfrak{H}_{j_{k}}= \begin{cases}\mathfrak{H}_{i_{c}}, & \text { where } x_{j_{k}}=x_{i_{c}}, \\ & \text { for some } c \in\{1, \ldots, a\} \text { for all } k \in\{1, \ldots, t\} \\ \theta \text { form } B_{j_{k}}, & \text { for some group } B_{j_{k}} \in \mathfrak{F}_{j_{k}} \text { provided that } k>t .\end{cases}
$$

By assumption

$$
\xi_{1}\left(\mathfrak{H}_{i_{1}}, \ldots, \mathfrak{H}_{i_{a}}\right)=\xi_{2}\left(\mathfrak{H}_{j_{1}}, \ldots, \mathfrak{H}_{j_{b}}\right) .
$$

But $\xi_{2}\left(\mathfrak{H}_{j_{1}}, \ldots, \mathfrak{H}_{j_{b}}\right) \subseteq \mathfrak{M}$. Therefore $A \in \mathfrak{M}$. Thus $\mathfrak{F} \subseteq \mathfrak{M}$. The inverse inclusion can be proved analogously. Hence $\mathfrak{F}=\mathfrak{M}$, which completes the proof of this lemma.

Proof of Theorem 1. Fix a law

$$
\begin{equation*}
\xi_{1}\left(x_{i_{1}}, \ldots, x_{i_{a}}\right)=\xi_{2}\left(x_{j_{1}}, \ldots, x_{j_{b}}\right) \tag{1}
\end{equation*}
$$

of the signature $\left\{\bigcap, \vee_{\omega_{n}}^{\tau}\right\}$. Let

$$
\begin{equation*}
\bar{\xi}_{1}\left(x_{i_{1}}, \ldots, x_{i_{a}}\right)=\bar{\xi}_{2}\left(x_{j_{1}}, \ldots, x_{j_{b}}\right) \tag{2}
\end{equation*}
$$

be the same law of the signature $\left\{\bigcap, \vee_{\omega_{n-1}}^{\tau}\right\}$.
Suppose that law (2) is true in the lattice $l_{\omega_{n-1}}^{\tau}$. Let

$$
\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}} ; \mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}
$$

be τ-closed n-multiply ω-saturated formations. We show that

$$
\xi_{1}\left(\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}}\right)=\xi_{2}\left(\mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}\right) .
$$

Let $f_{i_{c}}$ be the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of $\mathfrak{F}_{i_{c}}($ where $c=1, \ldots, a)$ and $f_{j_{d}}$ be the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of $\mathfrak{F}_{j_{d}}$ (where $\left.d=1, \ldots, b\right)$. Then using Lemma 9 we have

$$
\begin{aligned}
& \xi_{1}\left(\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}}\right)=L F_{\omega}\left(\bar{\xi}_{1}\left(f_{i_{1}}, \ldots, f_{i_{a}}\right)\right), \\
& \xi_{2}\left(\mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}\right)=L F_{\omega}\left(\bar{\xi}_{2}\left(f_{j_{1}}, \ldots, f_{j_{b}}\right)\right) .
\end{aligned}
$$

Besides, formations

$$
f_{i_{1}}\left(\omega^{\prime}\right), \ldots, f_{i_{a}}\left(\omega^{\prime}\right) ; f_{j_{1}}\left(\omega^{\prime}\right), \ldots, f_{j_{b}}\left(\omega^{\prime}\right)
$$

and formations

$$
f_{i_{1}}(p), \ldots, f_{i_{a}}(p) ; f_{j_{1}}(p), \ldots, f_{j_{b}}(p)
$$

belong to the lattice $l_{\omega_{n-1}}^{\tau}$ for every prime $p \in \omega$. Then by assumption

$$
\begin{gathered}
\bar{\xi}_{1}\left(f_{i_{1}}, \ldots, f_{i_{a}}\right)(p)=\bar{\xi}_{1}\left(f_{i_{1}}(p), \ldots, f_{i_{a}}(p)\right)= \\
\bar{\xi}_{2}\left(f_{j_{1}}(p), \ldots, f_{j_{b}}(p)\right)=\bar{\xi}_{2}\left(f_{j_{1}}, \ldots, f_{j_{b}}\right)(p)
\end{gathered}
$$

and

$$
\begin{gathered}
\bar{\xi}_{1}\left(f_{i_{1}}, \ldots, f_{i_{a}}\right)\left(\omega^{\prime}\right)=\bar{\xi}_{1}\left(f_{i_{1}}\left(\omega^{\prime}\right), \ldots, f_{i_{a}}\left(\omega^{\prime}\right)\right)= \\
\bar{\xi}_{2}\left(f_{j_{1}}\left(\omega^{\prime}\right), \ldots, f_{j_{b}}\left(\omega^{\prime}\right)\right)=\bar{\xi}_{2}\left(f_{j_{1}}, \ldots, f_{j_{b}}\right)\left(\omega^{\prime}\right) .
\end{gathered}
$$

Consequently,

$$
\xi_{1}\left(\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}}\right)=\xi_{2}\left(\mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}\right) .
$$

Thus law (1) is true in the lattice $l_{\omega_{n}}^{\tau}$, and the result is proved.
Now we give some corollaries of Theorem 1.
Corollary 1.1 (A.N. Skiba [3]). The lattice of all saturated formations is modular.

Corollary 1.2 (L.A. Shemetkov and A.N. Skiba [4]). The lattice of all n-multiply saturated formations is modular.

Corollary 1.3 (Ballester-Bolinches and L. A. Shemetkov [5]). The lattice of all p-saturated formations is modular.

Corollary 1.4 (A. N. Skiba [1]). The lattice of all τ-closed n-multiply saturated formations is modular.

Corollary 1.5 (A. N. Skiba and L. A. Shemetkov [2]). The lattice of all nmultiply ω-saturated formations is modular.

Corollary 1.6 (I. P. Shabalina [7]). The lattice of all τ-closed n-multiply ω saturated formations is modular.

3. Proof of Theorem 2

Proof. Fix a law

$$
\begin{equation*}
\xi_{1}\left(x_{i_{1}}, \ldots, x_{i_{a}}\right)=\xi_{2}\left(x_{j_{1}}, \ldots, x_{j_{b}}\right) \tag{3}
\end{equation*}
$$

of the signature $\left\{\bigcap, \vee_{\omega_{n}}^{\tau}\right\}$. Let

$$
\begin{equation*}
\bar{\xi}_{1}\left(x_{i_{1}}, \ldots, x_{i_{a}}\right)=\bar{\xi}_{2}\left(x_{j_{1}}, \ldots, x_{j_{b}}\right) \tag{4}
\end{equation*}
$$

be the same law of the signature $\left\{\bigcap, \vee_{\omega_{n-1}}^{\tau}\right\}$.
Suppose that law (3) is true in the lattice $l_{\omega_{n}}^{\tau}$. We show that law (4) is true in the lattice $l_{\omega_{n-1}}^{\tau}$. By Lemma 10, it suffices to prove that if

$$
\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}} ; \mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}
$$

are every one-generated τ-closed ($n-1$)-multiply ω-saturated formations, then

$$
\bar{\xi}_{1}\left(\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}}\right)=\bar{\xi}_{2}\left(\mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}\right) .
$$

Let

$$
\begin{aligned}
& \mathfrak{F}_{i_{1}}=l_{\omega_{n-1}}^{\tau} \text { form } A_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}}=l_{\omega_{n-1}}^{\tau} \text { form } A_{i_{a}} ; \\
& \mathfrak{F}_{j_{1}}=l_{\omega_{n-1}}^{\tau} \text { form } A_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}=l_{\omega_{n-1}}^{\tau} \text { form } A_{j_{b}} .
\end{aligned}
$$

We choose prime $p \in \omega$ such that $p \notin \pi\left(A_{i_{1}}, \ldots, A_{i_{a}}, A_{j_{1}}, \ldots, A_{j_{b}}\right)$. Let

$$
\begin{aligned}
& B_{i_{1}}=P \imath A_{i_{1}}, \ldots, B_{i_{a}}=P \imath A_{i_{a}} ; \\
& B_{j_{1}}=P \imath A_{j_{1}}, \ldots, B_{j_{b}}=P \imath A_{j_{b}},
\end{aligned}
$$

where P is a group of order p. Since formations

$$
\begin{aligned}
& \mathfrak{M}_{i_{1}}=l_{\omega_{n}}^{\tau} \text { form } B_{i_{1}}, \ldots, \mathfrak{M}_{i_{a}}=l_{\omega_{n}}^{\tau} \text { form } B_{i_{a}} ; \\
& \mathfrak{M}_{j_{1}}=l_{\omega_{n}}^{\tau} \text { form } B_{j_{1}}, \ldots, \mathfrak{M}_{j_{b}}=l_{\omega_{n}}^{\tau} \text { form } B_{j_{b}}
\end{aligned}
$$

belong to $l_{\omega_{n}}^{\tau}$, we have $\mathfrak{F}=\mathfrak{M}$ where

$$
\mathfrak{F}=\xi_{1}\left(\mathfrak{M}_{i_{1}}, \ldots, \mathfrak{M}_{i_{a}}\right) \text { and } \mathfrak{M}=\xi_{2}\left(\mathfrak{M}_{j_{1}}, \ldots, \mathfrak{M}_{j_{b}}\right) .
$$

Let $f_{i_{c}}$ be the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of $\mathfrak{M}_{i_{c}}($ where $c=1, \ldots, a)$ and $f_{j_{d}}$ be the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellite of $\mathfrak{M}_{j_{d}}$ (where $d=1, \ldots, b$). By Lemma 9 we have

$$
\xi_{1}\left(\mathfrak{M}_{i_{1}}, \ldots, \mathfrak{M}_{i_{a}}\right)=L F_{\omega}\left(\bar{\xi}_{1}\left(f_{i_{1}}, \ldots, f_{i_{a}}\right)\right),
$$

$$
\xi_{2}\left(\mathfrak{M}_{j_{1}}, \ldots, \mathfrak{M}_{j_{b}}\right)=L F_{\omega}\left(\bar{\xi}_{2}\left(f_{j_{1}}, \ldots, f_{j_{b}}\right)\right) .
$$

Let f and m be the minimal $l_{\omega_{n-1}}^{\tau}$-valued ω-local satellites of \mathfrak{F} and \mathfrak{M}, respectively. Then using [2], Lemma 5 (3) and Lemma 4, we have

$$
f(p)=\bar{\xi}_{1}\left(f_{i_{1}}, \ldots, f_{i_{a}}\right)(p)=\bar{\xi}_{1}\left(f_{i_{1}}(p), \ldots, f_{i_{a}}(p)\right)
$$

and

$$
m(p)=\bar{\xi}_{2}\left(f_{j_{1}}, \ldots, f_{j_{b}}\right)(p)=\bar{\xi}_{2}\left(f_{j_{1}}(p), \ldots, f_{j_{b}}(p)\right)
$$

Hence

$$
\bar{\xi}_{1}\left(f_{i_{1}}(p), \ldots, f_{i_{a}}(p)\right)=\bar{\xi}_{2}\left(f_{j_{1}}(p), \ldots, f_{j_{b}}(p)\right) .
$$

Since $O_{p}\left(A_{i_{c}}\right)=1$, by [2], Lemma 5 (3), we have $f_{i_{c}}(p)=\mathfrak{F}_{i_{c}}$ where $c=1, \ldots, a$. Analogously $f_{j_{d}}(p)=\mathfrak{F}_{j_{d}}$ where $d=1, \ldots, b$.

Consequently,

$$
\bar{\xi}_{1}\left(\mathfrak{F}_{i_{1}}, \ldots, \mathfrak{F}_{i_{a}}\right)=\bar{\xi}_{2}\left(\mathfrak{F}_{j_{1}}, \ldots, \mathfrak{F}_{j_{b}}\right),
$$

i.e., law (4) is true in the lattice $l_{\omega_{n-1}}^{\tau}$. Thus every law of $l_{\omega_{n}}^{\tau}$ is true in $l_{\omega_{0}}^{\tau}$. Using Theorem 1, we have the result.

If $\omega=\mathbb{P}$, we write l_{n}^{τ} instead $l_{\omega_{n}}^{\tau}$. We have the following corollaries.
Corollary 2.1 (A.N. Skiba [1]). Let n and m be nonnegative integers. Then the law systems of lattices l_{n}^{τ} and l_{m}^{τ} coincide.

If τ is trivial $(\tau(G)=\{G\}$ for every group $G)$, we have the following result.
Corollary 2.2 (L. A. Shemetkov and A. N. Skiba [4]). Let n and m be nonnegative integers. Then the law systems of lattices l_{n} and l_{m} coincide.

Finally, we note that V.G. Safonov proved modularity of the lattice of all totally saturated formations [11] and modularity of the lattice of all τ-closed totally saturated formations [12].

References

1. A. N. Skiba, Algebra of Formations, Belaruskaya navuka, Minsk, 1997.
2. L. A. Shemetkov, A. N. Skiba, Multiply ω-local formations and Fitting classes of finite groups, Siberian Advances in Mathematics 10 (2) (2000) 112-141.
3. A. N. Skiba, On local formations of the length 5, in: Arithmetical and Subgroup Structure of Finite Groups (Works of Gomel Seminar), Nauka i Tekhnika, Minsk, 1986, pp. 135-149.
4. L. A. Shemetkov, A. N. Skiba, Formations of algebraic systems, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1989.
5. A. Ballester-Bolinches, L. A. Shemetkov On lattices of p-local formations of finite groups, Math. Nachr. 186 (1997) 57-65.
6. A. N. Skiba, L. A. Shemetkov, Multiply \mathfrak{L}-composition formations of finite groups, Ukrainian Math. Journal 52 (6) (2000) 898-913.
7. I. P. Shabalina, On the lattice of τ-closed n-multiply ω-local formations of finite groups, Vesti NAN Belarusi. Ser. Fiz.-Mat. navuk (2003) No. 1, 28-30.
8. K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin-New York, 1992.
9. Wenbin Guo, The Theory of Classes of Groups, Science Press/Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.
10. A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite groups, Springer, Dordrecht, 2006.
11. V. G. Safonov, On modularity of the lattice of totally saturated formations of finite groups Comm. Algebra 35 (11) (2007) 3495-3502.
12. V. G. Safonov, On modularity of the lattice of τ-closed totally saturated formations of finite groups, Ukrainian Math. Journal 58 (6) (2006) 852-858.

[^0]: *Research of the second author is partially supported by Belarussian Republic Foundation of Fundamental Researches (BRFFI, grant F06-017)
 ${ }^{\dagger}$ Research of the first author is partially supported by Belarussian Republic Foundation of Fundamental Researches (BRFFI, grant F06-017)

