On Lattices of Formations of Finite Groups^{*}

L.A. Shemetkov A.N. Skiba

Department of Mathematics, F. Skorina Gomel State University Gomel 246019, Belarus

E-mail: shemetkov @gsu.by a lexander.skiba49 @gmail.com

N.N. Vorob'ev

Department of Mathematics, P.M. Masherov Vitebsk State University Vitebsk 210038, Belarus E-mail: vornic2001@yahoo.com

> Received 11 July 2008 Revised 4 February 2009

Communicated by Fu-an Li

Abstract. Let ω be a set of primes with $|\omega| > 1$, and $m > n \ge 0$ be integers. It is proved that the lattice of all τ -closed *m*-multiply ω -saturated formations is not a sublattice of the lattice of all τ -closed *n*-multiply ω -saturated formations.

2000 Mathematics Subject Classification: 20D10, 20F17

Keywords: finite group, subgroup functor, formation of groups, *n*-multiply ω -saturated formation, modular lattice

1 Introduction

All groups considered are finite.

In the book [9] and in the recent books [4, 1], it was demonstrated that constructions and results of the modular lattice theory are very useful tools for studying groups and group classes. In this connection, many authors obtained a series of modular lattices of group formations. In particular, Skiba proved that the lattice of all saturated formations is modular (see [9]). Further, this result was developed in different ways. In [12], the modularity of the lattice of all τ -closed *n*-multiply saturated formations was established for every subgroup functor τ ; Ballester-Bolinches and Shemetkov [2] proved that the lattice of all *p*-saturated formations is modular;

^{*}The research of the first and second authors is partially supported by Belarussian Republic Foundation of Fundamental Researches (BRFFI, grant F08P-230), while the research of the third author is partially supported by Belarussian Republic Foundation of Fundamental Researches (BRFFI, grant F08M-118).

Skiba and Shemetkov [10, 13] proved the modularity of the lattice of all *n*-multiply ω -saturated formations and the lattice of all *n*-multiply \mathfrak{L} -composition formations; and Shabalina [7] proved the modularity of the lattice of all τ -closed *n*-multiply ω -saturated formations.

Since the lattice of all τ -closed formations is modular for all subgroup functors τ , the following natural question arises: Is the lattice of all τ -closed n-multiply saturated formations is a sublattice of the lattice of all τ -closed formations?

In this paper, we prove the following theorem:

Theorem. Let ω be a set of primes with $|\omega| > 1$, and $m > n \ge 0$ be integers. Then the lattice of all τ -closed *m*-multiply ω -saturated formations is not a sublattice of the lattice of all τ -closed *n*-multiply ω -saturated formations.

Thus, the answer to the above question is "no".

All unexplained notations and terminologies are standard. The reader is referred to [8], [3], [4] and [1] if necessary.

2 Preliminaries

Recall that a group class closed under taking homomorphic images and finite subdirect products is called a formation.

In each group G, we select a system of subgroups $\tau(G)$. We say that τ is a subgroup functor if (i) $G \in \tau(G)$ for every group G; (ii) for every epimorphism $\varphi: A \to B$ and any $H \in \tau(A)$ and $T \in \tau(B)$, we have $H^{\varphi} \in \tau(B)$ and $T^{\varphi^{-1}} \in \tau(A)$.

A formation \mathfrak{F} is called τ -closed if $\tau(G) \subseteq \mathfrak{F}$ for every group G of \mathfrak{F} (see [12]).

Let ω be a non-empty set of primes, and $\omega' = \mathbb{P} \setminus \omega$. Let $\pi(G)$ denote the set of all prime divisors of the order of a group G. Recall that a group G is called an ωd group if $\omega \cap \pi(G) \neq \emptyset$. The symbols \mathfrak{G} , \mathfrak{N}_p and $\mathfrak{G}_{p'}$ denote, respectively, the class of all groups, the class of all p-groups and the class of all p'-groups; $\mathfrak{G}_{\omega d}$ denotes the class of all groups in which every composition factor is an ωd -group. For every group class $\mathfrak{F} \supseteq (1)$, by $G_{\mathfrak{F}}$ we denote the product of all normal \mathfrak{F} -subgroups of the group G. In particular, we write $G_{\omega d} = G_{\mathfrak{G}_{\omega d}}$ and $F_p(G) = G_{\mathfrak{G}_{p'}\mathfrak{N}_p}$. A function of the form

 $f: \omega \cup \{\omega'\} \to \{\text{formations of groups}\}$

is called an ω -local satellite (see [10]). For every ω -local satellite f, we define the class

$$LF_{\omega}(f) = \{G \mid G/G_{\omega d} \in f(\omega') \text{ and } G/F_p(G) \in f(p) \text{ for all } p \in \omega \cap \pi(G) \}.$$

If \mathfrak{F} is a formation such that $\mathfrak{F} = LF_{\omega}(f)$ for an ω -local satellite f, then \mathfrak{F} is said to be ω -saturated and f is said to be an ω -local satellite of \mathfrak{F} . If $\mathfrak{F} = LF_{\omega}(f)$ and $f(a) \subseteq \mathfrak{F}$ for all $a \in \omega \cup \{\omega'\}$, then f is called an inner satellite of \mathfrak{F} .

Every formation is 0-multiply ω -saturated by definition. For n > 0, a formation \mathfrak{F} is called *n*-multiply ω -saturated if $\mathfrak{F} = LF_{\omega}(f)$ and all non-empty values of f are (n-1)-multiply ω -saturated formations (see [10]). If a formation \mathfrak{F} is *n*-multiply ω -saturated for all natural numbers n, then \mathfrak{F} is called totally ω -saturated.

Recall that a set of formations Θ is called a complete lattice of formations if the intersection of every set of formations in Θ belongs to Θ and there is a formation \mathfrak{F} in Θ such that $\mathfrak{M} \subseteq \mathfrak{F}$ for every other formation \mathfrak{M} of Θ (see [12]).

Let Θ be a complete lattice of formations. Then we denote by Θ^{ω} the set of all formations having an ω -local Θ -valued satellite (see [10]).

By $l_{\omega_n}^{\tau}$ we denote the set of all τ -closed *n*-multiply ω -saturated formations. With respect to inclusion, $l_{\omega_n}^{\tau}$ is a complete lattice (see [11] and [14]). In this lattice, for an arbitrary non-empty subset $\Sigma = \{\mathcal{H}_i \mid i \in \Lambda\}$ of $l_{\omega_n}^{\tau}$, $\cap_{i \in \Lambda} \mathcal{H}_i$ is the greatest lower bound for Σ in $l_{\omega_n}^{\tau}$; and $l_{\omega_n}^{\tau}$ form $(\cup_{i \in \Lambda} \mathcal{H}_i)$ is the least upper bound for Σ in $l_{\omega_n}^{\tau}$. The symbol $l_{\omega_n}^{\tau}$ form \mathfrak{X} denotes the intersection of all τ -closed *n*-multiply ω -saturated formations containing a collection \mathfrak{X} of groups.

A group class closed under taking homomorphic images is called a semiformation (see [9]).

A function $f : \omega \cup \{\omega'\} \to \{\text{formations of groups}\}$ is called $l_{\omega_n}^{\tau}$ -valued if all its values belong to the lattice $l_{\omega_n}^{\tau}$.

By [10, Lemma 5], if $\mathfrak{F} = l_{\omega_n}^{\tau}$ form \mathfrak{X} , then $\mathfrak{F} = LF_{\omega}(f)$, where

$$f(a) = \begin{cases} l^{\tau}_{\omega_{n-1}} \operatorname{form} \left(G/F_p(G) \, | \, G \in \mathfrak{X} \right) & \text{if } a = p \in \omega \cap \pi(\mathfrak{X}), \\ \varnothing & \text{if } a = p \in \omega \setminus \pi(\mathfrak{X}), \\ l^{\tau}_{\omega_{n-1}} \operatorname{form} \left(G/G_{\omega d} \, | \, G \in \mathfrak{X} \right) & \text{if } a = \omega'. \end{cases}$$

The satellite f is called the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of \mathfrak{F} (see [10]).

First we prove the following lemmas.

Lemma 1. Let \mathfrak{M} be a non-empty formation and $\mathfrak{F} = \mathfrak{N}_{\omega}\mathfrak{M}$ be an *n*-multiply ω -saturated formation. Then $\mathfrak{F} = LF_{\omega}(m)$, where *m* is an ω -local satellite such that $m(a) = \mathfrak{M}$ for every $a \in \omega \cup \{\omega'\}$.

Proof. Let $\mathfrak{K} = LF_{\omega}(m)$. We show that $\mathfrak{K} \subseteq \mathfrak{F}$. Suppose $\mathfrak{K} \not\subseteq \mathfrak{F}$. Let G be a group of minimal order in $\mathfrak{K} \setminus \mathfrak{F}$. Then G is a monolithic group and $R = G^{\mathfrak{F}}$ is the socle of G. If R is an ω' -group, then $G_{\omega d} = 1$. Hence, $G \simeq G/G_{\omega d} \in m(\omega') = \mathfrak{M} \subseteq \mathfrak{N}_{\omega} \mathfrak{M} = \mathfrak{F}$, a contradiction. Consequently, R is an ω -group, i.e., $\omega \cap \pi(R) \neq \emptyset$. Let $p \in \omega \cap \pi(R)$. If R is non-abelian, then $F_p(G) = 1$. Therefore,

$$G \simeq G/F_p(G) \in m(p) = \mathfrak{M} \subseteq \mathfrak{N}_\omega \mathfrak{M} = \mathfrak{F}.$$

This contradicts the choice of the group G. Hence, R is an abelian p-group. By assumption and by [10, Theorem 8], \mathfrak{F} is ω -saturated. Then $R \not\subseteq \Phi(G)$. So $R = C_G(R) = F_p(G) = F(G) = O_p(G)$, and consequently,

$$G/R = G/O_p(G) = G/F_p(G) \in m(p) = \mathfrak{M}$$

Hence, $G \in \mathfrak{N}_p\mathfrak{M} \subseteq \mathfrak{N}_\omega\mathfrak{M} = \mathfrak{F}$. This contradiction proves the inclusion $\mathfrak{K} \subseteq \mathfrak{F}$.

Now we show that $\mathfrak{F} \subseteq \mathfrak{K}$. Let $\mathfrak{F} \not\subseteq \mathfrak{K}$ and let G be a group of minimal order in $\mathfrak{F} \setminus \mathfrak{K}$. Then G is a monolithic group with the socle $R = G^{\mathfrak{K}}$. Suppose that R is an ω' -group. Then $G_{\omega d} = 1$. Consequently, $G \simeq G/G_{\omega d} \in \mathfrak{M} \subseteq \mathfrak{K}$, a contradiction. Hence, R is an ωd -group, i.e., $\omega \cap \pi(R) \neq \emptyset$. Let $p \in \omega \cap \pi(R)$. If R is non-abelian,

then $F_p(G) = 1$. Consequently, $G \simeq G/F_p(G) \in \mathfrak{M} \subseteq \mathfrak{K}$, a contradiction. Hence, R is an abelian p-group. Since $\mathfrak{K} = LF_{\omega}(m)$ is ω -saturated, it follows that $R \not\subseteq \Phi(G)$. Therefore, $R = C_G(R) = F_p(G) = F(G) = O_p(G)$. Consequently,

$$G/R = G/O_p(G) = G/F_p(G) \in \mathfrak{M} = m(p).$$

Using [10, Lemma 4], we have $G \in \mathfrak{K}$. The final contradiction implies the inclusion $\mathfrak{F} \subseteq \mathfrak{K}$. Thus, $\mathfrak{F} = \mathfrak{K}$, and the lemma is proved.

By [10, Theorem 1], every ω -saturated formation \mathfrak{F} has an ω -local satellite f such that $f(\omega') = \mathfrak{F}$ and $f(p) = \mathfrak{N}_p \operatorname{form} (G/F_p(G) | G \in \mathfrak{F})$ for all $p \in \omega$. This satellite is called the canonical satellite of \mathfrak{F} .

Lemma 2. Let n be a natural number. Then $(l_{\omega_{n-1}}^{\tau})^{\omega} = l_{\omega_n}^{\tau}$.

Proof. Let $\mathfrak{F} \in (l^{\tau}_{\omega_{n-1}})^{\omega}$. By definition, \mathfrak{F} has an ω -local satellite f such that every its non-empty value belongs to $l^{\tau}_{\omega_{n-1}}$, i.e., \mathfrak{F} is *n*-multiply ω -saturated. We show that \mathfrak{F} is τ -closed. Let $H \in \tau(G)$, where $G \in \mathfrak{F}$. Assume $p \in \omega \cap \pi(H)$ and $F_p = F_p(G)$. Since for every $a \in \omega \cup \{\omega'\}$ the formation f(a) is τ -closed, it follows that $H/H_{\omega d} = H/(G_{\omega d} \cap H) \simeq HG_{\omega d}/G_{\omega d} \in f(\omega')$ and $H/F_p(H) = H/(F_p \cap H) \simeq$ $HF_p/F_p \in f(p)$. Thus, $H/H_{\omega d} \in f(\omega')$, and for every $p \in \omega \cap \pi(H)$ we have $H/F_p(H) \in f(p)$. Consequently, $H \in \mathfrak{F}$. Thus, \mathfrak{F} is τ -closed. We deduce $\mathfrak{F} \in l^{\tau}_{\omega_n}$.

Now let $\mathfrak{F} \in \overline{l}_{\omega_n}^{\tau}$ and F be the canonical ω -local satellite of \mathfrak{F} . Obviously, $F(\omega') = \mathfrak{F} \in \overline{l}_{\omega_n-1}^{\tau}$. We show that for every $p \in \omega \cap \pi(\mathfrak{F})$ we have $F(p) \in \overline{l}_{\omega_n-1}^{\tau}$. By [10, Lemma 11], we have $F(p) \in \overline{l}_{\omega_n-1}$. First we show that F(p) is τ -closed. Let $H \in \tau(G)$, where $G \in F(p)$. We proceed by induction on |G| to prove $H \in F(p)$. Let R be a minimal normal subgroup of G. Obviously, $HR/R \in \tau(G/R)$. Then by induction, $H/(R \cap H) \simeq HR/R \in F(p)$. Therefore, $O_p(G) \neq 1$. Then $H \in F(p) = \mathfrak{N}_p F(p)$. Besides, if G has two distinct minimal normal subgroups R and N, then

$$H \simeq H/1 = H/(R \cap N \cap H) \in F(p).$$

Let $O_p(G) = 1$ and R be a unique minimal normal subgroup of G. Then there exists a simple faithful \mathbb{F}_pG -module P. Let T = [P]G. Since the ω -local satellite F is inner and $G \in F(p)$, using [10, Lemma 4], we have $T \in \mathfrak{F}$. If $\varphi : T \to G$ is the natural epimorphism of T onto G, then obviously, $H^{\varphi^{-1}} = PH$. Hence, $PH \in \tau(T)$. Therefore, $PH \in \mathfrak{F}$. If $F_p = F_p(PH)$, then $PH/F_p \in F(p)$. Since $C_T(P) = P$, it follows that

$$F_p = O_p(PH) = O_p(PH) \cap PH = P(O_p(PH) \cap H) = PO_p(H).$$

Hence,

$$PH/F_p = PH/PO_p(H) \simeq H/O_p(H)(P \cap H) = H/O_p(H) \in F(p).$$

Consequently, $H \in F(p)$. Therefore, F(p) is τ -closed, where $p \in \omega \cap \pi(\mathfrak{F})$.

Thus, F(a) is τ -closed for all $a \in \omega \cup \{\omega'\}$. Hence, $F(a) \in l_{\omega_{n-1}}^{\tau}$. Consequently, $\mathfrak{F} \in (l_{\omega_{n-1}}^{\tau})^{\omega}$. Therefore, $l_{\omega_n}^{\tau} \subseteq (l_{\omega_{n-1}}^{\tau})^{\omega}$, as desired.

Lemma 3. [12, Corollary 1.2.26] Let \mathfrak{X} be a τ -closed semiformation and $A \in \mathfrak{F} = \tau$ form \mathfrak{X} . Suppose that A is a monolithic group and $A \notin \mathfrak{X}$. Then there exists a group H in \mathfrak{F} and normal subgroups $N, M, N_1, \ldots, N_t, M_1, \ldots, M_t$ $(t \ge 2)$ of H such that the following statements hold:

- (i) $H/N \simeq A$, M/N = Soc(H/N);
- (ii) $N_1 \cap \cdots \cap N_t = 1;$
- (iii) H/N_i is a monolithic X-group and M_i/N_i is the socle of H/N_i which is Hisomorphic to M/N;
- (iv) $M_1 \cap \cdots \cap M_t \subseteq M$.

Lemma 4. [12, Corollary 1.2.24] Let $\{\mathfrak{M}_i | i \in I\}$ be a collection of τ -closed formations. Then τ form $(\bigcup_{i \in I} \mathfrak{M}_i) = \text{form } (\bigcup_{i \in I} \mathfrak{M}_i)$.

Let $\{\mathfrak{F}_i \mid i \in I\}$ be an arbitrary collection of τ -closed *n*-multiply ω -saturated formations. We denote $\bigvee_{\omega_n}^{\tau} \{\mathfrak{F}_i \mid i \in I\} = l_{\omega_n}^{\tau} form(\bigcup_{i \in I} \mathfrak{F}_i)$. In particular,

 $\mathfrak{M}\vee_{\omega_n}^{\tau}\mathfrak{H}=l_{\omega_n}^{\tau}\mathrm{form}\,(\mathfrak{M}\cup\mathfrak{H}).$

Let $\{f_i | i \in I\}$ be a collection of $l_{\omega_n}^{\tau}$ -valued ω -local satellites. In this case, by $\bigvee_{\omega_n}^{\tau} (f_i | i \in I)$ we denote a function f such that $f(\omega') = l_{\omega_n}^{\tau} form(\bigcup_{i \in I} f_i(\omega'))$. In particular,

$$(f_1 \vee_{\omega_n}^{\tau} f_2)(\omega') = l_{\omega_n}^{\tau} form (f_1(\omega') \cup f_2(\omega')),$$

and for $p \in \omega$ we have $f(p) = l_{\omega_n}^{\tau} form(\bigcup_{i \in I} f_i(p))$. In particular,

$$(f_1 \vee_{\omega_n}^{\tau} f_2)(p) = l_{\omega_n}^{\tau} form (f_1(p) \cup f_2(p))$$

if at least one of formations $f_i(p) \neq \emptyset$. If $f_i(p) = \emptyset$ for all $i \in I$, then we suppose $f(p) = \emptyset$.

Lemma 5. Let \mathfrak{M} and \mathfrak{H} be τ -closed n-multiply ω -saturated formations. Then

$$(\mathfrak{N}_{\omega}\mathfrak{M})\vee_{\omega_{n+1}}^{\tau}(\mathfrak{N}_{\omega}\mathfrak{H})=\mathfrak{N}_{\omega}(\mathfrak{M}\vee_{\omega_{n}}^{\tau}\mathfrak{H}).$$

Proof. Let $\mathfrak{M}_1 = \mathfrak{N}_{\omega}\mathfrak{M}$, $\mathfrak{H}_1 = \mathfrak{N}_{\omega}\mathfrak{H}$ and $\mathfrak{F} = \mathfrak{N}_{\omega}(\mathfrak{M} \vee_{\omega_n}^{\tau} \mathfrak{H})$. By [10, Theorem 7], these formations have inner $l_{\omega_n}^{\tau}$ -valued ω -local satellites m, h and f such that for every $a \in \omega \cup \{\omega'\}$ we have $m(a) = \mathfrak{M}, h(a) = \mathfrak{H}$ and $f(a) = \mathfrak{M} \vee_{\omega_n}^{\tau} \mathfrak{H}$.

On the other hand, by [14, Lemma 4],

$$(\mathfrak{N}_{\omega}\mathfrak{M})\vee_{\omega_{n+1}}^{\tau}(\mathfrak{N}_{\omega}\mathfrak{H})=LF_{\omega}(m\vee_{\omega_{n}}^{\tau}h),$$

where for every $a \in \omega \cup \{\omega'\}$ we have

$$(m \vee_{\omega_n}^{\tau} h)(a) = m(a) \vee_{\omega_n}^{\tau} h(a) = l_{\omega_n}^{\tau} \text{form} (m(a) \cup h(a))$$
$$= l_{\omega_n}^{\tau} \text{form} (\mathfrak{M} \cup \mathfrak{H}) = \mathfrak{M} \vee_{\omega_n}^{\tau} \mathfrak{H} = f(a).$$

Hence, $m \vee_{\omega_n}^{\tau} h = f$. Therefore,

$$(\mathfrak{N}_{\omega}\mathfrak{M})\vee_{\omega_{n+1}}^{\tau}(\mathfrak{N}_{\omega}\mathfrak{H})=LF_{\omega}(m\vee_{\omega_{n}}^{\tau}h)=LF_{\omega}(f)=\mathfrak{N}_{\omega}(\mathfrak{M}\vee_{\omega_{n}}^{\tau}\mathfrak{H}).$$

This proves the lemma.

Lemma 6. Let $|\omega| > 1$ and \mathfrak{H} be a non-empty formation. Suppose that the product $\mathfrak{N}_{\omega}\mathfrak{H}$ is an *n*-multiply ω -saturated formation $(n \geq 1)$. Then \mathfrak{H} is (n-1)-multiply ω -saturated.

Proof. We proceed by induction on n. Since every formation is 0-multiply ω -saturated by definition, it follows that for n = 1 the lemma is true.

We assume that n > 1 and the desired assertion holds for n - 1. Lemma 1 implies that $\mathfrak{F} = \mathfrak{N}_{\omega}\mathfrak{H}$ has an inner ω -local satellite f such that $f(a) = \mathfrak{H}$ for every $a \in \omega \cup \{\omega'\}$. Hence, by [10, Remark 1], the canonical ω -local satellite F of \mathfrak{F} has the form $F(\omega') = \mathfrak{F}$ and $F(p) = \mathfrak{N}_p\mathfrak{H}$ for all $p \in \omega$. By assumption and Lemma 2, \mathfrak{F} has an $l_{\omega_{n-1}}$ -valued ω -local satellite h. Then by [10, Remark 2], $F(\omega') = \mathfrak{F}$ and $F(p) = \mathfrak{N}_p(h(p) \cap \mathfrak{F}) \in l_{\omega_{n-1}} = \mathfrak{N}_p\mathfrak{H}$ for all $p \in \omega$. Therefore, the formation $\mathfrak{N}_p\mathfrak{H}$ is (n-1)-multiply ω -saturated for all $p \in \omega$ by [10, Corollary 9].

We show that

$$\mathfrak{N}_p l^{\tau}_{\omega_{n-2}} form\left(G/F_p(G) \,|\, G \in \mathfrak{H}\right) \subseteq \mathfrak{H}$$

for all $p \in \omega$. Since $\mathfrak{N}_p\mathfrak{H}$ is (n-1)-multiply ω -saturated, by [10, Theorem 2], we have $\mathfrak{N}_p l_{\omega_{n-2}}$ form $(G/F_p(G) \mid G \in \mathfrak{N}_p\mathfrak{H}) \subseteq \mathfrak{N}_p\mathfrak{H}$ for every $p \in \omega$. Let $p \in \omega$. Suppose $q \in \omega \setminus \{p\}$. For every group $G \in \mathfrak{N}_p\mathfrak{H}$, we have $G^{\mathfrak{H}} \subseteq O_{q'}(G)$. Hence, $F_q(G/G^{\mathfrak{H}}) = F_q(G)/G^{\mathfrak{H}}$ and therefore

$$G/F_q(G) \simeq (G/G^{\mathfrak{H}})/(F_q(G)/G^{\mathfrak{H}})$$

= $(G/G^{\mathfrak{H}})/F_q(G/G^{\mathfrak{H}}) \in l^{\tau}_{\omega_{n-2}} form (G/F_q(G) | G \in \mathfrak{H}).$

Consequently,

$$l_{\omega_{n-2}} \operatorname{form} \left(G/F_q(G) \, | \, G \in \mathfrak{N}_p \mathfrak{H} \right) = l_{\omega_{n-2}} \operatorname{form} \left(G/F_q(G) \, | \, G \in \mathfrak{H} \right).$$

It follows that

$$\mathfrak{N}_{q}l_{\omega_{n-2}}form\left(G/F_{q}(G)\,|\,G\in\mathfrak{N}_{p}\mathfrak{H}\right)=\mathfrak{N}_{q}l_{\omega_{n-2}}form\left(G/F_{q}(G)\,|\,G\in\mathfrak{H}\right)\subseteq\mathfrak{N}_{p}\mathfrak{H}.$$
 (1)

Now we show that

$$\mathfrak{N}_{q}l_{\omega_{n-2}}$$
form $(G/F_{q}(G) \mid G \in \mathfrak{H}) \subseteq \mathfrak{H}.$ (2)

Assume false. Let A be a group of minimal order in

 $\mathfrak{N}_{q}l_{\omega_{n-2}}$ form $(G/F_{q}(G) \mid G \in \mathfrak{H}) \setminus \mathfrak{H}$.

Let $R = A^{\mathfrak{H}}$ be the socle of A. By (1), we have $A \in \mathfrak{N}_{p}\mathfrak{H}$. Hence, $R \subseteq O_{p}(A)$. Moreover, $A^{l_{\omega_{n-2}}form(G/F_{q}(G) \mid G \in \mathfrak{H})} \subseteq O_{q}(A)$. Therefore, $A^{l_{\omega_{n-2}}form(G/F_{q}(G) \mid G \in \mathfrak{H})} = 1$. Consequently, $A \in l_{\omega_{n-2}}form(G/F_{q}(G) \mid G \in \mathfrak{H})$. Note that

$$l_{\omega_{n-2}}$$
form $(G/F_q(G) \mid G \in \mathfrak{H}) \subseteq \mathfrak{H}$.

In fact, as it was proved above, $\mathfrak{N}_p\mathfrak{H}$ is (n-1)-multiply ω -saturated and hence is (n-2)-multiply ω -saturated. By induction, \mathfrak{H} is (n-2)-multiply ω -saturated.

 \Box

On Lattices of Formations of Finite Groups

Consequently, $l_{\omega_{n-2}}$ form $(G/F_q(G) | G \in \mathfrak{H}) \subseteq \mathfrak{H}$. Hence, $A \in \mathfrak{H}$. This contradiction proves the inclusion (2).

Since $\mathfrak{N}_{q}\mathfrak{H}$ is (n-1)-multiply ω -saturated, it analogously follows that

$$\mathfrak{N}_p l_{\omega_{n-2}}$$
form $(G/F_p(G) \mid G \in \mathfrak{H}) \subseteq \mathfrak{H}$.

Thus, $\mathfrak{N}_{pl_{\omega_{n-2}}}$ form $(G/F_p(G) | G \in \mathfrak{H}) \subseteq \mathfrak{H}$ for all $p \in \omega$. Hence, by [10, Theorem 2], \mathfrak{H} is (n-1)-multiply ω -saturated as desired.

3 Proof of the Theorem

Since for any formations $\mathfrak{M}, \mathfrak{H} \in l_{\omega_n}^{\tau}$, we have

$$\mathfrak{M}\vee_{\omega_n}^{\tau}\mathfrak{H}\subseteq\mathfrak{M}\vee_{\omega_{n+1}}^{\tau}\mathfrak{H}\subseteq\cdots\subseteq\mathfrak{M}\vee_{\omega_m}^{\tau}\mathfrak{H},$$

it suffices to prove the theorem for m = n + 1.

We proceed by induction on n. Let n = 0. We consider the formation $\mathfrak{F} = \mathfrak{N}_p\mathfrak{N}_r \vee \mathfrak{N}_p\mathfrak{N}_q$, where $p \in \omega$ but p, r and q are pairwise distinct primes. We show that \mathfrak{F} is not saturated. Assume false and let f be the minimal ω -local satellite of \mathfrak{F} . It is easy to see that $f(p) = \mathfrak{N}_{\{r,q\}}$. Let Z_r and Z_q be groups of orders r and q, respectively. By [3, B, Corollary 10.7], the group $B = Z_r \times Z_q$ has a simple faithful module P over the field \mathbb{F}_p . Let G = [P]B. Using [10, Lemma 4], we have $G \in \mathfrak{F}$. Clearly, $G \notin \mathfrak{N}_p\mathfrak{N}_r \cup \mathfrak{N}_p\mathfrak{N}_q$. Hence, by Lemma 3, there exists a group H in \mathfrak{F} and normal subgroups $N, M, N_1, \ldots, N_t, M_1, \ldots, M_t$ ($t \geq 2$) of H such that the following statements hold: (i) $H/N \simeq G, M/N = \operatorname{Soc}(H/N)$; (ii) $N_1 \cap \cdots \cap N_t = 1$; (iii) H/N_i is a monolithic $(\mathfrak{N}_p\mathfrak{N}_r \cup \mathfrak{N}_p\mathfrak{N}_q)$ -group and M_i/N_i is the socle of H/N_i which is H-isomorphic to M/N. Let $H/N_1 \in \mathfrak{N}_p\mathfrak{N}_r$. Since $C_G(P) = P$, it follows that $M = C_H(M/N)$. Hence, $M_1 \subseteq M$. Consequently, $B = Z_r \times Z_q \in \mathfrak{N}_p\mathfrak{N}_r$. This contradiction proves that \mathfrak{F} is not ω -saturated. Since the formations $\mathfrak{N}_p, \mathfrak{N}_r$ and \mathfrak{N}_q are s-closed and ω -saturated, it follows that both formations $\mathfrak{N}_p\mathfrak{N}_r$ and $\mathfrak{N}_p\mathfrak{N}_q$ are τ -closed and ω -saturated. By Lemma 4,

$$\begin{split} \mathfrak{N}_p\mathfrak{N}_r \lor_{\omega_1}^{\tau}\mathfrak{N}_p\mathfrak{N}_q &= l_{\omega_1}^{\tau} \mathrm{form}\left(\mathfrak{N}_p\mathfrak{N}_r \cup \mathfrak{N}_p\mathfrak{N}_q\right) \\ &= \mathrm{form}\left(\mathfrak{N}_p\mathfrak{N}_r \cup \mathfrak{N}_p\mathfrak{N}_q\right) = \mathfrak{N}_p\mathfrak{N}_r \lor \mathfrak{N}_p\mathfrak{N}_q, \end{split}$$

hence the lattice $l_{\omega_1}^{\tau}$ is not a sublattice of $l_{\omega_0}^{\tau}$.

Now we assume that n > 1 and the theorem holds for n - 1. Then there exist τ -closed *n*-multiply ω -saturated formations \mathfrak{M} and \mathfrak{H} such that $\mathfrak{M} \vee_{\omega_{n-1}}^{\tau} \mathfrak{H} \notin l_{\omega_n}^{\tau}$. Let $\mathfrak{M}_1 = \mathfrak{N}_{\omega}\mathfrak{M}$ and $\mathfrak{H}_1 = \mathfrak{N}_{\omega}\mathfrak{H}$. By [10, Theorem 7], \mathfrak{M}_1 and \mathfrak{H}_1 have inner $l_{\omega_n}^{\tau}$ -valued satellites m and h such that $m(a) = \mathfrak{M}$ and $h(a) = \mathfrak{H}$ for every $a \in \omega \cup \{\omega'\}$. Hence, both \mathfrak{M}_1 and \mathfrak{H}_1 belong to $l_{\omega_{n+1}}^{\tau}$. Suppose $\mathfrak{M}_1 \vee_{\omega_n}^{\tau} \mathfrak{H}_1 \in l_{\omega_{n+1}}^{\tau}$. By Lemma 5, we have

$$\mathfrak{M}_1 ee_{\omega_n}^{ au} \mathfrak{H}_1 = \mathfrak{N}_\omega (\mathfrak{M} ee_{\omega_{n-1}}^{ au} \mathfrak{H})_2$$

and

$$\mathfrak{M}_1 \vee_{\omega_n}^{\tau} \mathfrak{H}_1 = l_{\omega_n}^{\tau} form \left(\mathfrak{M}_1 \cup \mathfrak{H}_1 \right) = l_{\omega_{n+1}}^{\tau} form \left(\mathfrak{M}_1 \cup \mathfrak{H}_1 \right) = \mathfrak{M}_1 \vee_{\omega_{n+1}}^{\tau} \mathfrak{H}_1.$$

Then by Lemma 6, $\mathfrak{M} \vee_{\omega_{n-1}}^{\tau} \mathfrak{H}$ is *n*-multiply ω -saturated. Hence, $\mathfrak{M} \vee_{\omega_{n-1}}^{\tau} \mathfrak{H} \in l_{\omega_n}^{\tau}$. This contradicts the choice of \mathfrak{M} and \mathfrak{H} . Thus, the lattice $l_{\omega_{n+1}}^{\tau}$ is not a sublattice of $l_{\omega_n}^{\tau}$ and the theorem is proved.

As an immediate consequence, we have:

Corollary 1. [12] Let m and n be non-negative integers with m > n. Then the lattice l_m^{τ} is not a sublattice of l_n^{τ} .

By l_m we denote the lattice of all *m*-multiply saturated formations.

Corollary 2. Let *m* and *n* be non-negative integers with m > n. Then the lattice l_m is not a sublattice of l_n .

Finally, we note that Safonov proved the modularity of the lattice of all totally saturated formations [6] and the modularity of the lattice of all τ -closed totally saturated formations [5]. We also note that in [11] and [14], it was proved that every law of the lattice of all τ -closed formations is fulfilled in the lattice of all τ -closed n-multiply ω -saturated formations (n > 0).

References

- A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006.
- [2] A. Ballester-Bolinches, L.A. Shemetkov, On lattices of p-local formations of finite groups, Math. Nachr. 186 (1997) 57–65.
- [3] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin-New York, 1992.
- [4] Wenbin Guo, The Theory of Classes of Groups, Science Press/Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.
- [5] V.G. Safonov, On modularity of the lattice of τ -closed totally saturated formations of finite groups, Ukrainian Math. Journal **58** (6) (2006) 852–858.
- [6] V.G. Safonov, On modularity of the lattice of totally saturated formations of finite groups Comm. Algebra 35 (11) (2007) 3495–3502.
- [7] I.P. Shabalina, On the lattice of τ -closed *n*-multiply ω -local formations of finite groups, Vesti NAN Belarusi. Ser. Fiz.-Mat. Navuk (2003), No. 1, 28–30 (in Russian).
- [8] L.A. Shemetkov, Formations of Finite Groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978 (in Russian).
- [9] L.A. Shemetkov, A.N. Skiba, Formations of Algebraic Systems, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1989 (in Russian).
- [10] L.A. Shemetkov, A.N. Skiba, Multiply ω-local formations and Fitting classes of finite groups, Siberian Advances in Mathematics 10 (2) (2000) 112–141.
- [11] L.A. Shemetkov, A.N. Skiba, N.N. Vorob'ev, On laws of lattices of partially saturated formations, Asian-European J. Math. 2 (1) (2009) 155–169.
- [12] A.N. Skiba, Algebra of Formations, Belaruskaya Navuka, Minsk, 1997 (in Russian).
- [13] A.N. Skiba, L.A. Shemetkov, Multiply *L*-composition formations of finite groups, Ukrainian Math. Journal **52** (6) (2000) 898–913.
- [14] N.N. Vorob'ev, A.N. Skiba, L.A. Shemetkov, On lattice laws of partially saturated formations, *Doklady NAN Belarusi* 53 (1) (2009) 15–18 (in Russian).