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The following is proved: If �� is the noncancellable product of the formations � and
� and �� ⊆ � for some one-generated saturated finite variety �, then � is soluble.
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1. INTRODUCTION

Throughout this article, all groups are finite. Let � be a class of groups. If
1 ∈ � and G is a group, then we write G� to denote the intersection of all normal
subgroups N of G with G/N ∈ �.

A formation is a class � of groups with the following properties:

(i) Every homomorphic image of any group G ∈ � belongs to �;
(ii) If G/G� ∈ � for all groups G.

A formation � is called soluble if it consists of soluble groups. Nilpotent,
metanilpotent and abelian formations can be defined similarly.

The formation � is said to be: saturated if G ∈ � whenever G/��G� ∈ �; one-
generated saturated formation if � is the intersection of all saturated formations
containing some fixed group; hereditary or a finite variety [1] if H ∈ � whenever H ≤
G ∈ �; identity if every group in � is identity.

The product �� of the formations � and � is the class of all groups G such
that G� ∈ �. This product is said to be noncancellable if � �= �� �= �.

In 2000, at the Gomel Algebraic seminar, A. N. Skiba posed the following
question.

Question. Let � = �� be the product of the formations � and � and this
factorization of � is noncancellable. Suppose that � is a subformation of some one-
generated saturated formation �. What we can say then about �? In particular, is it
true then that � is soluble?
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1088 VOROB’EV

Under some additional conditions on � (for example, if � is saturated [2, 3];
a Baer-local formation [4–6]; �-saturated [7, 8], and so on) the answer to both these
questions are known.

Here we prove, even under weaker conditions on �, the following theorem.

Theorem. Let � be a one-generated saturated finite variety; that is, the intersection of
all hereditary saturated formations containing some fixed group. Suppose that �� ⊆ �,
where � and � are nonidentity formations. Then the following statements hold:

1) Every simple group in � is abelian;
2) If � �= ��, then � is soluble.

From this theorem we get the positive answer to the second of the above two
questions.

Corollary. If �� is the noncancellable product of the formations � and � and
�� ⊆ � for some one-generated saturated formation �, then � is soluble.

In the proof of our theorem we use some ideas in [3, 9].
All unexplained notations and terminologies are standard. The reader is

refereed to [10–13] if necessary.

2. PRELIMINARIES

We use A � B to denote the regular wreath product of the groups A and B.
The symbol �p denotes the class of all p-groups. Let ��G� denote the set of all
prime divisors of the order of the group G and ���� be the set ∪��G�, where G runs
through all groups in �.

For any function of the form

f � � → �formations of groups��

the symbol LF�f� denotes the collection of all groups G such that either G = 1
or G �= 1 and G/CG�H/K� ∈ f�p� for every chief factor H/K of G and every p ∈
��H/K�. It is well known that

Op′�p�G� = ⋂
�CG�H/K� 	H/K is a chief factor of G and p ∈ ��H/K��	

Therefore, G ∈ � = LF�f� if and only if either G = 1 or G �= 1, and G/Op′�p�G� ∈
f�p� for all p ∈ ��G�.

We use lsformG to denote the intersection of all saturated finite varieties
containing the group G. The symbol sformG denotes the intersection of all
hereditary formations containing the group G.

Lemma 2.1 ([10, Theorem 8.3]). Let � = lsformG be a one-generated saturated
finite variety. Then � = LF�f�, where:

1) f�p� = sform�G/Op′�p�G��, for all p ∈ ��G�;
2) f�p� = 
, if p ∈ �\��G�.
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ON FACTORIZATIONS OF SUBFORMATIONS 1089

Lemma 2.2 ([3, Lemma 3.1.9]). Let G = A � B = K � B, where K = ∏
b∈B Ab

1 is the
base group of the wreath product G and A1 is the first copy of the group A in K. Then
the following statements hold:

1) If L is a minimal normal subgroup of G, L1 is the projection of L into A1, and L1 �
Z�A1�, then L = ∏

b∈B�L ∩ A1�
b;

2) If R is a minimal normal subgroup of A1 and R � Z�A1�, then R1 =
∏

b∈B Rb is a
minimal normal subgroup of G;

3) Soc�G� ⊆ ∏
b∈B Mb� where M = Soc�A1�;

4) If L � G, L ⊆ K � G, and M is the projection of L into A1, then �A1/M� � B is a
homomorphic image of the factor group G/L.

Lemma 2.3 ([3, Lemma 3.1.5]). Let A ∈ sformG.

1) exp�A� � exp�G�.
2) The order of any chief factor of A does not exceed the maximal order of chief factors

of G.
3) If H ≤ A, then c�H/H�� � max�c�T/T�� 	 T ≤ G�.

Lemma 2.4. Let � = lsformG be a one-generated saturated finite variety and �� ⊆
�, where � and � are nonidentity formations. If B ∈ � and there is a prime p such
that p	G	 	 exp�B�, then 	A	 = p for all simple groups A ∈ �.

Proof. By Lemma 2.1, � = LF�f�, where

f�p� =
{
sform�G/Op′�p�G��� if p ∈ ��G��


� if p ∈ �\��G�	

Now, write B = B1 × · · · × B	G	, where B1 � · · · � B	G	 are nonidentity groups in �.
Let B ∈ � and p	G	 	 exp�B� for some prime p. Suppose that 	A	 = q �= p for

some simple group A ∈ �.
Let D = A � B = K � B, where K is the base group of D. By the hypotheses p	G	

divides the exponent of B. Then B has a proper cyclic subgroup H and 	H	 = p	G	.
It is easy to see that KOq�B� = Oq�D� = Oq′�q�D� and KOq�B� ∩H = 1. Since D ∈ �,
KOq�B� ∩H = 1, and KOq�B� = Oq�D� = Oq′�q�D�, it follows that

H � H/�KOq�B� ∩H� � �HKOq�B��/�KOq�B��

≤ D/�KOq�B�� = D/Oq�D� = D/Oq′�q�D� ∈ f�q� = sform�G/Oq′�q�G��	

As H ∈ sform�G/Oq′�q�G��, Lemma 2.3 (1) yields exp�H� 	 exp�G/Oq′�q�G��. Hence

exp�H� � exp�G/Oq′�q�G�� and p	G	 = exp�H� = 	H	 � 	G		

Clearly, 	H	 = p	G	 > 	G	, a contradiction. Consequently, q = p. This proves the
lemma. �

Lemma 2.5 ([11, A, Lemma 18.2]). Let W = X �G. Suppose that Y  X. Then
W/Y 
 � �X/Y� �G.
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1090 VOROB’EV

Lemma 2.6 ([11, IV, Proposition 1.5]). Let H/K be a chief factor of a group G, and
let G ∈ � for some formation �. Then �H/K�� �G/CG�H/K�� ∈ �.

Lemma 2.7. Let � = �� be the product of the nonidentity formations � and �.
Assume that every simple group in � is abelian. If there exists a group A ∈ � and a
natural number n such that, for every group B ∈ � with 	B	 � n, the �-residual of the
wreath product T = A � B is not contained subdirectly in the base group of T , then there
exists a group Zp of prime order p and a group D having an exponent greater than pn

such that Zp ∈ � ∩� and D ∈ �.

Proof. Let D1 � · · · � Dn be nonidentity groups in �. Let B1 = D1 × · · · ×Dn

and G1 = A � B1 = K � B1� where K is the base group of the wreath product G1.
Since, by hypothesis, G�

1 is not contained subdirectly in K, by Lemma 2.2 (4),
we can see that there is a normal subgroup M�B1� of A such that A/M�B1� is
a simple group and B2 = �A/M�B1�� � B1 is a homomorphic image of the group
G1/G

�
1 ∈ �. Analogously, we can also see that there is a normal subgroup M�B2�

of A such that A/M�B2� is a simple group and the group B3 = �A/M�B2�� � B2 is a
homomorphic image of the group G2/G

�
2 ∈ �, where G2 = A � B2, and so on. Since

A ∈ �, all groups in the sequence A/M�B1�, A/M�B2�� 	 	 	 � A/M�Bn�� 	 	 	 belong to
the formation �. By our hypothesis, each simple group in � is abelian. Since
	A	<�, there exists a prime p and an infinite sequence of indices i1� i1� 	 	 	 � in� 	 	 	
such that for all j = 1� 2� 	 	 	 and the order of the group A/M�Bij

� is equal to p.
Let Zp be a group of order p, and let T1 = Zp, T2 = Zp � T1� 	 	 	 � Tn = Zp �

Tn−1� 	 	 	 . We are going to show that for any i there exists an index j such that the
group Ti is isomorphic to a subgroup of Bij

. If i = 1, then the result is evident. If
i > 1, then we let j be an index such that the group Ti−1 is isomorphic to a subgroup
of Bij

. But by Lemma 2.5, it is known that Ti = Zp � Ti−1 is isomorphic to a subgroup
of Bij+1

= �A/M�Bij
�� � Bij

. Hence for any natural number i, there exists a natural
number j such that Ti is isomorphic to a subgroup of Bj ∈ �.

Now let P be a p-group and l the length of its composition series. In this
case, by Lemma 2.5 and by induction on l� we see that the group P is isomorphic
to a subgroup of some group Ti ∈ �. Hence, there is a group T ∈ � such that
exp�T��pn. Finally, because B2 = �A/M�B1�� � B1 ∈ � and since Z�B2� �= 1, we have
Zp ∈ � by Lemma 2.6.

Lemma 2.8. Let � = ��, where � and � are formations and �p� = � for some
prime p. If for every simple group A ∈ � we have 	A	 = p, then � = �.

Proof. See page 555 in [5] or page 667 in [6].

Lemma 2.9. Let p be a prime number and � = ��, where every simple group in �
is of order p, then G = A� � �A/A�� ∈ �, for all groups A ∈ �.

Proof. See page 554 in [5] or page 666 in [6].

Lemma 2.10 ([3, Lemma 3.5.20]). Let G be a group and R be a minimal normal
subgroup of G. If R is an elementary abelian p-group, then G ∈ sform�Zp � �G/R��.
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ON FACTORIZATIONS OF SUBFORMATIONS 1091

3. THE PROOF OF THEOREM

By Lemma 2.1, � = LF�f�, where

f�p� =
{
sform�G/Op′�p�G��� if p ∈ ��G��


� if p ∈ �\��G�	

Now, write B = B1 × · · · × B	G	, where B1 � · · · � B	G	 are nonidentity groups in �.
We proceed our proof as follows.

Let A be a simple group in � and D = A � B = K � B, where K is the base
group of the wreath product D. Then, it is clear that D ∈ ��. Hence D ∈ �.

Assume that A is a non-abelian group. Then by Lemma 2.2 (2), (3), the group
D is monolithic, and its monolith is K. Let q ∈ ��K�. Then, evidently, Oq′�q�D� = 1.
Since D ∈ �, it follows that

D/Oq′�q�D� � D ∈ f�q� = sform�G/Oq′�q�G��	

Lemma 2.3 (2) supplies a contradiction. Thus every simple group in � must be
abelian.

Assume that � contains some nonsoluble groups, and let A be a nonsoluble
group of minimal order in �. Then it is obvious that A has a unique minimal
normal subgroup P. Clearly, P is non-abelian and A/P is a soluble group. By
Lemma 2.4, we see that P �= A.

We now prove the following claims:

(1) For every group B ∈ � such that 	B	 > 	G	, the �-residual of the wreath product
T = A � B is not contained subdirectly in the base group of T .
Indeed, if we let T = A � B = K � B, where K is the base group of the wreath
product T . Then, by Lemma 2.2 (2), the group T is monolithic, and its monolith
L coincides with P
 = ∏

b∈BPb
1 � where P1 is the monolith of the first copy A1 of

the group A in K. Assume that T ∈ ��. Then T ∈ �. Then Op′�p�T� = 1, and so

T � T/Op′�p�T� ∈ f�p� = sform�G/Op′�p�G��	

Lemma 2.3 (2) supplies a contradiction. Hence T � �� and thereby the �-
residual of the wreath product T = A � B is not contained subdirectly in the base
group of T .

(2) There exists a group Zp of prime order p and a group B having an exponent greater
than p	G	 such that Zp ∈ � ∩� and B ∈ �.
From the above, it is known that every simple group in � is abelian. Now, let B
be a group in � such that 	B	 > 	G	. Also, let T = A � B = K � B, where K is the
base group of the wreath product T . Assume that T� is contained subdirectly
in K. Then since A ∈ �, we have T� ∈ �, and so T ∈ �� which contradicts
to �1�. Hence T� is not contained subdirectly in K. Now by Lemma 2.7 and �1�
above, the claim �2� holds.

(3) For every group T ∈ ��, we have T� � �T/T�� ∈ �.
In fact, by �2� and by Lemma 2.4, we know that 	H	 = p, for every simple group
H in �. Now by using Lemma 2.9, our claim �3� holds.

(4) �p� = �.
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1092 VOROB’EV

Assume that �p� �⊆ �, and let B be a group of minimal order in �p�\�. Let
R = B� be the monolith of B. Then, it is clear that R is an abelian p-group. Hence
by Lemma 2.10, B ∈ sform�Zp � �B/R��� where Zp is a group of order p. Therefore,
Zp � �B/R� � �. Let T = A � �B/R� = K � �B/R�, where K is the base group of the
wreath product T . Since P is non-abelian and P is a unique minimal normal
subgroup of A, by Lemma 2.2 (2) the group T is monolithic and its monolith L =
P
 = ∏

b∈B/R Pb
1 , where P1 is the monolith of the first copy of A in K. By Lemma 2.10

and recall that A ∈ �, we see that T� is contained subdirectly in K ∈ �. This
shows that T ∈ �. Let D = T 	G	 = T1 × T2 × · · · × T	G	, where T1 � T2 � · · · � T	G	 �
T . Then, it is clear that D ∈ �, and so by �3�, we have E = D� � �D/D�� ∈ �. Clearly,
D� ⊆ T�

1 × T�
2 × · · · × T�

	G	. Hence 	D/D�	 � 	T/T�		G		 Since Zp ∈ �, we have R �=
B. This leads to 	T/T�	 > 1, and so t = 	D/D�	 > 	G	. Clearly, T� �= 1. It is also
clear that Soc�D� = L1 × L2 × · · · × L	G	, where Li is the monolith of the group Ti.

Now we show that every minimal normal subgroup of D� is non-abelian.
Indeed, let Q be a minimal normal subgroup of D�. Assume that Q is a q-
group. Then Oq�D

�� �= 1. Since Oq�D
��charD� and D� D, we have Oq�D

�� D.
This shows that D has a minimal normal subgroup N such that N ⊆ Oq�D

��,
a contradiction. Thus every minimal normal subgroup of D� is non-abelian. It
follows, by Lemma 2.2 (3), that there exists a minimal normal subgroup of E, say
N , such that N is non-abelian and 	N 	 > t � 	G	.

Let p ∈ ��N�. Then Op′�p�E� ∩ N = 1, and so from the E-isomorphism N �
NOp′�p�E�/Op′�p�E� we conclude that E/Op′�p�E� has a chief factor NOp′�p�E�/Op′�p�E�
with 	NOp′�p�E�/Op′�p�E�	 > t.

Since E ∈ �, we have

E/Op′�p�E� ∈ f�p� = sform�G/Op′�p�G��	

But since 	N 	 � 	P	t > 	G	, this is clearly impossible, by Lemma 2.3 (2). Hence
�p� ⊆ �, and consequently, �p� = �. Thus, claim �4� is established.

Now, by Lemma 2.8, we have �� = �. This contradiction shows that � must
be a soluble formation. The proof of the theorem now is completed.
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