On a Question of the Theory of Partially Composition Formations^{*}

(Dedicated to Professor K.P. Shum on the occasion of his 70th birthday)

A.A. Tsarev

Department of Mathematics, P.M. Masherov Vitebsk State University Vitebsk 210038, Belarus E-mail: alex_vitebsk@mail.ru

N.N. Vorob'ev[†] Department of Mathematics, F. Skorina Gomel State University Gomel' 246019, Belarus E-mail: vornic2001@yahoo.com

> Received 11 January 2011 Revised 4 November 2011

Communicated by L.A. Bokut

Abstract. Let n > 0 and ω be a non-empty set of primes. It is proved that the lattice of all τ -closed *n*-multiply ω -composition formations is inductive. It gives a positive answer to a question of Skiba asked in 2001 at the Gomel Algebraic Seminar.

2010 Mathematics Subject Classification: 20D10, 20F17

Keywords: finite group, formation of groups, ω -composition satellite of formation, τ closed *n*-multiply ω -composition formation, inductive lattice of formations

Introduction

All groups considered are finite. Throughout this paper, we will use ω to denote a non-empty set of primes and $\omega' = \mathbb{P} \setminus \omega$. Let $p \in \mathbb{P}$, and G a group. Recall that the subgroup $C^p(G)$ is the intersection of the centralizers of all the abelian p-chief factors of G, with $C^p(G) = G$ if G has no abelian p-chief factors. For any set of groups \mathfrak{X} we denote by $\operatorname{Com}(\mathfrak{X})$ the class of all simple abelian groups A such that $A \cong H/K$, where H/K is a composition factor of $G \in \mathfrak{X}$. The symbol $R_{\omega}(G)$ denotes the \mathfrak{S}_{ω} -radical of G, i.e., the product of all soluble normal ω -subgroups of G.

^{*}Research of the second author is partially supported by Belarussian Republic Foundation of Fundamental Researches (BRFFI–RFFI, grant F10R-231).

[†]Corresponding author.

Recall that a class of groups closed under taking homomorphic images and finite subdirect products is called a formation. A formation \mathfrak{F} is called ω -saturated if $G/L \in \mathfrak{F}$, where $L \subseteq \Phi(G) \cap O_{\omega}(G)$, always implies $G \in \mathfrak{F}$. Last years new natural generalizations of ω -saturated formations were found (ω -composition formations [23], \mathfrak{X} -local formations [1] etc).

Let f be a function of the form

$$f: \omega \cup \{\omega'\} \to \{\text{formations of groups}\}. \tag{(*)}$$

According to [23] we consider the class of groups

$$CF_{\omega}(f) = (G \mid G/R_{\omega}(G) \in f(\omega') \text{ and } G/C^p(G) \in f(p) \text{ for all } p \in \omega \cap \pi(\text{Com}(G))).$$

If \mathfrak{F} is a formation such that $\mathfrak{F} = CF_{\omega}(f)$ for a function f of the form (*), then \mathfrak{F} is said to be ω -composition and f is said to be an ω -composition satellite of \mathfrak{F} [23].

Every formation is 0-multiply ω -composition by definition. For n > 0, a formation \mathfrak{F} is called *n*-multiply ω -composition [23] if $\mathfrak{F} = CF_{\omega}(f)$ and all non-empty values of f are (n-1)-multiply ω -composition formations. With respect to inclusion \subseteq the set of all *n*-multiply ω -composition formations c_n^{ω} is a complete lattice [23].

 \mathfrak{X} -Local formations (see [1]) and ω -saturated formations (see [8, 22]) are important examples of ω -composition (*n*-multiply ω -composition) formations.

We note that *n*-multiply ω -composition formations and *n*-multiply ω -saturated formations are of great interest because they have a wide spectrum of applications in the theory of formations.

In the books [16, 21] and in the recent books [2, 5], it was demonstrated that constructions and results of lattice theory are very useful tools for studying groups and formations of groups. In 1986 Skiba [20] proved that the lattice of all saturated formations is modular. Further many applications of this result for the investigation of the structure of saturated formations were found (see [16, Chapter 4], [21, Chapters 4 and 5], and [5, Chapter 4]). Therefore, this result was developed in researches of many authors. In particular, in [16], the modularity of the lattice of all *n*-multiply saturated formations was established. After a while Ballester-Bolinches and Shemetkov [3] proved that the lattice of all *p*-saturated formations is modular. In [21] it was shown that the lattice of all τ -closed *n*-multiply saturated formations is modular but is not distributive for every subgroup functor τ . At the same time the lattice of all soluble totally saturated formations is distributive [21]. Skiba and Shemetkov [22, 23] proved the modularity of the lattice of all *n*-multiply ω -saturated formations and the lattice of all *n*-multiply \mathfrak{L} -composition formations. The modularity of the lattice of all τ -closed *n*-multiply ω -saturated formations and the lattice of all τ -closed ω -composition formations was established by Shabalina [14] and Zadorozhnyuk [29]. Safonov [11, 12, 13] proved the modularity and then the distributivity of the lattice of all totally saturated formations; Zhiznevsky [30], and independently Tsarev and Vorob'ev [28] proved the modularity of the lattice of all τ -closed *n*-multiply ω -composition formations. In [21] it was shown that for any natural m and n, the law system of the lattice of all τ -closed m-multiply saturated formations coincides with the law system of the lattice of all τ -closed *n*-multiply saturated formations. Later, Guo and Skiba [9] proved that the law system of the lattice of all *m*-multiply ω -saturated formations coincides with the law system of the lattice of all *n*-multiply ω -saturated formations for any infinite set of primes ω and any natural *m* and *n*. In [17] Shemetkov, Skiba and Vorob'ev extended this result to the lattices of τ -closed *n*-multiply ω -saturated formations. Vorob'ev, Skiba and Tsarev [27] proved that the law system of the lattice of all *m*-multiply ω composition formations coincides with the law system of the lattice of all *n*-multiply ω -composition formations for any infinite set of primes ω and any natural *m* and *n*.

At the end of this short review we note that Guo and Shum [7] described nonnilpotent totally saturated formations \mathfrak{F} such that the lattice $\mathfrak{F}/_{\infty}(\mathfrak{F} \cap \mathfrak{N})$ of all totally saturated formations between \mathfrak{F} and $\mathfrak{F} \cap \mathfrak{N}$ is Boolean. Guo [6] described τ -closed *n*-multiply saturated formations \mathfrak{F} such that the lattice $\mathfrak{F}/_n^{\tau}(\mathfrak{F} \cap \mathfrak{N})$ of all τ -closed *n*-multiply saturated formations between \mathfrak{F} and $\mathfrak{F} \cap \mathfrak{N}$ is Boolean.

The analogous questions were investigated in the theory of fiber formations proposed by Vedernikov (see [19, 25, 26]).

In [21] the concept of inductive lattice of formations was introduced. This concept plays an important role in the research of law systems of formation lattices.

Recall that a set of formations Θ is called a *complete lattice of formations* if the intersection of every set of formations in Θ belongs to Θ and there is a formation \mathfrak{F} in Θ such that $\mathfrak{M} \subseteq \mathfrak{F}$ for every other formation \mathfrak{M} of Θ (see [21]). A formation in Θ is called a Θ -formation. Let Θ be a complete lattice of formations. We denote by Θ^{ω_c} the set of all formations having an ω -composition Θ -valued satellite (see [22, 23]). In [23, p. 901], it is proved that Θ^{ω_c} is a complete lattice of formations.

A complete lattice Θ^{ω_c} is called *inductive* if for any collection $\{\mathfrak{F}_i = CF_{\omega}(f_i) | i \in I\}$, where f_i is an integrated satellite of $\mathfrak{F}_i \in \Theta^{\omega_c}$, the following equality holds:

$$\vee_{\Theta^{\omega c}}(\mathfrak{F}_i \mid i \in I) = CF_{\omega}(\vee_{\Theta}(f_i \mid i \in I)).$$

We note, the inductance of a lattice Θ^{ω_c} , in fact, means that a research of the operation $\vee_{\Theta^{\omega_c}}$ on the set Θ^{ω_c} can be reduced to a research of the operation \vee_{Θ} on the set Θ . Therefore, the inductance is an important property of the lattice Θ^{ω_c} . Bearing in mind this fact Skiba asked in 2001 at the Gomel Algebraic Seminar the following question: Is the lattice of all τ -closed n-multiply ω -composition formations inductive?

In this paper, we prove the following theorem which gives a positive answer to this question.

Theorem. Let n > 0 and ω be a non-empty set of primes. Then the lattice of all τ -closed n-multiply ω -composition formations $c_{\omega_n}^{\tau}$ is inductive.

All unexplained notations and terminologies are standard. The reader is referred to [2, 4, 5, 15, 16, 21, 23] if necessary.

1 Preliminaries

In each group G, we select a system of subgroups $\tau(G)$. We say that τ is a subgroup functor if (1) $G \in \tau(G)$ for every group G; and (2) for every epimorphism $\varphi : A \mapsto B$, any $H \in \tau(A)$ and $T \in \tau(B)$, we have $H^{\varphi} \in \tau(B)$ and $T^{\varphi^{-1}} \in \tau(A)$.

If $\tau(G) = \{G\}$, then the functor τ is called *trivial*. A formation \mathfrak{F} is called τ closed if $\tau(G) \subseteq \mathfrak{F}$ for every group G of \mathfrak{F} (see [21]). We will consider only subgroup functors τ such that for any group G all subgroups of $\tau(G)$ are subnormal in G.

Let Θ be a complete lattice of formations. If $\mathfrak{M}, \mathfrak{H} \in \Theta$, then $\mathfrak{M} \cap \mathfrak{H}$ is the greatest lower bound for $\{\mathfrak{M}, \mathfrak{H}\}$ in Θ ; and $\mathfrak{M} \vee_{\Theta} \mathfrak{H}$ is the least upper bound for $\{\mathfrak{M}, \mathfrak{H}\}$ in Θ . A satellite f is called Θ -valued if all its values belong to Θ (see [23]). Lemmas 2.1 and 3.1 of [28] imply the following result.

Lemma 1. Let n be a natural number. Then $(c_{\omega_{n-1}}^{\tau})^{\omega_c} = c_{\omega_n}^{\tau}$.

We cite here some known results as lemmas which will be useful later on.

Let $\{f_i \mid i \in I\}$ be a collection of ω -composition satellites. By $\bigcap_{i \in I} f_i$ we denote the ω -composition satellite f such that $f(a) = \bigcap_{i \in I} f_i(a)$ for all $a \in \omega \cup \{\omega'\}$.

Lemma 2. [23, Lemma 2] Let $\mathfrak{F} = \bigcap_{i \in I} \mathfrak{F}_i$, where $\mathfrak{F}_i = CF_{\omega}(f_i)$. Then $\mathfrak{F} = CF_{\omega}(f)$, where $f = \bigcap_{i \in I} f_i$.

Lemma 3. [24, Lemma 2.8] Let Z_p be a group of prime order p, and G be a group with $O_p(G) = 1$. Suppose that $T = Z_p \wr G = [K]G$ is the regular wreath product, where K is the base group of T. Then $K = C^p(T) = O_p(T)$.

Lemma 4. [23, Lemma 4] Let $\mathfrak{F} = CF_{\omega}(f)$. If $G/O_p(G) \in f(p) \cap \mathfrak{F}$ for some $p \in \omega$, then $G \in \mathfrak{F}$.

Recall that a group class closed under taking homomorphic images is called a semiformation (see [16]). Let \mathfrak{X} be a collection of groups. The symbol τ form \mathfrak{X} denotes the τ -closed formation generated by \mathfrak{X} , i.e., the intersection of all τ -closed formations containing \mathfrak{X} .

Lemma 5. [21, Corollary 1.2.26] Let \mathfrak{X} be a τ -closed semiformation and $A \in \mathfrak{F} = \tau$ form \mathfrak{X} . Suppose that A is a monolithic group and $A \notin \mathfrak{X}$. Then there exists a group H in \mathfrak{F} and normal subgroups $N, N_1, \ldots, N_t; M, M_1, \ldots, M_t$ $(t \geq 2)$ of H such that the following statements hold:

- (1) $H/N \cong A$, $M/N = \operatorname{Soc}(H/N)$.
- (2) $N_1 \cap \cdots \cap N_t = 1.$
- (3) H/N_i is a monolithic \mathfrak{X} -group and M_i/N_i is the socle of H/N_i which is H-isomorphic to M/N.
- (4) $M_1 \cap \cdots \cap M_t \subseteq M$.

Let τ be a subgroup functor. For any collection of groups \mathfrak{X} the symbol s_{τ} denotes the set of groups H such that $H \in \tau(G)$ for some group $G \in \mathfrak{X}$. A class of groups \mathfrak{F} is called τ -closed if $s_{\tau}(\mathfrak{F}) = \mathfrak{F}$. We say that τ is a closed subgroup functor if for any groups G and $H \in \tau(G)$ we have $\tau(H) \subseteq \tau(G)$.

According to [21] we define a partial order \leq on the set of all subgroup functors as follows: $\tau_1 \leq \tau_2$ if and only if $\tau_1(G) \subseteq \tau_2(G)$ for any group $G \in \mathfrak{X}$. By $\overline{\tau}$, we denote the intersection of all closed subgroup functors τ_i such that $\tau \leq \tau_i$. The functor $\overline{\tau}$ is called the *closure* of τ (see [21]). **Lemma 6.** [21, Lemma 1.2.22] Let \mathfrak{X} be a collection of groups. Then

$$\tau \operatorname{form} \mathfrak{X} = \operatorname{QR}_0 \operatorname{S}_{\overline{\tau}} (\mathfrak{X}).$$

Lemma 7. [21, Lemma 4.1.3] Let $N_1 \times \cdots \times N_t = \text{Soc}(G)$, where N_i is a minimal normal subgroup of G (i = 1, ..., t), t > 1, and $O_p(G) = 1$. Let M_i be the largest normal subgroup in G containing $N_1 \times \cdots \times N_{i-1} \times N_{i+1} \times \cdots \times N_t$, but not containing N_i for i = 1, ..., t. Then:

- (1) For every $i \in \{1, ..., t\}$, $O_p(G/M_i) = 1$, G/M_i is monolithic and its socle $N_i M_i/M_i$ is G-isomorphic to N_i .
- (2) $M_1 \cap \cdots \cap M_t = 1.$

2 Inductance of the Lattice $c_{\omega_n}^{\tau}$

Let $\{f_i \mid i \in I\}$ be the collection of all ω -composition $c_{\omega_{n-1}}^{\tau}$ -valued satellites of a formation \mathfrak{F} . Since the lattice $c_{\omega_n}^{\tau}$ is complete, using Lemma 2, we conclude that $f = \bigcap_{i \in I} f_i$ is an ω -composition $c_{\omega_{n-1}}^{\tau}$ -valued satellite of \mathfrak{F} . The satellite f is called minimal. If Θ is a complete lattice of formations, then Θ form \mathfrak{X} is the intersection of all Θ -formations containing a collection of groups \mathfrak{X} . In particular, if $\mathfrak{X} = \{G\}$, we write Θ formG. Thus, $c_{\omega_n}^{\tau}$ form \mathfrak{X} is the intersection of all τ -closed n-multiply ω -composition formations containing a collection of groups \mathfrak{X} .

The following lemma gives a description of the minimal $c_{\omega_{n-1}}^{\tau}$ -valued satellite of a formation $\mathfrak{F} = c_{\omega_n}^{\tau}$ form \mathfrak{X} .

Lemma 8. Let \mathfrak{X} be a non-empty collection of groups, $\mathfrak{F} = c_{\omega_n}^{\tau} \text{form} \mathfrak{X}$, where $n \geq 1$, let $\pi = \omega \cap \pi(\text{Com}(\mathfrak{X}))$, and f the minimal $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition satellite of \mathfrak{F} . Then:

- (1) $f(\omega') = c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/R_{\omega}(G) \mid G \in \mathfrak{X}).$
- (2) $f(p) = c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/C^p(G) | G \in \mathfrak{X})$ for all $p \in \pi$.
- (3) $f(p) = \emptyset$ for all $p \in \omega \setminus \pi$.
- (4) If $\mathfrak{F} = CF_{\omega}(h)$, where h is a $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition satellite, then

$$f(p) = c_{\omega_{n-1}}^{\tau} \operatorname{form}(G \mid G \in h(p) \cap \mathfrak{F}, O_p(G) = 1)$$

for all $p \in \pi$ and

$$f(\omega') = c_{\omega_{n-1}}^{\tau} \operatorname{form}(G \mid G \in h(\omega') \cap \mathfrak{F}, R_{\omega}(G) = 1).$$

Proof. (1)–(3) Let m be a $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition satellite such that

$$m(a) = \begin{cases} c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/R_{\omega}(G) \mid G \in \mathfrak{X}) & \text{if } a = \omega', \\ c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/C^{p}(G) \mid G \in \mathfrak{X}) & \text{if } a = p \in \pi, \\ \varnothing & \text{if } a = p \in \omega \backslash \pi. \end{cases}$$

We show that m = f. Let $\mathfrak{M} = CF_{\omega}(m)$. First we show that $\mathfrak{F} = \mathfrak{M}$. By Lemma 1, \mathfrak{M} is a τ -closed *n*-multiply ω -composition formation.

If $A \in \mathfrak{X}$, then

$$A/R_{\omega}(A) \in c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/R_{\omega}(G) \mid G \in \mathfrak{X}) = m(\omega'),$$

$$A/C^{p}(A) \in c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/C^{p}(G) \mid G \in \mathfrak{X}) = m(p)$$

for all $p \in \pi$. Hence, $A \in \mathfrak{M}$. Consequently, $\mathfrak{X} \subseteq \mathfrak{M}$. Hence, $\mathfrak{F} \subseteq \mathfrak{M}$.

We prove the converse inclusion. Let f_1 be a $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition satellite of \mathfrak{F} . First we prove $m \leq f_1$. Let $A \in \mathfrak{X} \subseteq \mathfrak{F} = CF_{\omega}(f_1)$. Then $A/R_{\omega}(A) \in f_1(\omega')$ and $A/C^p(A) \in f_1(p)$ for all $p \in \pi$. Consequently,

$$m(\omega') \subseteq c_{\omega_{n-1}}^{\tau} \text{form} f_1(\omega') = f_1(\omega'),$$

$$m(p) \subseteq c_{\omega_{n-1}}^{\tau} \text{form} f_1(p) = f_1(p)$$

for all $p \in \pi$. Hence, $m \leq f_1$. Then $\mathfrak{M} \subseteq \mathfrak{F}$. Therefore, $\mathfrak{F} = \mathfrak{M}$ and m = f. Now we prove (4). Let t be an ω -composition satellite such that

$$t(\omega') = c_{\omega_{n-1}}^{\tau} \operatorname{form}(G \mid G \in h(\omega') \cap \mathfrak{F}, R_{\omega}(G) = 1),$$

$$t(p) = c_{\omega_{n-1}}^{\tau} \operatorname{form}(G \mid G \in h(p) \cap \mathfrak{F}, O_p(G) = 1)$$

for all $p \in \pi$. We show that t = f. Let $A \in \mathfrak{X} \subseteq \mathfrak{F} = CF_{\omega}(h)$. Hence, $A/R_{\omega}(A) \in h(\omega') \cap \mathfrak{F}$. Since $R_{\omega}(A/R_{\omega}(A)) = 1$, it follows that

$$A/R_{\omega}(A) \in c_{\omega_{n-1}}^{\tau} \text{form}(G \mid G \in h(\omega') \cap \mathfrak{F}, R_{\omega}(G) = 1) = t(\omega').$$

Thus, $f(\omega') \subseteq t(\omega')$.

Since $A \in \mathfrak{X}$, it follows that $A/C^p(A) \in h(p) \cap \mathfrak{F}$ for all $p \in \omega \cap \pi(\operatorname{Com}(A))$. Since $O_p(A/C^p(A)) = 1$, it follows that

$$A/C^{p}(A) \in c_{\omega_{n-1}}^{\tau} \text{form}(G \mid G \in h(p) \cap \mathfrak{F}, O_{p}(G) = 1) = t(p)$$

for all $p \in \pi$. Hence, $f(p) \subseteq t(p)$ for all $p \in \pi$. Thus, $f \leq t$.

Now we prove $t \leq f$. Let $A \in (G \mid G \in h(\omega') \cap \mathfrak{F}, R_{\omega}(G) = 1)$. Then $A \in f(\omega')$. It follows that $t(\omega') \subseteq c_{\omega_{n-1}}^{\tau} \operatorname{form} f(\omega') = f(\omega')$.

Let $A \in (G | G \in h(p) \cap \mathfrak{F}, O_p(G) = 1)$, where $p \in \pi$. Let $T = Z_p \wr A = [K]A$, where K is the base group of T. By Lemma 3, $C^p(T) = K$. Applying the properties of regular wreath products we have $T/O_p(T) = T/K = T/C^p(T) \in h(p) \cap \mathfrak{F}$. Hence, by Lemma 4, $T \in \mathfrak{F}$. Therefore, $A \cong T/O_p(T) \in f(p)$. It follows that

$$t(p) \subseteq c_{\omega_{n-1}}^{\tau} \operatorname{form} f(p) = f(p).$$

Consequently, $t \leq f$. Thus,

$$\begin{split} f(\omega') &= c_{\omega_{n-1}}^{\tau} \text{form}(G \,|\, G \in h(\omega') \cap \mathfrak{F}, \, R_{\omega}(G) = 1), \\ f(p) &= c_{\omega_{n-1}}^{\tau} \text{form}(G \,|\, G \in h(p) \cap \mathfrak{F}, \, O_p(G) = 1) \end{split}$$

for all $p \in \pi$ and the lemma is proved.

Lemma 9. Let A be a monolithic group, R a non-abelian socle of A, \mathfrak{M} a τ -closed semiformation and $A \in c^{\tau}_{\omega_n}$ form \mathfrak{M} , where $n \geq 0$. Then $A \in \mathfrak{M}$.

Proof. We proceed by induction on n. Let n = 0. Then $A \in c_{\omega_0}^{\tau} \operatorname{form} \mathfrak{M} = \tau \operatorname{form} \mathfrak{M}$. Let $A \notin \mathfrak{M}$. Then, by Lemma 5, there exists a group H in $\tau \operatorname{form} \mathfrak{M}$ and normal subgroups $N, N_1, \ldots, N_t; M, M_1, \ldots, M_t$ $(t \geq 2)$ of H such that (1) $H/N \cong A$, $M/N = \operatorname{Soc}(H/N);$ (2) H/N_i is a monolithic \mathfrak{M} -group, M_i/N_i is the socle of H/N_i and $M_i/N_i \stackrel{H}{\cong} M/N$ for $i = 1, \ldots, t$.

Since the socle $R \cong M/N$ is non-abelian, it follows that $C_H(M/N) = N$. Besides, $M_i/N_i \stackrel{H}{\cong} M/N$. Hence, $N_i \subseteq N$. Therefore, $A \cong H/N \in \mathfrak{M}$, a contradiction. This completes the proof of the lemma for n = 0.

Let n > 0, and let the lemma holds for n - 1. Suppose that f is the minimal $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition satellite of $\mathfrak{F} = c_{\omega_n}^{\tau}$ form \mathfrak{M} . Since R is non-abelian, it follows that $\pi(\operatorname{Com}(R)) = \emptyset$. Hence, $R_{\omega}(A) = 1$. Consequently, by Lemma 8, we have $A \cong A/1 = A/R_{\omega}(A) \in f(\omega') = c_{\omega_{n-1}}^{\tau}$ form $(G/R_{\omega}(G) | G \in \mathfrak{M})$. Therefore,

$$A \in c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/R_{\omega}(G) \mid G \in \mathfrak{M}) \subseteq c_{\omega_{n-1}}^{\tau} \operatorname{form} \mathfrak{M}.$$

By induction, $A \in \mathfrak{M}$, as desired.

Lemma 10. Let \mathfrak{M} be a semiformation and $A \in c_{\omega_n}^{\tau}$ form \mathfrak{M} , where $n \geq 0$. Let $\mathfrak{M}_1 = (G/O_p(G) | G \in \mathfrak{M})$ and $\mathfrak{M}_2 = (G/R_{\omega}(G) | G \in \mathfrak{M})$.

(1) If $O_p(A) = 1$ and $p \in \omega$, then $A \in c_{\omega_n}^{\tau} \text{form}\mathfrak{M}_1$.

(2) If $R_{\omega}(A) = 1$, then $A \in c_{\omega_n}^{\tau} \text{form}\mathfrak{M}_2$.

Proof. If $A \in \mathfrak{M}$, the result is clear. Hence, we may suppose $A \notin \mathfrak{M}$.

Suppose that A is a monolithic group and R is the socle of A. We proceed by induction on n. Let n = 0. Since $A \notin \mathfrak{M}$ and $A \in c_{\omega_0}^{\tau} \text{form} \mathfrak{M} = \tau \text{form} \mathfrak{M}$, by Lemma 5, there exists a group H in $\tau \text{form} \mathfrak{M}$, normal subgroups N, N_1, \ldots, N_t ; M, M_1, \ldots, M_t $(t \ge 2)$ of H such that $H/N \cong A$, M/N = Soc(H/N); $N_1 \cap \cdots \cap N_t$ = 1; H/N_i is a monolithic \mathfrak{M} -group and M_i/N_i is the socle of H/N_i which is H-isomorphic to M/N.

Since $O_p(A) = 1$ and $R_{\omega}(A) = 1$, by Lemma 5, we have

$$H \in \mathbf{R}_0(H/N_1, \ldots, H/N_t) \subseteq \mathbf{R}_0\mathfrak{M}_i,$$

where j = 1, 2. Hence, by Lemma 5(1) and Lemma 6,

 $A \cong H/N \in QR_0(H/N_1, \ldots, H/N_t) = form(H/N_1, \ldots, H/N_t) \subseteq \tau form\mathfrak{M}_i,$

where j = 1, 2.

Let n > 0. Suppose $O_p(A) = 1$. If R is non-abelian, then Lemma 9 implies $A \in \mathfrak{M}$. This contradicts the choice of A. Hence, R is a q-group, where $q \in \omega \setminus \{p\}$.

Let $\mathfrak{F} = c_{\omega_n}^{\tau} \text{form} \mathfrak{M}$ and $\mathfrak{H}_j = c_{\omega_n}^{\tau} \text{form} \mathfrak{M}_j$, where j = 1, 2. Let f and h_j (j = 1, 2) be the minimal $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition satellites of \mathfrak{F} and \mathfrak{H}_j respectively. By Lemma 8,

$$f(\omega') = c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/R_{\omega}(G) | G \in \mathfrak{M}),$$

$$f(q) = c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/C^{q}(G) | G \in \mathfrak{M})$$

for all $q \in \omega \cap \pi(\operatorname{Com}(\mathfrak{M}));$

$$\begin{split} h_j(\omega') &= c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/R_{\omega}(G) \,|\, G \in \mathfrak{M}_j), \\ h_j(q) &= c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/C^q(G) \,|\, G \in \mathfrak{M}_j) \end{split}$$

for all $q \in \omega \cap \pi(\operatorname{Com}(\mathfrak{M}_j))$ and j = 1, 2.

Since for every group G we have

$$G/R_{\omega}(G) \cong (G/O_p(G))/(R_{\omega}(G)/O_p(G)) = (G/O_p(G))/R_{\omega}(G/O_p(G)),$$

it follows that $f(\omega') = h_j(\omega')$ for j = 1, 2.

If $q \notin \omega$, then $R_{\omega}(A) = 1$. Therefore,

$$A \cong A/1 = A/R_{\omega}(A) \in f(\omega') = h_1(\omega') \subseteq \mathfrak{H}_1.$$

Let $q \in \omega$. We show that $A/R \in \mathfrak{H}_1$. Since $A \in \mathfrak{F}$, it follows that $A/R_{\omega}(A) \in f(\omega') = h_1(\omega') \subseteq \mathfrak{H}_1$.

Let $O_p(A/R) = 1$. Since |A/R| < |A|, by induction, $A/R \in \mathfrak{H}_1$.

Let $O_p(A/R) \neq 1$. Let $R \subseteq \Phi(A)$ and $D/R = O_p(A/R)$. Then D is nilpotent. Hence, $D = D_p \times D_q$, where D_p is a Sylow p-subgroup of D and D_q is a Sylow q-subgroup of D. Consequently, $D_p = O_p(D) = 1$, a contradiction. Hence, $R \not\subseteq \Phi(A)$. It follows that $R = C_A(R) = C^q(A)$.

Suppose $\omega \cap \pi(\operatorname{Com}(A/R)) = \emptyset$. Then $R_{\omega}(A/R) = 1$. Since $f(\omega') = h_1(\omega')$, we have

$$A/R \cong (A/R)/1 = (A/R)/R_{\omega}(A/R) \in f(\omega') = h_1(\omega') \subseteq \mathfrak{H}_1.$$

Consequently, $\omega \cap \pi(\operatorname{Com}(A/R)) \neq \emptyset$. Let $q \in \omega \cap \pi(\operatorname{Com}(A/R))$. Since for every group G we have

$$G/C^{q}(G) \cong (G/O_{p}(G))/(C^{q}(G)/O_{p}(G)) = (G/O_{p}(G))/C^{q}(G/O_{p}(G)),$$

it follows that $f(q) = h_1(q)$. Since $A \in \mathfrak{F}$, it follows that

$$A/R = A/C^q(A) \in f(q) = h_1(q) \subseteq \mathfrak{H}_1.$$

Thus, $A/R \in \mathfrak{H}_1$. Hence,

$$A/C^{r}(A) \cong (A/R)/(C^{r}(A)/R) = (A/R)/C^{r}(A/R) \in h_{1}(r)$$

for all $r \in \omega \cap \pi(\operatorname{Com}(A/R)) \setminus \{q\}$. Consequently, $A/C^r(A) \in h_1(r)$ for all $r \in \omega \cap \pi(\operatorname{Com}(A))$. Besides, since $A \in \mathfrak{F}$, it follows that $A/R_{\omega}(A) \in f(\omega') = h_1(\omega')$. Hence, $A \in \mathfrak{H}_1$. This proves (1).

We now prove (2). Since $A \in \mathfrak{F}$ and $R_{\omega}(A) = 1$, it follows that

$$A \cong A/1 = A/R_{\omega}(A) \in f(\omega') = h_2(\omega')$$
$$= c_{\omega_{n-1}}^{\tau} \operatorname{form}(G/R_{\omega}(G) \mid G \in \mathfrak{M}_2) \subseteq c_{\omega_{n-1}}^{\tau} \operatorname{form} \mathfrak{M}_2 \subseteq \mathfrak{H}_2.$$

Thus, $A \in \mathfrak{H}_2$.

Now suppose $\operatorname{Soc}(A) = N_1 \times \cdots \times N_t$, where N_i is a minimal normal subgroup of A and t > 1. Let M_i be the largest normal subgroup of A containing $N_1 \times \cdots \times N_{i-1} \times N_{i+1} \times \cdots \times N_t$, but not containing N_i for $i = 1, \ldots, t$. Using Lemma 7, we have $A \in \operatorname{R}_0(A/M_1, \ldots, A/M_t)$. Since $A \in c_{\omega_n}^{\tau}$ form \mathfrak{M} , it follows that $A/M_i \in c_{\omega_n}^{\tau}$ form \mathfrak{M}_1 . As we proved above, $A/M_i \in c_{\omega_n}^{\tau}$ form \mathfrak{M}_1 . Consequently, $A \in c_{\omega_n}^{\tau}$ form \mathfrak{M}_1 .

Considering the proof of Lemma 7 and replacing the condition $O_p(A) = 1$ by the condition $R_{\omega}(A) = 1$, we conclude that A/M_i is monolithic, $N_i M_i/M_i$ is the socle of A/M_i and $R_{\omega}(A/M_i) = 1$ for any $i \in \{1, \ldots, t\}$. As we proved above, $A/M_i \in c_{\omega_n}^{\tau}$ form \mathfrak{M}_2 . Consequently,

$$A \cong A/1 = A/(M_1 \cap \cdots \cap M_t) \in c_{\omega_n}^{\tau} \text{form}\mathfrak{M}_2,$$

as claimed.

=

Let Θ be a complete lattice of formations. Let $\{\mathfrak{F}_i \mid i \in I\}$ be an arbitrary collection of Θ -formations. We denote $\vee_{\Theta}(\mathfrak{F}_i \mid i \in I) = \Theta$ form $(\bigcup_{i \in I} \mathfrak{F}_i)$. In particular, $\vee_{\omega_n}^{\tau}(\mathfrak{F}_i \mid i \in I) = c_{\omega_n}^{\tau}$ form $(\bigcup_{i \in I} \mathfrak{F}_i)$. Let $\{f_i \mid i \in I\}$ be a collection of Θ -valued functions of the form $f_i : \omega \cup \{\omega'\} \to \{$ formations of groups $\}$. In this case, by $\vee_{\Theta}(f_i \mid i \in I)$ we denote a function f such that $f(a) = \Theta$ form $(\bigcup_{i \in I} f_i(a))$ for all $a \in \omega \cup \{\omega'\}$.

The following lemma is proved by direct calculation.

Lemma 11. Let $n \geq 1$, and f_i be the minimal $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition satellite of a formation \mathfrak{F}_i for $i \in I$. Then $\vee_{\omega_{n-1}}^{\tau}(f_i \mid i \in I)$ is the minimal $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition satellite of $\mathfrak{F} = \vee_{\omega_n}^{\tau}(\mathfrak{F}_i \mid i \in I)$.

If $\mathfrak{F} = CF_{\omega}(f)$ and $f(a) \subseteq \mathfrak{F}$ for all $a \in \omega \cup \{\omega'\}$, then f is called an *integrated* satellite of \mathfrak{F}.

Proof of Theorem. Let $\{\mathfrak{F}_i \mid i \in I\}$ be a collection of τ -closed *n*-multiply ω -composition formations and f_i an integrated $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition satellite of \mathfrak{F}_i . Let $\mathfrak{F} = \bigvee_{\omega_n}^{\tau} (\mathfrak{F}_i \mid i \in I), \mathfrak{M} = CF_{\omega}(\bigvee_{\omega_{n-1}}^{\tau} (f_i \mid i \in I))$ and h_i be the minimal $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition satellite of \mathfrak{F}_i . Then by Lemma 11, $h = \bigvee_{\omega_{n-1}}^{\tau} (h_i \mid i \in I)$ is the minimal $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition satellite of \mathfrak{F} . Since $h_i \leq f_i$ for all $i \in I$, we have $h \leq f = \bigvee_{\omega_{n-1}}^{\tau} (f_i \mid i \in I)$. Hence, $\mathfrak{F} \subseteq \mathfrak{M}$. Suppose $\mathfrak{M} \not\subseteq \mathfrak{F}$. Let G be a group of minimal order in $\mathfrak{M} \setminus \mathfrak{F}$. Then G is a

Suppose $\mathfrak{M} \not\subseteq \mathfrak{F}$. Let G be a group of minimal order in $\mathfrak{M} \setminus \mathfrak{F}$. Then G is a monolithic group and $R = G^{\mathfrak{F}}$ is the socle of G. Let $\omega \cap \pi(\operatorname{Com}(R)) = \emptyset$. Then $R_{\omega}(G) = 1$. Consequently,

$$G \cong G/1 = G/R_{\omega}(G) \in f(\omega') = (\vee_{\omega_{n-1}}^{\tau}(f_i \mid i \in I))(\omega')$$
$$= c_{\omega_{n-1}}^{\tau} \operatorname{form}(\bigcup_{i \in I} f_i(\omega')) = c_{\omega_{n-1}}^{\tau} \operatorname{form}(\bigcup_{i \in I} \mathfrak{F}_i).$$

Hence, by Lemma 9, $G \in \bigcup_{i \in I} \mathfrak{F}_i \subseteq c_{\omega_{n-1}}^{\tau} \text{form} \left(\bigcup_{i \in I} \mathfrak{F}_i \right) = \mathfrak{F}$, a contradiction. Consequently, $\omega \cap \pi(\text{Com}(R)) \neq \emptyset$.

If R is non-abelian, then $\pi(\operatorname{Com}(R)) = \emptyset$. Hence, $\omega \cap \pi(\operatorname{Com}(R)) = \emptyset$, a contradiction. Consequently, R is a p-group, where $p \in \omega \cap \pi(\operatorname{Com}(R))$. Since $G \in \mathfrak{M} = CF_{\omega}(f)$, it follows that $G/R \in \mathfrak{M}$. Since |G/R| < |G|, by induction, we

have $G/R \in \mathfrak{F} = CF_{\omega}(h)$. Hence,

$$\begin{aligned} (G/R)/R_{\omega}(G/R) &= (G/R)/(R_{\omega}(G)/R) \cong G/R_{\omega}(G) \in h(\omega'), \\ (G/R)/C^q(G/R) &= (G/R)/(C^q(G)/R) \cong G/C^q(G) = h(q) \end{aligned}$$

for all $q \in \omega \cap \pi(\operatorname{Com}(G/R)) \setminus \{p\}$. But $G \in \mathfrak{M} = CF_{\omega}(f)$. Hence, $G/C^p(G) \in f(p) = c_{\omega_{n-1}}^{\tau}$ form $(\bigcup_{i \in I} f_i(p))$. Since $O_p(G/C^p(G)) = 1$, Lemmas 8 and 10 imply

 $\begin{aligned} G/C^p(G) &\in c_{\omega_{n-1}}^{\tau} \operatorname{form} \left(A/O_p(A) \mid A \in \bigcup_{i \in I} f_i(p) \right) \\ &= c_{\omega_{n-1}}^{\tau} \operatorname{form} \left(\bigcup_{i \in I} (A/O_p(A) \mid A \in f_i(p)) \right) \\ &= c_{\omega_{n-1}}^{\tau} \operatorname{form} \left(\bigcup_{i \in I} c_{\omega_{n-1}}^{\tau} \operatorname{form} (A/O_p(A) \mid A \in f_i(p)) \right) \\ &= c_{\omega_{n-1}}^{\tau} \operatorname{form} \left(\bigcup_{i \in I} h_i(p) \right) = (\vee_{\omega_{n-1}}^{\tau} (h_i \mid i \in I))(p) = h(p). \end{aligned}$

Thus, $G/R_{\omega}(G) \in h(\omega')$ and $G/C^r(G) \in h(r)$ for all $r \in \omega \cap \pi(\text{Com}(G))$. Hence, $G \in \mathfrak{F}$, a contradiction. Consequently, $\mathfrak{F} = \mathfrak{M}$. This proves the theorem. \Box

If τ is trivial, we have the following result.

Corollary 1. Let n > 0 and ω be a non-empty set of primes. Then the lattice of all *n*-multiply ω -composition formations is inductive.

If τ is trivial and $\omega = \mathbb{P}$, we have the following corollary.

Corollary 2. Let n > 0. Then the lattice of all *n*-multiply composition formations is inductive.

Finally, we note that the collection of all formations of lattice ordered groups is a complete Brouwerian lattice (see [10]). We also note that in [18], it was proved that the lattice of all τ -closed *m*-multiply ω -saturated formations is not a sublattice of the lattice of all τ -closed *n*-multiply ω -saturated formations, where ω is a set of primes with $|\omega| > 1$, and $m > n \ge 0$ are integers.

References

- A. Ballester-Bolinches, C. Calvo, L.A. Shemetkov, On partially saturated formations of finite groups, *Sbornik: Mathematics* 198 (6) (2007) 757–775.
- [2] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006.
- [3] A. Ballester-Bolinches, L.A. Shemetkov, On lattices of p-local formations of finite groups, Math. Nachr. 186 (1997) 57–65.
- [4] K. Doerk, T. Hawkes, *Finite Soluble Groups*, De Gruyter Expo. Math. 4, Walter de Gruyter & Co., Berlin-New York, 1992.
- [5] W.B. Guo, The Theory of Classes of Groups, Science Press/Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.
- [6] W.B. Guo, On a problem in the theory of multiply local formations, Siberian Math. J. 45 (6) (2004) 1036–1040.
- [7] W.B. Guo, K.P. Shum, On totally local formations of groups, Comm. Algebra 30 (5) (2002) 2117–2131.

- [8] W.B. Guo, K.P. Shum, V.M. Sel'kin, Factorization theory of 1-generated ω-composition formations, Comm. Algebra 35 (9) (2007) 2901–2931.
- [9] W.B. Guo, A.N. Skiba, Two remarks on the identities of lattices of ω-local and ωcomposition formations of finite groups, Russian Mathematics (Izvestiya VUZ. Matematika) 46 (5) (2002) 12–20.
- [10] J. Jakubík, Formations of lattice ordered groups and of GMV-algebras, Mathematica Slovaca 58 (5) (2008) 521–534.
- [11] V.G. Safonov, On modularity of the lattice of τ -closed totally saturated formations of finite groups, Ukrainian Math. J. **58** (6) (2006) 967–973.
- [12] V.G. Safonov, On modularity of the lattice of totally saturated formations of finite groups, Comm. Algebra 35 (11) (2007) 3495–3502.
- [13] V.G. Safonov, On a question of the theory of totally saturated formations of finite groups, Algebra Colloquium 15 (1) (2008) 119–128.
- [14] I.P. Shabalina, On the lattice of τ-closed n-multiply ω-local formations of finite groups, Vesti NAN Belarusi. Ser. Fiz.-Mat. Navuk (2003), No. 1, 28–30 (in Russian).
- [15] L.A. Shemetkov, Formations of Finite Groups, Main Editorial Board for Physical and Mathematical Literature, Nauka, Moscow, 1978 (in Russian).
- [16] L.A. Shemetkov, A.N. Skiba, Formations of Algebraic Systems, Main Editorial Board for Physical and Mathematical Literature, Nauka, Moscow, 1989 (in Russian).
- [17] L.A. Shemetkov, A.N. Skiba, N.N. Vorob'ev, On laws of lattices of partially saturated formations, Asian-European J. Math. 2 (1) (2009) 155–169.
- [18] L.A. Shemetkov, A.N. Skiba, N.N. Vorob'ev, On lattices of formations of finite groups, Algebra Colloquium 17 (4) (2010) 557–564.
- [19] Yu.A. Skachkova, Lattices of Ω-fiber formations, Discrete Mathematics and Applications 12 (3) (2002) 269–278.
- [20] A.N. Skiba, On local formations of the length 5, in: Arithmetical and Subgroup Structure of Finite Groups (Works of Gomel Seminar), Nauka i Tekhnika, Minsk, 1986, pp. 135–149 (in Russian).
- [21] A.N. Skiba, Algebra of Formations, Belaruskaya Navuka, Minsk, 1997 (in Russian).
- [22] A.N. Skiba, L.A. Shemetkov, Multiply ω-local formations and Fitting classes of finite groups, Siberian Advances in Mathematics 10 (2) (2000) 112–141.
- [23] A.N. Skiba, L.A. Shemetkov, Multiply *L*-composition formations of finite groups, Ukrainian Math. J. 52 (6) (2000) 898–913.
- [24] A.N. Skiba, N.N. Vorob'ev, On the lattices of saturated and solubly saturated formations of finite groups, Southeast Asian Bulletin of Mathematics 37 (5) (2013) 771–780.
- [25] V.A. Vedernikov, Maximal satellites of Ω-foliated formations and Fitting classes, in: Proceedings of the Steklov Institute of Mathematics (Suppl. 2), 2001, pp. 217–233.
- [26] V.A. Vedernikov, M.M. Sorokina, Ω-Foliated formations and Fitting classes of finite groups, Discrete Mathematics and Applications 11 (5) (2001) 507–527.
- [27] N.N. Vorob'ev, A.N. Skiba, A.A. Tsarev, Laws of the lattices of partially composition formations, Siberian Math. J. 52 (5) (2011) 802–812.
- [28] N.N. Vorob'ev, A.A. Tsarev, On the modularity of a lattice of τ -closed *n*-multiply ω -composition formations, Ukrainian Math. J. **62** (4) (2010) 518–529.
- [29] M.V. Zadorozhnyuk, On elements of the heigh 3 of the lattice of τ-closed ω-composition formations, Vestnik Grodnenskogo Gosudarstvennogo Universiteta (Seriya 2) (2008), No. 2, 16–21 (in Russian).
- [30] P.A. Zhiznevskii, On modular and inductive lattices of formations of finite groups, Proc. F. Skorina Gomel State Univ. (2010), No. 1 (58), pp. 185–191 (in Russian).