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Abstract. Let n > 0 and ω be a non-empty set of primes. It is proved that the lattice of
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to a question of Skiba asked in 2001 at the Gomel Algebraic Seminar.
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Introduction

All groups considered are finite. Throughout this paper, we will use ω to denote
a non-empty set of primes and ω′ = P\ω. Let p ∈ P, and G a group. Recall that
the subgroup Cp(G) is the intersection of the centralizers of all the abelian p-chief
factors of G, with Cp(G) = G if G has no abelian p-chief factors. For any set of
groups X we denote by Com(X) the class of all simple abelian groups A such that
A ∼= H/K, where H/K is a composition factor of G ∈ X. The symbol Rω(G)
denotes the Sω-radical of G, i.e., the product of all soluble normal ω-subgroups
of G.
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438 A.A. Tsarev, N.N. Vorob’ev

Recall that a class of groups closed under taking homomorphic images and finite
subdirect products is called a formation. A formation F is called ω-saturated if
G/L ∈ F, where L ⊆ Φ(G) ∩Oω(G), always implies G ∈ F. Last years new natural
generalizations of ω-saturated formations were found (ω-composition formations
[23], X-local formations [1] etc).

Let f be a function of the form

f : ω ∪ {ω′} → {formations of groups}. (∗)
According to [23] we consider the class of groups

CFω(f) = (G |G/Rω(G) ∈ f(ω′) and G/Cp(G) ∈ f(p) for all p ∈ ω ∩ π(Com(G))).

If F is a formation such that F = CFω(f) for a function f of the form (∗), then F
is said to be ω-composition and f is said to be an ω-composition satellite of F [23].

Every formation is 0-multiply ω-composition by definition. For n > 0, a for-
mation F is called n-multiply ω-composition [23] if F = CFω(f) and all non-empty
values of f are (n−1)-multiply ω-composition formations. With respect to inclusion
⊆ the set of all n-multiply ω-composition formations cω

n is a complete lattice [23].
X-Local formations (see [1]) and ω-saturated formations (see [8, 22]) are impor-

tant examples of ω-composition (n-multiply ω-composition) formations.
We note that n-multiply ω-composition formations and n-multiply ω-saturated

formations are of great interest because they have a wide spectrum of applications
in the theory of formations.

In the books [16, 21] and in the recent books [2, 5], it was demonstrated that
constructions and results of lattice theory are very useful tools for studying groups
and formations of groups. In 1986 Skiba [20] proved that the lattice of all saturated
formations is modular. Further many applications of this result for the investiga-
tion of the structure of saturated formations were found (see [16, Chapter 4], [21,
Chapters 4 and 5], and [5, Chapter 4]). Therefore, this result was developed in
researches of many authors. In particular, in [16], the modularity of the lattice
of all n-multiply saturated formations was established. After a while Ballester-
Bolinches and Shemetkov [3] proved that the lattice of all p-saturated formations is
modular. In [21] it was shown that the lattice of all τ -closed n-multiply saturated
formations is modular but is not distributive for every subgroup functor τ . At the
same time the lattice of all soluble totally saturated formations is distributive [21].
Skiba and Shemetkov [22, 23] proved the modularity of the lattice of all n-multiply
ω-saturated formations and the lattice of all n-multiply L-composition formations.
The modularity of the lattice of all τ -closed n-multiply ω-saturated formations and
the lattice of all τ -closed ω-composition formations was established by Shabalina
[14] and Zadorozhnyuk [29]. Safonov [11, 12, 13] proved the modularity and then
the distributivity of the lattice of all totally saturated formations; Zhiznevsky [30],
and independently Tsarev and Vorob’ev [28] proved the modularity of the lattice of
all τ -closed n-multiply ω-composition formations. In [21] it was shown that for any
natural m and n, the law system of the lattice of all τ -closed m-multiply saturated
formations coincides with the law system of the lattice of all τ -closed n-multiply
saturated formations. Later, Guo and Skiba [9] proved that the law system of the
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Partially Composition Formations 439

lattice of all m-multiply ω-saturated formations coincides with the law system of
the lattice of all n-multiply ω-saturated formations for any infinite set of primes
ω and any natural m and n. In [17] Shemetkov, Skiba and Vorob’ev extended
this result to the lattices of τ -closed n-multiply ω-saturated formations. Vorob’ev,
Skiba and Tsarev [27] proved that the law system of the lattice of all m-multiply ω-
composition formations coincides with the law system of the lattice of all n-multiply
ω-composition formations for any infinite set of primes ω and any natural m and n.

At the end of this short review we note that Guo and Shum [7] described non-
nilpotent totally saturated formations F such that the lattice F/∞(F ∩ N) of all
totally saturated formations between F and F ∩ N is Boolean. Guo [6] described
τ -closed n-multiply saturated formations F such that the lattice F/τ

n(F ∩N) of all
τ -closed n-multiply saturated formations between F and F ∩N is Boolean.

The analogous questions were investigated in the theory of fiber formations
proposed by Vedernikov (see [19, 25, 26]).

In [21] the concept of inductive lattice of formations was introduced. This con-
cept plays an important role in the research of law systems of formation lattices.

Recall that a set of formations Θ is called a complete lattice of formations if the
intersection of every set of formations in Θ belongs to Θ and there is a formation F
in Θ such that M ⊆ F for every other formation M of Θ (see [21]). A formation in
Θ is called a Θ-formation. Let Θ be a complete lattice of formations. We denote by
Θωc the set of all formations having an ω-composition Θ-valued satellite (see [22,
23]). In [23, p. 901], it is proved that Θωc is a complete lattice of formations.

A complete lattice Θωc is called inductive if for any collection {Fi = CFω(fi) |
i ∈ I}, where fi is an integrated satellite of Fi ∈ Θωc , the following equality holds:

∨Θωc (Fi | i ∈ I) = CFω(∨Θ(fi | i ∈ I)).

We note, the inductance of a lattice Θωc , in fact, means that a research of the
operation ∨Θωc on the set Θωc can be reduced to a research of the operation ∨Θ on
the set Θ. Therefore, the inductance is an important property of the lattice Θωc .
Bearing in mind this fact Skiba asked in 2001 at the Gomel Algebraic Seminar the
following question: Is the lattice of all τ -closed n-multiply ω-composition formations
inductive ?

In this paper, we prove the following theorem which gives a positive answer to
this question.

Theorem. Let n > 0 and ω be a non-empty set of primes. Then the lattice of all
τ -closed n-multiply ω-composition formations cτ

ωn
is inductive.

All unexplained notations and terminologies are standard. The reader is refereed
to [2, 4, 5, 15, 16, 21, 23] if necessary.

1 Preliminaries

In each group G, we select a system of subgroups τ(G). We say that τ is a subgroup
functor if (1) G ∈ τ(G) for every group G; and (2) for every epimorphism ϕ : A 7→ B,
any H ∈ τ(A) and T ∈ τ(B), we have Hϕ ∈ τ(B) and Tϕ−1 ∈ τ(A).
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440 A.A. Tsarev, N.N. Vorob’ev

If τ(G) = {G}, then the functor τ is called trivial. A formation F is called τ -
closed if τ(G) ⊆ F for every group G of F (see [21]). We will consider only subgroup
functors τ such that for any group G all subgroups of τ(G) are subnormal in G.

Let Θ be a complete lattice of formations. If M,H ∈ Θ, then M ∩ H is the
greatest lower bound for {M,H} in Θ; and M ∨Θ H is the least upper bound for
{M,H} in Θ. A satellite f is called Θ-valued if all its values belong to Θ (see [23]).

Lemmas 2.1 and 3.1 of [28] imply the following result.

Lemma 1. Let n be a natural number. Then (cτ
ωn−1

)ωc = cτ
ωn

.

We cite here some known results as lemmas which will be useful later on.
Let {fi | i ∈ I} be a collection of ω-composition satellites. By

⋂
i∈I fi we denote

the ω-composition satellite f such that f(a) =
⋂

i∈I fi(a) for all a ∈ ω ∪ {ω′}.
Lemma 2. [23, Lemma 2] Let F =

⋂
i∈I Fi, where Fi = CFω(fi). Then F = CFω(f),

where f =
⋂

i∈I fi.

Lemma 3. [24, Lemma 2.8] Let Zp be a group of prime order p, and G be a group
with Op(G) = 1. Suppose that T = Zp o G = [K]G is the regular wreath product,
where K is the base group of T . Then K = Cp(T ) = Op(T ).

Lemma 4. [23, Lemma 4] Let F = CFω(f). If G/Op(G) ∈ f(p)∩F for some p ∈ ω,
then G ∈ F.

Recall that a group class closed under taking homomorphic images is called a
semiformation (see [16]). Let X be a collection of groups. The symbol τ formX
denotes the τ -closed formation generated by X, i.e., the intersection of all τ -closed
formations containing X.

Lemma 5. [21, Corollary 1.2.26] Let X be a τ -closed semiformation and A ∈ F =
τ formX. Suppose that A is a monolithic group and A 6∈ X. Then there exists a
group H in F and normal subgroups N, N1, . . . , Nt;M, M1, . . . , Mt (t ≥ 2) of H
such that the following statements hold:

(1) H/N ∼= A, M/N = Soc(H/N).
(2) N1 ∩ · · · ∩Nt = 1.

(3) H/Ni is a monolithic X-group and Mi/Ni is the socle of H/Ni which is H-
isomorphic to M/N.

(4) M1 ∩ · · · ∩Mt ⊆ M .

Let τ be a subgroup functor. For any collection of groups X the symbol sτ

denotes the set of groups H such that H ∈ τ(G) for some group G ∈ X. A class of
groups F is called τ -closed if sτ (F) = F. We say that τ is a closed subgroup functor
if for any groups G and H ∈ τ(G) we have τ(H) ⊆ τ(G).

According to [21] we define a partial order ≤ on the set of all subgroup functors
as follows: τ1 ≤ τ2 if and only if τ1(G) ⊆ τ2(G) for any group G ∈ X. By τ , we
denote the intersection of all closed subgroup functors τi such that τ ≤ τi. The
functor τ is called the closure of τ (see [21]).
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Partially Composition Formations 441

Lemma 6. [21, Lemma 1.2.22] Let X be a collection of groups. Then

τ formX = qr0sτ (X).

Lemma 7. [21, Lemma 4.1.3] Let N1 × · · · ×Nt = Soc(G), where Ni is a minimal
normal subgroup of G (i = 1, . . . , t), t > 1, and Op(G) = 1. Let Mi be the largest
normal subgroup in G containing N1×· · ·×Ni−1×Ni+1×· · ·×Nt, but not containing
Ni for i = 1, . . . , t. Then:

(1) For every i ∈ {1, . . . , t}, Op(G/Mi) = 1, G/Mi is monolithic and its socle
NiMi/Mi is G-isomorphic to Ni.

(2) M1 ∩ · · · ∩Mt = 1.

2 Inductance of the Lattice cτ
ωn

Let {fi | i ∈ I} be the collection of all ω-composition cτ
ωn−1

-valued satellites of a
formation F. Since the lattice cτ

ωn
is complete, using Lemma 2, we conclude that

f =
⋂

i∈I fi is an ω-composition cτ
ωn−1

-valued satellite of F. The satellite f is called
minimal. If Θ is a complete lattice of formations, then ΘformX is the intersection
of all Θ-formations containing a collection of groups X. In particular, if X = {G},
we write ΘformG. Thus, cτ

ωn
formX is the intersection of all τ -closed n-multiply

ω-composition formations containing a collection of groups X.
The following lemma gives a description of the minimal cτ

ωn−1
-valued satellite of

a formation F = cτ
ωn

formX.

Lemma 8. Let X be a non-empty collection of groups, F = cτ
ωn

formX, where n ≥ 1,
let π = ω ∩ π(Com(X)), and f the minimal cτ

ωn−1
-valued ω-composition satellite of

F. Then:

(1) f(ω′) = cτ
ωn−1

form(G/Rω(G) |G ∈ X).
(2) f(p) = cτ

ωn−1
form(G/Cp(G) |G ∈ X) for all p ∈ π.

(3) f(p) = ∅ for all p ∈ ω\π.

(4) If F = CFω(h), where h is a cτ
ωn−1

-valued ω-composition satellite, then

f(p) = cτ
ωn−1

form(G |G ∈ h(p) ∩ F, Op(G) = 1)

for all p ∈ π and

f(ω′) = cτ
ωn−1

form(G |G ∈ h(ω′) ∩ F, Rω(G) = 1).

Proof. (1)–(3) Let m be a cτ
ωn−1

-valued ω-composition satellite such that

m(a) =





cτ
ωn−1

form(G/Rω(G) |G ∈ X) if a = ω′,
cτ
ωn−1

form(G/Cp(G) |G ∈ X) if a = p ∈ π,

∅ if a = p ∈ ω\π.

We show that m = f . Let M = CFω(m). First we show that F = M. By Lemma 1,
M is a τ -closed n-multiply ω-composition formation.

A
lg

eb
ra

 C
ol

lo
q.

 2
01

4.
21

:4
37

-4
47

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 F
L

IN
D

E
R

S 
U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 o

n 
02

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



442 A.A. Tsarev, N.N. Vorob’ev

If A ∈ X, then

A/Rω(A) ∈ cτ
ωn−1

form(G/Rω(G) |G ∈ X) = m(ω′),
A/Cp(A) ∈ cτ

ωn−1
form(G/Cp(G) |G ∈ X) = m(p)

for all p ∈ π. Hence, A ∈ M. Consequently, X ⊆ M. Hence, F ⊆ M.
We prove the converse inclusion. Let f1 be a cτ

ωn−1
-valued ω-composition satellite

of F. First we prove m ≤ f1. Let A ∈ X ⊆ F = CFω(f1). Then A/Rω(A) ∈ f1(ω′)
and A/Cp(A) ∈ f1(p) for all p ∈ π. Consequently,

m(ω′) ⊆ cτ
ωn−1

formf1(ω′) = f1(ω′),
m(p) ⊆ cτ

ωn−1
formf1(p) = f1(p)

for all p ∈ π. Hence, m ≤ f1. Then M ⊆ F. Therefore, F = M and m = f .
Now we prove (4). Let t be an ω-composition satellite such that

t(ω′) = cτ
ωn−1

form(G |G ∈ h(ω′) ∩ F, Rω(G) = 1),
t(p) = cτ

ωn−1
form(G |G ∈ h(p) ∩ F, Op(G) = 1)

for all p ∈ π. We show that t = f . Let A ∈ X ⊆ F = CFω(h). Hence, A/Rω(A) ∈
h(ω′) ∩ F. Since Rω(A/Rω(A)) = 1, it follows that

A/Rω(A) ∈ cτ
ωn−1

form(G |G ∈ h(ω′) ∩ F, Rω(G) = 1) = t(ω′).

Thus, f(ω′) ⊆ t(ω′).
Since A ∈ X, it follows that A/Cp(A) ∈ h(p) ∩ F for all p ∈ ω ∩ π(Com(A)).

Since Op(A/Cp(A)) = 1, it follows that

A/Cp(A) ∈ cτ
ωn−1

form(G |G ∈ h(p) ∩ F, Op(G) = 1) = t(p)

for all p ∈ π. Hence, f(p) ⊆ t(p) for all p ∈ π. Thus, f ≤ t.
Now we prove t ≤ f . Let A ∈ (G |G ∈ h(ω′) ∩ F, Rω(G) = 1). Then A ∈ f(ω′).

It follows that t(ω′) ⊆ cτ
ωn−1

formf(ω′) = f(ω′).
Let A ∈ (G |G ∈ h(p) ∩ F, Op(G) = 1), where p ∈ π. Let T = Zp o A = [K]A,

where K is the base group of T . By Lemma 3, Cp(T ) = K. Applying the properties
of regular wreath products we have T/Op(T ) = T/K = T/Cp(T ) ∈ h(p)∩F. Hence,
by Lemma 4, T ∈ F. Therefore, A ∼= T/Op(T ) ∈ f(p). It follows that

t(p) ⊆ cτ
ωn−1

formf(p) = f(p).

Consequently, t ≤ f . Thus,

f(ω′) = cτ
ωn−1

form(G |G ∈ h(ω′) ∩ F, Rω(G) = 1),
f(p) = cτ

ωn−1
form(G |G ∈ h(p) ∩ F, Op(G) = 1)

for all p ∈ π and the lemma is proved. ¤

Lemma 9. Let A be a monolithic group, R a non-abelian socle of A, M a τ -closed
semiformation and A ∈ cτ

ωn
formM, where n ≥ 0. Then A ∈ M.
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Partially Composition Formations 443

Proof. We proceed by induction on n. Let n = 0. Then A ∈ cτ
ω0

formM = τ formM.
Let A 6∈ M. Then, by Lemma 5, there exists a group H in τ formM and normal
subgroups N, N1, . . . , Nt;M, M1, . . . , Mt (t ≥ 2) of H such that (1) H/N ∼= A,
M/N = Soc(H/N); (2) H/Ni is a monolithic M-group, Mi/Ni is the socle of H/Ni

and Mi/Ni

H∼= M/N for i = 1, . . . , t.
Since the socle R ∼= M/N is non-abelian, it follows that CH(M/N) = N . Be-

sides, Mi/Ni

H∼= M/N . Hence, Ni ⊆ N . Therefore, A ∼= H/N ∈ M, a contradiction.
This completes the proof of the lemma for n = 0.

Let n > 0, and let the lemma holds for n − 1. Suppose that f is the minimal
cτ
ωn−1

-valued ω-composition satellite of F = cτ
ωn

formM. Since R is non-abelian, it
follows that π(Com(R)) = ∅. Hence, Rω(A) = 1. Consequently, by Lemma 8, we
have A ∼= A/1 = A/Rω(A) ∈ f(ω′) = cτ

ωn−1
form(G/Rω(G) |G ∈ M). Therefore,

A ∈ cτ
ωn−1

form(G/Rω(G) |G ∈ M) ⊆ cτ
ωn−1

formM.

By induction, A ∈ M, as desired. ¤

Lemma 10. Let M be a semiformation and A ∈ cτ
ωn

formM, where n ≥ 0. Let
M1 = (G/Op(G) |G ∈ M) and M2 = (G/Rω(G) |G ∈ M).

(1) If Op(A) = 1 and p ∈ ω, then A ∈ cτ
ωn

formM1.

(2) If Rω(A) = 1, then A ∈ cτ
ωn

formM2.

Proof. If A ∈ M, the result is clear. Hence, we may suppose A 6∈ M.
Suppose that A is a monolithic group and R is the socle of A. We proceed

by induction on n. Let n = 0. Since A 6∈ M and A ∈ cτ
ω0

formM = τ formM,
by Lemma 5, there exists a group H in τ formM, normal subgroups N, N1, . . . , Nt;
M, M1, . . . , Mt (t ≥ 2) of H such that H/N ∼= A, M/N = Soc(H/N); N1 ∩ · · · ∩Nt

= 1; H/Ni is a monolithic M-group and Mi/Ni is the socle of H/Ni which is
H-isomorphic to M/N .

Since Op(A) = 1 and Rω(A) = 1, by Lemma 5, we have

H ∈ r0(H/N1, . . . , H/Nt) ⊆ r0Mj ,

where j = 1, 2. Hence, by Lemma 5(1) and Lemma 6,

A ∼= H/N ∈ qr0(H/N1, . . . , H/Nt) = form(H/N1, . . . , H/Nt) ⊆ τ formMj ,

where j = 1, 2.
Let n > 0. Suppose Op(A) = 1. If R is non-abelian, then Lemma 9 implies

A ∈ M. This contradicts the choice of A. Hence, R is a q-group, where q ∈ ω\{p}.
Let F = cτ

ωn
formM and Hj = cτ

ωn
formMj , where j = 1, 2. Let f and hj (j = 1, 2)

be the minimal cτ
ωn−1

-valued ω-composition satellites of F and Hj respectively. By
Lemma 8,

f(ω′) = cτ
ωn−1

form(G/Rω(G) |G ∈ M),
f(q) = cτ

ωn−1
form(G/Cq(G) |G ∈ M)
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444 A.A. Tsarev, N.N. Vorob’ev

for all q ∈ ω ∩ π(Com(M));

hj(ω′) = cτ
ωn−1

form(G/Rω(G) |G ∈ Mj),
hj(q) = cτ

ωn−1
form(G/Cq(G) |G ∈ Mj)

for all q ∈ ω ∩ π(Com(Mj)) and j = 1, 2.
Since for every group G we have

G/Rω(G) ∼= (G/Op(G))/(Rω(G)/Op(G)) = (G/Op(G))/Rω(G/Op(G)),

it follows that f(ω′) = hj(ω′) for j = 1, 2.
If q 6∈ ω, then Rω(A) = 1. Therefore,

A ∼= A/1 = A/Rω(A) ∈ f(ω′) = h1(ω′) ⊆ H1.

Let q ∈ ω. We show that A/R ∈ H1. Since A ∈ F, it follows that A/Rω(A) ∈
f(ω′) = h1(ω′) ⊆ H1.

Let Op(A/R) = 1. Since |A/R| < |A|, by induction, A/R ∈ H1.
Let Op(A/R) 6= 1. Let R ⊆ Φ(A) and D/R = Op(A/R). Then D is nilpotent.

Hence, D = Dp ×Dq, where Dp is a Sylow p-subgroup of D and Dq is a Sylow q-
subgroup of D. Consequently, Dp = Op(D) = 1, a contradiction. Hence, R 6⊆ Φ(A).
It follows that R = CA(R) = Cq(A).

Suppose ω ∩ π(Com(A/R)) = ∅. Then Rω(A/R) = 1. Since f(ω′) = h1(ω′), we
have

A/R ∼= (A/R)/1 = (A/R)/Rω(A/R) ∈ f(ω′) = h1(ω′) ⊆ H1.

Consequently, ω ∩ π(Com(A/R)) 6= ∅. Let q ∈ ω ∩ π(Com(A/R)). Since for every
group G we have

G/Cq(G) ∼= (G/Op(G))/(Cq(G)/Op(G)) = (G/Op(G))/Cq(G/Op(G)),

it follows that f(q) = h1(q). Since A ∈ F, it follows that

A/R = A/Cq(A) ∈ f(q) = h1(q) ⊆ H1.

Thus, A/R ∈ H1. Hence,

A/Cr(A) ∼= (A/R)/(Cr(A)/R) = (A/R)/Cr(A/R) ∈ h1(r)

for all r ∈ ω ∩ π(Com(A/R))\{q}. Consequently, A/Cr(A) ∈ h1(r) for all r ∈
ω ∩ π(Com(A)). Besides, since A ∈ F, it follows that A/Rω(A) ∈ f(ω′) = h1(ω′).
Hence, A ∈ H1. This proves (1).

We now prove (2). Since A ∈ F and Rω(A) = 1, it follows that

A ∼= A/1 = A/Rω(A) ∈ f(ω′) = h2(ω′)
= cτ

ωn−1
form(G/Rω(G) |G ∈ M2) ⊆ cτ

ωn−1
formM2 ⊆ H2.

Thus, A ∈ H2.
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Now suppose Soc(A) = N1×· · ·×Nt, where Ni is a minimal normal subgroup of
A and t > 1. Let Mi be the largest normal subgroup of A containing N1×· · ·×Ni−1×
Ni+1 × · · · × Nt, but not containing Ni for i = 1, . . . , t. Using Lemma 7, we have
A ∈ r0(A/M1, . . . , A/Mt). Since A ∈ cτ

ωn
formM, it follows that A/Mi ∈ cτ

ωn
formM.

As we proved above, A/Mi ∈ cτ
ωn

formM1. Consequently, A ∈ cτ
ωn

formM1.
Considering the proof of Lemma 7 and replacing the condition Op(A) = 1 by

the condition Rω(A) = 1, we conclude that A/Mi is monolithic, NiMi/Mi is the
socle of A/Mi and Rω(A/Mi) = 1 for any i ∈ {1, . . . , t}. As we proved above,
A/Mi ∈ cτ

ωn
formM2. Consequently,

A ∼= A/1 = A/(M1 ∩ · · · ∩Mt) ∈ cτ
ωn

formM2,

as claimed. ¤

Let Θ be a complete lattice of formations. Let {Fi | i ∈ I} be an arbitrary collec-
tion of Θ-formations. We denote ∨Θ(Fi | i ∈ I) = Θform

(⋃
i∈I Fi

)
. In particular,

∨τ
ωn

(Fi | i ∈ I) = cτ
ωn

form
(⋃

i∈I Fi

)
. Let {fi | i ∈ I} be a collection of Θ-valued

functions of the form fi : ω ∪ {ω′} → {formations of groups}. In this case, by
∨Θ(fi | i ∈ I) we denote a function f such that f(a) = Θform

(⋃
i∈I fi(a)

)
for all

a ∈ ω ∪ {ω′}.
The following lemma is proved by direct calculation.

Lemma 11. Let n ≥ 1, and fi be the minimal cτ
ωn−1

-valued ω-composition satellite
of a formation Fi for i ∈ I. Then ∨τ

ωn−1
(fi | i ∈ I) is the minimal cτ

ωn−1
-valued ω-

composition satellite of F = ∨τ
ωn

(Fi | i ∈ I).

If F = CFω(f) and f(a) ⊆ F for all a ∈ ω ∪ {ω′}, then f is called an integrated
satellite of F.

Proof of Theorem. Let {Fi | i ∈ I} be a collection of τ -closed n-multiply ω-com-
position formations and fi an integrated cτ

ωn−1
-valued ω-composition satellite of Fi.

Let F = ∨τ
ωn

(Fi | i ∈ I), M = CFω(∨τ
ωn−1

(fi | i ∈ I)) and hi be the minimal cτ
ωn−1

-
valued ω-composition satellite of Fi. Then by Lemma 11, h = ∨τ

ωn−1
(hi | i ∈ I) is

the minimal cτ
ωn−1

-valued ω-composition satellite of F. Since hi ≤ fi for all i ∈ I,
we have h ≤ f = ∨τ

ωn−1
(fi | i ∈ I). Hence, F ⊆ M.

Suppose M 6⊆ F. Let G be a group of minimal order in M\F. Then G is a
monolithic group and R = GF is the socle of G. Let ω ∩ π(Com(R)) = ∅. Then
Rω(G) = 1. Consequently,

G ∼= G/1 = G/Rω(G) ∈ f(ω′) = (∨τ
ωn−1

(fi | i ∈ I))(ω′)
= cτ

ωn−1
form

(⋃
i∈I fi(ω′)

)
= cτ

ωn−1
form

(⋃
i∈I Fi

)
.

Hence, by Lemma 9, G ∈ ⋃
i∈I Fi ⊆ cτ

ωn−1
form

(⋃
i∈I Fi

)
= F, a contradiction.

Consequently, ω ∩ π(Com(R)) 6= ∅.
If R is non-abelian, then π(Com(R)) = ∅. Hence, ω ∩ π(Com(R)) = ∅, a

contradiction. Consequently, R is a p-group, where p ∈ ω ∩ π(Com(R)). Since
G ∈ M = CFω(f), it follows that G/R ∈ M. Since |G/R| < |G|, by induction, we
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446 A.A. Tsarev, N.N. Vorob’ev

have G/R ∈ F = CFω(h). Hence,

(G/R)/Rω(G/R) = (G/R)/(Rω(G)/R) ∼= G/Rω(G) ∈ h(ω′),
(G/R)/Cq(G/R) = (G/R)/(Cq(G)/R) ∼= G/Cq(G) = h(q)

for all q ∈ ω ∩ π(Com(G/R))\{p}. But G ∈ M = CFω(f). Hence, G/Cp(G) ∈
f(p) = cτ

ωn−1
form

(⋃
i∈I fi(p)

)
. Since Op(G/Cp(G)) = 1, Lemmas 8 and 10 imply

G/Cp(G) ∈ cτ
ωn−1

form
(
A/Op(A) |A ∈ ⋃

i∈I fi(p)
)

= cτ
ωn−1

form
(⋃

i∈I(A/Op(A) |A ∈ fi(p))
)

= cτ
ωn−1

form
(⋃

i∈I cτ
ωn−1

form(A/Op(A) |A ∈ fi(p))
)

= cτ
ωn−1

form
(⋃

i∈I hi(p)
)

= (∨τ
ωn−1

(hi | i ∈ I))(p) = h(p).

Thus, G/Rω(G) ∈ h(ω′) and G/Cr(G) ∈ h(r) for all r ∈ ω ∩ π(Com(G)). Hence,
G ∈ F, a contradiction. Consequently, F = M. This proves the theorem. ¤

If τ is trivial, we have the following result.

Corollary 1. Let n > 0 and ω be a non-empty set of primes. Then the lattice of
all n-multiply ω-composition formations is inductive.

If τ is trivial and ω = P, we have the following corollary.

Corollary 2. Let n > 0. Then the lattice of all n-multiply composition formations
is inductive.

Finally, we note that the collection of all formations of lattice ordered groups is
a complete Brouwerian lattice (see [10]). We also note that in [18], it was proved
that the lattice of all τ -closed m-multiply ω-saturated formations is not a sublattice
of the lattice of all τ -closed n-multiply ω-saturated formations, where ω is a set of
primes with |ω| > 1, and m > n ≥ 0 are integers.
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