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O N  T H E  B O O L E A N  L A T T I C E S  O F  n T I M E S  L O C A L  

F I T T I N G  C L A S S E S  
N. N.  Vorob '~v a nd  A. N. Skiba UDC 512.542 

All groups under consideration are assumed finite. We use the standard terminology of the books 
[1,21. 

We recall that  if ~ is an arbitrary nonempty formation then G # denotes the intersection of all 
kernels of the epimorphisms of a group G onto the groups of ~ and ~ denotes the class of all groups 
G with G ~ E ~I. The symbols 9~ and O/stand for the class of all p-groups and the class of all 
groups with a trivial Sylow p-subgroup. 

Functions of the shape f : P ~ {Fitting classes} are referred to as Hartley functions or, in 
short, H-functions. Given a Fitting class ~, we write ~ = LR(f )  and say that  f is an H-function of 
the class ~, provided that  

pE~r 

where 7r = ~r(~) is the collection of all prime divisors of the orders of all groups in ~. By analogy 
to [4], N. T. Vorob'~v introduced and began studying n times local Fitting classes in the article [3]. 
Here every Fitting class is considered 0 times local and, for n > 0, a Fitting class ;~ is called n times 
local provided that  ~ = LR(f) ,  where all nonempty values of the H-function f are ( n -  1) times local 
Fitting classes. 

It was shown in [5] that  the lattice of (local) formations is modular. This property made it possible 
later to apply the methods of the general lattice theory to solving many open problems of formation 
theory (see [2, Chapter 4; 6, Chapters 4 and 5]). At the same time, no essential information is available 
about the lattice of Fitting classes. In particular, it is unknown by now whether or not the lattice of 
these classes is modular and which Fitting classes have the distributive lattice of Fitting subclasses. 

In the present article, developing some ideas of [7], we describe the Boolean sublattices of the lattice 
of n times local Fitting classes. In contrast to [7], we use a series of new observations about direct 
decompositions of classes of groups which ascend conceptually to [8] (see details in [6, Chapter 4]). 

A system {~i I i E I} of nonempty classes ~i of groups is called orthogonal if 
(1) I:1 > I; 
(2) ~i f1~j = (I) for arbitrary two distinct i , j  E 1. 
Following [6], given an arbitrary orthogonal system of classes {~i I i E I}, we denote by (~ir ~i 

the collection of all groups of the shape Ai x A2 x.-. x At, where A1 E q~il, A2 E q~i~.,..., At E ~it for 
some ih i2,..., it e I (in particular, we write ~ = ~1 (B.-. �9 ~, whenever I : {I,..., n}). We also 
agree to write ~ : (~iez ~i in case ]II = I and ~i = ~. Every representation of a class ~ of groups in 
the shape ~ : ~]~iez ~i with [II > I is referred to as a direct decomposition of this class. 

Observe that if {~i [ i E I} is an orthogonal system of Fitting classes (formations) then this 
system is an orthogonal system of elements in the lattice of all Fitting classes (in the lattice of all 
formations) in the conventional sense (see, for instance, [9, p. 238]). 

L e m m a  1. Assume that ~ = ~ i e I  ~i and ~ is a nonempty Fitting subclass of ~. Then ~ = 

PROOF. Take G E 9~. Since ~ C_ ~, there are i l , . . . , i t  E I such that G = A1 x --- • At, where 
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A1 ~ 3i~, . . . ,  At ~ ~i,. Therefore, 

c e (~n ~ )  e... e (~n 3~,) c ~ ( ~ n  3~), 
iEX 

and ~ c @~ (~ n 3d. 
Conversely, assume that G ~ ~ i~ I (~  n ~i). Then there are  i l , . . .  ,it ~ I such that G 

A1 •  • At, where A1 ~ ~ N 3 f i , . . .  ,At ~ ~A3i~ .  Since ~ is a Fitting class, we infer that G ~ f}gI. 
Hence, f~iei(~9~ n ~i) c_ ~ .  Thereby ~ = f~ie~(~r~ n ~i), which finlshes the proof of the 1emma. 

The next two lemmas are easy to establish by straightforward verification. 

Lemma 2. Let I = Uie.~Ii be ~ partition of a set I (i.e., Iix 17 Ii~ = ~ for arbitrary ix,j2 ~ J 
~ith ix # J~). I f ~  = ~ e ~  ~ ,  i e J, and ~ = ~ies3~, then ~ = ~ e ~  ~" 

Lemma 3. he3 = 31 ~ 3 2 ,  where ~1 and 32 are Fitting classes, and i r a  is a group of the shape 
A = A1 • A2, where A1 ~ ~1 and A2 ~ 32, then A1 and A2 are characteristic subgroups in A. 

Lemma 4. Let 3 t , . . . ,  3t be an orthogona/system of Fitting c/asses. Then 3 = 31 ~ " "  �9 3t is 
a Fitting class. 

PROOF. We proceed by induction on t. Assume that t = 2 and let H be a normal subgroup of 
a group G ~ 3 = ~1 $ ~2. Then G = A x B, where A ~ 31 and B ~ ~2. Demonstrate that  H ~ 3. 
If A1 and B1 are projections of H into A and B respectively, then A1 is normal in A, B1 is normal in 
B, and H is a subdirect summand of A1 x Bx ~ 3. Hence, we may confine exposition to the case in 
which H is a subdirect summand of G. 

Let A gl H = 1. It is easy to see that G = A H  = BH. Hence, 

H ~_ AH/A  = G[A ~ B E 3~ c ~. 

Therefore, we may assume that At = A n H ~ 1 ~ Bx = B N H. Since 

H[A1Bx r = (H n AB1)/A1B1 - BI(H N A)[AxB1 - BIA1/AIB1, 

we have H[AIB1 C Ca/AtBt (ABI[AIBx). Analogously, 

H[A1B1 C CC/A1BI(BAI[A1B1). 

Hence, 
H[A1Bx C Z(G[A1B1) = Z((ABI[A1B1)(BAI[AxB1)). 

If AxB1 = H then the fact that H is a subdirect summand of A x B and H = ( A A H ) ( B A H )  implies 
that H = A x B E 3. Assume that AIB1 C H. Since 

H B / B  ~ H[B n H = H[B1 ~- A, HA[A ~_ H/A N H = H[A1 ~- B 

and H[A1B1 is a decomposable group, by [10, Chapter IX, Lemma 1.7] there is a prime number p 
such that ~p _C ~1 N ~2 = (1). This contradiction shows that H E ~. 

Now, assume that G = (A1 x B1)(A2 x B2), where A1,A2 E ~1, B1,B2 E ~2, and the subgroups 
A1 x B1 and A2 x B2 are normal in G. Then by Lemma 3 A1, B1, A2, and B2 are normal subgroups 
of G. Hence, G = (A1A2)(B1B2), and since AIA2 O B1B2 E ~1 n ~2 = (1), it follows that  G = 
(A1A2) • (B1B2) e ~. 

Assume that t > 2 and that the claim of the lemma has been proven for t - 1. It is clear 
that ~2, . . .  ,~t is an orthogonal system. Hence, ~2 ~ " "  �9 ~t is a Fitting class by our hypothesis. 
Let ~ - ~1 n (~2 ~ - - -  $ ~t). Then by Lemma I ff)I = (92t N ~2) $ " "  �9 ( ~  n ~t). However, ~ _C 31 
a41d 31 n 3 i  "- (1) for all i -" 2 , . . . ,  t. Therefore, ff~ = (1) ~9--- $ (1) = (1), and 31,32 ~ " "  ~9 3t is 
an orthogonal system. Now, by the above and Lemma 2 31 ~ (32 ~ " "  �9 3t) = 31 �9 32 ~ " "  $ 3t is 
a Fitting class. The proof of the lemma is over. 
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Coro l l a ry  1. /Y~ = ~1 �9 " '"  ~ t ,  where ~ l , - . . , ~ t  are Fitting classes, azld i ra  is a group of 
the shape A = A~ x . . -  x At, where A~ E ~1 , . . . ,A t  ~ ~t, then A~, . . . ,At  are characteristic subgroups 
inA. 

PROOF. For t = 2, the claim is valid by virtue of Lemma 3. 
Assumethat  t > 2. By Lemmal  ( ~ f ' l ~ $ - -  - ~ t )  = ( ~ n ~ 2 ) ~ - -  .@(~gl~t)  = (1)~.--~(1)  = (1). 

Thus, ~ ,  ~ ~ - -  " ~ t  is an orthogonal system. By Lemma 3, AI is therefore a characteristic subgroup 
of the group A = A1 x (.4.2 x - - .  x At). This completes the proof of the corollary. 

Observe that  in the solvable case Lemma 4 for t = 2 ensues from [11, Lemma 4]. 
Given an arbitrary class :~ of groups, we denote the intersection of all n t imes local Fitting classes 

including �9 by I ~ fit :~ [I2]. 
Given n times local Fitting classes 9Jl and ~ ,  we put 

= t"fit(  u.% 

Theorem I. Suppose that ~ = ~]~iEI~i for some Fitting classes ~i. Then ~ is an n times local 
Fitting class ff and only ff each of the Fitting classes ~i is n thnes locaJ. 

PROOF. Assume that ~i is an n times local Fitting class for every i E I .  Demonstrate that ~ is 
an n times local Fit t ing class. 

First, we examine the case in which n = 0. Let H be a normal subgroup of a group G E ~. Then 
there are indices ix , . . . ,  it E I such that G = Ax x --- x At, where Ax E ~ i l , . - . ,  At E ~i,. Now, by 
Lemmas 2 and 4 

iEI 

Thus, the class ~ is closed with respect to the taking of normal subgroups. 
Assume that  G = AB, where A and B are normal ~-subgroups of a group G. Then there 

are indices i x , . . . , i t , j l , . . . , j a  E I such that A = -Ax x . . .  x At and B -" Bx x .. .  x Ba, where 
A1 E ~ix, . . . ,Ba E ~j,. By Corollary 1, the subgroups Ax, . . . ,At ,  B1, . . . ,Ba  are normal in G. 
Hence, G = Cx x .- .  x Cb, where each factor Ci satisfies one of the following conditions: 

(1) (7/coincides with Aia for some index il r { j l , . . . , ja};  
(2) Ci = Bi t for some index jt r {ix, . . .  ,it}; 
(3) Ci = AilBjk for some index it = jk. 

Therefore, G E ~. Assume that n > 0 and that fl is a minimal In-l-valued H-function of the n 
times local Fitt ing class ~i for every i e I. If i ~ j then by hypothesis ~i  N ~i = (1). Thereby 
a'(~i) fl ~r(~j) = e .  Construct the H-function f so as to have f(p) = fi(P) whenever p E ~r(~i) for 
some i E I and f(p) = ~ for alI p E P \  I.Jicz Tr(~i). Demonstrate that ~ = LR(f ) .  Let G be a group 
of minimal order in LR(f)  \~.  Then G is a comonolithic group and its comonolith M equals G~. Since 
G E LR(f) ,  we have FP(G) E f(~) for all p E ~r(G). Therefore, if p E w(G) then, by the construction 
of the H-function f ,  there is an i e I such that f(p) = fi(P) ~ ~.  This means that  p E ~r(~i). Hence, 

c_ 
Assume that  p e ~r(G/M) C ~r(V). Then p E r(~i)  for some i E I. If G / M  is a nonabelian group 

then F~(G) = G. Therefore, 

G -  FP(G) e f(p) = fi(P) ~ ~i ~ ~; 

a contradiction. 
Assume that G/M is a p-group. Then 

FP(G) = OP(G) e f (p) - -  fi(P). 

Hence, by [12, Lemma 23] G E ~i C_ ~; a contradiction. Thus, LR(f)  C ~d. 
Suppose that  the reverse inclusion fails and let G be a group of minimal order in ~ \ LR(f). 

Then G is a comonolithic group. Therefore, there is an i E I such that G E ~i = LR(fi). Hence, 
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FP(G) �9 fi(p) = f(p) for all p �9 ~r(G). Consequently, G �9 LR(f)  and ~ C_ LR(f).  Thus, ~ = LR(f)  
is an n times local Fitting class. 

Now, suppose that the Fitting class ~ is n times local and let f be a minimal/n-~-valued H- 
function of this class. Take i e I and let fi be an H-function such that fi(p) = f(p) if p �9 ~r(~i) and 
fi(P) = ~ if p e I ' \  r(~i) .  Demonstrate that ~i = LR(fi). 

Assume that ~i does not belong to LR(fi) and let G be a group of minimal order in ~i \ LR(fi). 
Then G is a comonolithic group with the comonolith M = GLR(I~). Since G r LR(fi), by [12, Lemma 
28] there is p �9 r (G/M)  such that F~(G) r fi(P). However, G �9 ~i _C ~. Hence, for all q E r(G) we 
h a v e  

F~(G) ~ f(q) = fi(q); 

a contradiction. Thus, ~i C_ LR(fi). 
Suppose that the reverse inclusion fails and let G be a group of minimal order in LR(fi) \ ~i. 

Then G is a comonolithic group with the comonoLith M -- G~i. 
Take p e c_ m tins case, it fonows from G s that F (V) �9 fi(p). Hence, 

# e ,  and by the co t ction of the H- ction we have p e Thus, C_ 
Moreover, f i  _< f by the construction of the/ / -funct ion fi. In consequence, G �9 ~, and since G is 
a comonolithic group, there is j �9 I such that G E ~i. Then r(G) _C r(~j) .  Therefore, 

C n = 

Thereby i = j ;  i.e., G e ~i; a contradiction. Hence, LR(fi) C ~i. Thus, ~i = LR(fi) is an n-times 
local Fitting class, which finishes the proof of the theorem. 

We recall that a Fitting class ~ is called totally local [3] if it is n times local for every nonnegative 
integer n. 

Coro l l a ry  2. Suppose that ~ = ~]~iEI~i for some Fitting classes ~i. Then the Fitting class ~ is 
totally local ff and only ff so is every Fitting class ~i. 

A nonempty Fitting class ~ ~ (1) is called directly indecomposable if ~ cannot be represented in 
the shape ~ = ~ i E I  ~i, where each Fitting class ~i differs from ~. 

The next lernrna is an analog of the Remak-Schmldt theorem for the Fitting classes. 

T h e o r e m  2. Suppose that ~ = ~ i E I ~ i  = ~jEJ~IJ~J, where the Fitting c/asses ~i and 93~j are 
directly indecomposable for all i E I and j E J. Then III - IJI and ,  for some bijection ~ : I --* J, 
the equality ~i = 92~,(i) holds for a / / i  E I.  

PROOF. Take i E I .  Then by Lemma 1 we have the equality ~i = ~ i E $ ( ~ i N ~ / ) .  By hypothesis, 
the Fitting class ~i is directly indecomposable; therefore, ~i = ~i N ~ t  i for some j �9 J; i.e., ~i C g)l i. 
Furthermore, for arbitrary distinct jx and j2, by hypothesis we have ~Zi l f l  ffJti2 = (1). Hence, there 
is a unique index j = j(i) such that ~i _ gJti. Assume that j �9 J .  Then from Lemma 1 we infer 
~Y~i = ~/~eI(~k N flit i). Arguing by analogy, we conclude that there is a unique index k = k(j) such 
that 89I i _C ~ .  Thus, ~i C 9~ i C ~k, but ~i Iq ~k = (1). Therefore, 93t i = ~i = ~k. It is clear that  if 
a,b e I and a # b then j(a) # j(b). Hence, III = IJI, which completes the proof of the theorem. 

L e m m a  5. Suppose that a simple group A belongs to I n fit :~, where :~ is a class of groups. 
If n = 0 then A ~-- H/K,  where H / K  E K(G) for some group G E T.. If n > 0 then the following 
assertions hold: 

(1) ff A is a nonabelian group then A " H/K,  where H / K  �9 K(G) for some group G �9 3E; 
(2) ff A = Zp is a group of order p then Zp ~- H < G for some subgroup H of a group G �9 3L 

PROOF. Assume that n = 0. The class I ~ fit 3~ = fit :~ obviously consists of all groups that result 
from applying the operations S,  and R finitely many times to the groups in 2~. Clearly, if N is a normal 
subgroup of a group G then K(N) C K(G). If G = AB, where A and B are normal subgroups of G, 
then K(G) = K(A)U K(B).  It follows that K(:~) = K(fit 3E). 

Assume that n > 0 and that the claim of the lemma is true for n - 1. Take p �9 r(A), ~ = l" fit 3~, 
and let f be a minimal/n-l-valued H-function of the Fitting class ~. If A is a nonabelian group then 
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F~(A) = A. Hence, 

A - FP(A) �9 f(p) --- ln-lfit(9~(F~)) - l"-ifit[fit(Fn(A) l A �9 3~)], 

and by induction we have A "' H / K ,  where H / K e  K(G) for some group G e :~(FP). However, by 
the above K(9~(FP)) C K(fit ~ ) =  K(3~). Whence A e K(3~). 

If A is a group of prime order p then p E ~r(~). Hence, A ~_ H < G for some subgroup H of 
a group G E ~, which completes the proof of the lemma. 

Given an arbitrary n times local Fitting class ~, we denote by Ln(~) the lattice of all n times 
local Fitting subclasses of ~. 

L e m m a  6. Let ~ = 1" fit G be a one-generated n times local Fitting class. Then the lattice Ln(~) 
has on/y/initely many atoms. 

PROOF. Let ~ be an atom of the lattice Ln(~). Then •l; - I n fit A, where A is a simple group 
in ~ .  If A is a nonabelian group then by ~ 5 we have A ~- H[K,  where H / K E  K(G). Since 
the group G is finite, it 'has finitely many composition factors. Therefore, the lattice L'Z(~) has finitely 
many nonsolvable atoms. 

Suppose that A -- Z~ is a group of prime order p. Since p divides ]G], the lattice L"(~) has only 
finitely many solvable atoms. The proof of the lemma is over. 

L e m m a  7. Let {gYt4 [ i �9 I} be a collection of atoms of the lattice I n and ~ = ~ i e I  ffJti. Then 
the Fitting class ~ belongs to the lattice 1 n and if ~ ~ ~ is an arbitrary noniden~,ity n thnes local 
Fitting subclass of ~ then the set { ~  [ i �9 I} has a subset {glt i ! i �9 , r }  ~d~ that = ~J .  

PROOF. The fist assertion of the lemma follows from Theorem 1. 
According to Lemma 1, ~l~ = ~]~ieI(~ A fiR). Since ~ is an atom of the lattice I n, we obtain 
n ~ t  = {(1), f ~ } .  Let J be a subset of I such that j �9 J if and only if ~ j  A ~ = ~ j .  Obviously, 
= ~i~j~g~j,  which completes the proof of the lernma. 

T h e o r e m  3. Let ~ be a nonidentity n times local Fitting class. Then the following conditions 
are equivalent: 

O) Zn(~) is a S o o l e ~  lattice, 
(2) ~ = ~ i e I ~ i ,  where {~i l i �9 I} is the collection of all atoms of the lattice/,"(~); 
(3) each Fitting subclass which is an atom of the lattice Ln(~) is complemented in ~. 

PROOF. Prove that  condition (3) implies condition (2). First, observe that  condition (3) holds 
for every nonidentity n times local subclass ~l of ~. Indeed, if ~ is an arbitrary atom of the lattice 
Ln(~l) then by condition (3) there is a Fitting subclass ~ in ~ such that ~ = ~ y ~  and flRAfj -- (1). 
Hence, ~ = ~ $ ~ by Lemma 4. Therefore, in view of Lemma 1 we have ~1 = ~Jt ~ (fj f'l ~l); i.e., 
fj f3 ~l is a complement to ~1~ in ~:l. 

We now validate condition (2) for an arbitrary nonidentity n times local subclass ~l of ~ with 
a finite number m of atoms of the lattice L"(~l). We induct on m. Let g be an atom of the lattice 
L"(~l).  Then, as mentioned above, ~l = s  for some Fitting subclass .~ of ~ l .  By Theorem 1, ~ is 
an n times local Fitting class. If m = 1 then J~ = (1). Hence, ~l  = g and validity of condition (2) for 
~l is trivial. Assume that m > 1 and suppose that condition (2) holds for every nonidentity n times 
local Fitting class fit _ ~ for which the number of atoms of the lattice Ln(fR) does not exceed m - 1. 
Observe that from m > 1 it follows that .E r (1). Clearly, the number of atoms in the lattice Ln(.E) 
for the n times local Fitting class .~ is less than m. Our hypothesis implies that  J~ = ff}ti $ . - -  ~9 ff)~t, 
where {gTq I i �9 I} is the collection of all atoms of the lattice Ln(.Ei. Using Lemmas 1 and 2, we 
now conclude that  ~i = g ~ 9:rtI ~ . . .  ~ 9/tt, where {~,ff)ti , . . .  , ~ t }  is the collection of all atoms of 
the lattice L ~ (~l). 

Let {~i ] i �9 I} be the collection of all atoms of the lattice Ln(~) and let ~ = ~[~ie~ ~i. Then by 
Lemma 7 fj is an n times local Fitting class. Demonstrate that ~ = ~. Assume ;~ r f3 and G E ~ \ ~. 
According to Lemma 6, there are only finitely many subclasses in ~2 = l ~ fit G which are atoms of 
the lattice Ln(~2). By the above, ~2 = •tl ~ . . .  ~ ~ ,  where ~ l , . . .  ,ff)ta is the collection of all 
atoms of the lattice Ln(~2), and G �9 ~2 C ~); a contradiction. Thus, ~ = ~. 
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Now, suppose that condition (2) holds and validate condition (1). First, we establish that Ln(~) 
is a complemented lattice. Let fir be an arbitrary n times local Fitting subclass of ~:. Then by 
Lemma 7 there is a collection {~i [ i E/1  } of Fitting subclasses in ffJI which are atoms of the lattice 
L~(~) and for which •I = ~ieI~ ~i. P u t / 2  = I \ 11 and ~ = ~ieI~ ~i- Demonstrate that ~j is 
a complement to 9J~ in the lattice Ln(~). Obviously, fir V n ~ = ~. Assume that fir fi ~j ~ (1) and let 
fit be a Fitting subclass in fiRN~j which is an atom of the lattice L'~(~). Then there is i ~ I such that 
9~ = ~i. However, 11NI2 = g.  Therefore, by Lemma 7 fit is in one of the Fitting classes fir and ~j; 
a contradiction. Hence Ln(~) is a complemented lattice. 

Demonstrate that  L~(~) is a distributive lattice. Let fiR, J~, and 9~ be arbitrary n times local 
Fitting classes in ~. The inclusion (fir fl 9~) V n (fir ~ ~j) C_ fir N (~t V n ~j) is obvious. 

Suppose that the reverse inclusion fails and let A be a group of minimal order in 

v" \ v" n 

Then A is a comonolithic group. Hence, there is i E I such that A E ~i. Since ~i is an atom of 
the lattice Ln(~), we have ~i = l~f i tA C ~t V B J~. Whence, in view of condition (2) and Lemma 7, 
we infer that either ~i C_ ~ or ~i C ~j. In both cases we arrive at the fact that the lattice L"(~) is 
distributive. Thus, L~(~) is a Boolean lattice. 

Suppose that  condition (1) holds and validate condition (3). This is obvious for n = 0. Assume 
that n >_ 1. First, demonstrate that the Fitting class ~ is nilpotent. Suppose that ~ ~ 9t and let G be 
a group of minimal order in ~ \ 91. Then G is a comonolithic group with the comonolith R = F(G). 
Let p divide IGI. Since ~ is a local class, we have 9~ C ~. Since Ln(~) is a complemented lattice, 
there is a Fitting subclass ~j in ~ such that ~ = 91v $ ~J" Since G is a comonolithic group, from here 
we infer that either G E 91p or G E ~j. In the first case, the group G is nilpotent, which contradicts 
its choice. Assnme that G E ~). From the fact that ~j is a local class and that  p divides IGI we obtain 
91p _C ~j. However, this contradicts the fact that 91p fl ~ = (1). Hence, ~r C_ 9l. 

Take p e = \ {p}. If = o then = % and (1) is a complement to % in 
Suppose that ~r r O. Demonstrate that 91~ is a complement to 9~ in ~. It is clear that 91pN91~ = (1). 
Let ~j = fit(91p U 91x) ~ ~ and let G be a group of minimal order in ~ \ D. Then G is a comonolithic 
group. Furthermore, G is nilpotent. Hence, G is a primal group. Therefore, either G E 91v or G E 91~. 
In both cases we arrive at a contraxliction which completes the proof of the theorem. 

Coro l l a ry  3. Let ~ be an n times local Fitting class with n > 1. Then the following conditions 
are equiva/ent: 

(1) is a Boolean lattice; 
(2) ~ = 9~r(~); 
(3) each Fitting subclass of the shape 9~ is complemented in ~. 

Coro l l a ry  4. Let fr~ and ~ be n times local Fitting cIasses with L'*(~) " L'~(~), where n > 1. 
I f  the Fitting class ffJI is nilpotent then so is the Fitting class .~. 

PROOF. According to Corollary 3, L'~(flJI) is a Boolean lattice. Hence, so is the lattice Ln(Yj)o 
The Fitting class ~ is nilpotent by Corollary 3, which completes the proof of the corollary. 

Coro l l a ry  5. Assume that ~d = I ~ fit G. Then the group G is nilpotent f f  and only i f  Ln(~d) is 
a Boolean lattice. 
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