Об индуктивности решетки тотально σ -локальных классов Фиттинга 1

Воробьев Н.Н., Стаселько И.И.

Витебский государственный университет имени П.М. Машерова, Витебск, Беларусь vornic2001@mail.ru, mars17906@mail.ru

Все рассматриваемые группы конечны. Мы будем использовать терминологию, принятую в [1-5]. Напомним, что класс групп \mathfrak{F} , замкнутый относительно нормальных подгрупп и произведений нормальных \mathfrak{F} -подгрупп, называется классом Фиттинга.

Следуя Л.А. Шеметкову [1], символом σ обозначается некоторое разбиение множества всех простых чисел \mathbb{P} , т.е. $\sigma = \{\sigma_i \mid i \in I\}$, где $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ и $\sigma_i \cap \sigma_j = \varnothing$ для всех $i \neq j$. Если n — целое число, то символом $\pi(n)$ обозначается множество всех простых чисел, делящих n; $\sigma(n) = \{\sigma_i \mid \sigma_i \cap \pi(n) \neq \varnothing\}$; $\sigma(G) = \sigma(|G|)$; $\sigma(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \sigma(G)$.

Напомним, что для произвольного класса групп $\mathfrak{F} \supseteq (1)$, где (1) — класс всех единичных групп, символом $G^{\mathfrak{F}}$ обозначается пересечение всех нормальных подгрупп N таких, что $G/N \in \mathfrak{F}$. Символами \mathfrak{G}_{σ_i} и $\mathfrak{G}_{\sigma_i'}$ обозначают соответственно класс всех σ_i -групп и класс всех σ_i' -групп.

Пусть f — произвольная функция вида

$$f: \sigma \to \{$$
классы Фиттинга $\},$ (1)

называемая σ -функцией Хартли (или, более кратко, H_{σ} -функцией). Следуя [5] рассмотрим класс групп

$$LR_{\sigma}(f) = \Big(G \mid G = 1 \text{ или } G \neq 1 \text{ и } G^{\mathfrak{G}_{\sigma_i}\mathfrak{G}_{\sigma'_i}} \in f(\sigma_i) \text{ для всех } \sigma_i \in \sigma(G)\Big).$$

Если класс Фиттинга \mathfrak{F} таков, что $\mathfrak{F} = LR_{\sigma}(f)$ для некоторой H_{σ} -функции f вида (1), то \mathfrak{F} называется σ -локальным классом Фиттинга, а $f - \sigma$ -локальным заданием класса Фиттинга \mathfrak{F} (см. [5]).

Всякий класс Фиттинга считается 0-кратно σ -локальным. При $n \geq 1$ класс Фиттинга $\mathfrak F$ называется n-кратно σ -локальным, если $\mathfrak F = LR_{\sigma}(f)$, где каждое непустое значение $f(\sigma_i)$ H_{σ} -функции f является (n-1)-кратно σ -локальным классом Фиттинга (см. [5]). Класс Фиттинга $\mathfrak F$ называется тотально σ -локальным, если он является n-кратно σ -локальным для всех натуральных n (см. [5]).

Совокупность классов Фиттинга Θ называется *полной решеткой классов Фиттинга* [3], если классы \varnothing и $\mathfrak G$ принадлежат Θ и пересечение любого множества классов из Θ снова принадлежит Θ . Относительно включения \subseteq множество всех тотально σ -локальных классов Фиттинга l_{σ}^{∞} образует полную решетку.

Символ l_{σ}^{∞} fit (\mathfrak{X}) обозначает пересечение всех тотально σ -локальных классов Фиттинга, содержащих совокупность групп \mathfrak{X} . H_{σ} -Функция f называется l_{σ}^{∞} -значной, если каждое ее непустое значение принадлежит решетке l_{σ}^{∞} .

Пусть $\{\mathfrak{F}_j \mid j \in J\}$ — непустая совокупность тотально σ -локальных классов Фиттинга. Следуя [2] будем полагать

$$\vee_{\sigma}^{\infty}(\mathfrak{F}_{j}\mid j\in J)=l_{\sigma}^{\infty}\mathrm{fit}\bigg(\bigcup_{j\in J}\mathfrak{F}_{j}\bigg).$$

Пусть $\{f_j \mid j \in J\}$ — совокупность l_σ^∞ -значных H_σ -функций, где f_j — некоторая H_σ -функция класса Фиттинга \mathfrak{F}_j . Тогда символом $\vee_\sigma^\infty(f_j \mid j \in J)$ обозначается такая H_σ -функция f, что

$$f(\sigma_i) = l_{\sigma}^{\infty} \operatorname{fit}\left(\bigcup_{j \in J} f_j(\sigma_i)\right)$$

Брянск, Россия 5-11 сентября, 2022

 $^{^{1}}$ Исследование выполнено в рамках Государственной программы научных исследований Республики Беларусь «Конвергенция—2025» (№ государственной регистрации 20210495).

для всех i, если по крайней мере один из классов Фиттинга $f_j(\sigma_i) \neq \emptyset$. Если же $f_j(\sigma_i) = \emptyset$ для всех $j \in J$, то предполагают, что $f(\sigma_i) = \emptyset$.

Для произвольной полной решетки классов Фиттинга Θ символом Θ^{σ_l} обозначается совокупность всех таких классов Фиттинга, которые обладают Θ -значной H_{σ} -функцией. H_{σ} -Функция f называется Θ -значной, если каждое ее непустое значение принадлежит решетке Θ .

 H_{σ} -Функция f называется внутренней, если $f(\sigma_i) \subseteq LR_{\sigma}(f)$ для всех i.

Пусть Θ — полная решетка классов Фиттинга. Тогда верхняя грань произвольной совокупности $\{\mathfrak{F}_j\mid j\in J\}$ элементов из Θ^{σ_l} обозначается через $\vee_{\Theta^{\sigma_l}}(\mathfrak{F}_j\mid j\in J)$. Решетка Θ^{σ_l} называется uнdук-mивной (см. [2]), если для любого набора $\{\mathfrak{F}_j=LR_{\sigma}(f_j)\mid j\in J\}$ классов Фиттинга $\mathfrak{F}_j\in\Theta^{\sigma_l}$ и для всякого набора $\{f_j\mid j\in J\}$ Θ -значных H_{σ} -функций f_j , где f_j — внутренняя H_{σ} -функция класса Фиттинга \mathfrak{F}_j , имеет место

$$\vee_{\Theta^{\sigma_l}}(\mathfrak{F}_i \mid j \in J) = LR_{\sigma}(\vee_{\Theta}(f_i \mid j \in J)),$$

где символ $\vee_{\Theta}(f_j \mid j \in J)$ обозначает такую H_{σ} -функцию f, что $f(\sigma_i)$ является верхней гранью для $\{f_j(\sigma_i) \mid j \in J\}$ в Θ , если $\bigcup_{j \in J} f_j(\sigma_i) \neq \varnothing$, и $f(\sigma_i) = \varnothing$ в противном случае.

Основной результат представляет следующая

Теорема. Решетка всех тотально σ -локальных классов Фиттинга l_{σ}^{∞} индуктивна.

В случае, когда $\sigma = \sigma^1 = \{\{2\}, \{3\}, \ldots\}$ из теоремы получаем

Следствие [6, лемма 5]. Решетка всех тотально локальных классов Фиттинга l^{∞} индуктивна.

Список литературы

- [1] Л. А. Шеметков. Формации конечных групп. М.: Наука. Гл. ред. физ.-матем. лит., 1978 (Соврем. алгебра).
- [2] А. Н. Скиба. Алгебра формаций. Мн.: Беларуская навука, 1997.
- [3] А. Н. Скиба, Л. А. Шеметков. Кратно ω -локальные формации и классы Фиттинга конечных групп. *Матем. труды*, **2**: 2 (1999), 114–147.
- [4] Z. Chi, V. G. Safonov, A. N. Skiba. On n-multiply σ-local formations of finite groups. Comm. Algebra, 47: 3 (2019), 957–968.
- [5] W. Guo, Li Zhang, N. T. Vorob'ev. On σ-local Fitting classes. Journal of Algebra, 546 (2020), 116–129.
- [6] Н. Н. Воробьев, А. Н. Скиба. О дистрибутивности решетки разрешимых тотально локальных классов Фиттинга. *Матем. заметки*, **67**: 5 (2000), 662–673.

Брянск, Россия 5-11 сентября, 2022