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Let σ be a partition of the set of all primes P . If G is a 
finite group and F is a Fitting class of finite groups, the 
symbol σ(G) denotes the set {σi|σi ∩ π(|G|) �= ∅} and 
σ(F) = ∪σ∈Fσ(G). We call any function f of the form 
f : σ −→ {Fitting classes} a Hartley σ-function (or simply 
Hσ-function), and we put LRσ(f) = (G|G = 1 or G �=
1 and G

Gσi
Gσ′

i ∈ f(σi) for all σi ∈ σ(G)). If there is an 
Hσ-function f such that F = LRσ(f), then we say that F is 
σ-local and f is a σ-local definition of F. In this paper, we 
describe some properties of σ-local Fitting classes and prove 
that: 1) every σ-local Fitting class can be defined by a unique 
Hσ-function F such that F (σi) = F (σi)Gσi ⊆ F and F (σi) is 
a Lockett class for all σi ∈ σ(F); 2) the product of two σ-local 
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Fitting classes is also a σ-local Fitting class. Moreover, we also 
discuss the n-multiply σ-local Fitting classes.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. 
Moreover, P is the set of all primes, π ⊆ P and π′ = P \π. If n is an integer, the symbol 
π(n) denotes the set of all primes dividing n; as usual, π(G) = π(|G|), the set of all 
primes dividing the order of G. Following Shemetkov [1], σ is some partition of P , that 
is, σ = {σi|i ∈ I}, where P =

⋃
i∈I σi, σi∩σj = ∅ for all i �= j; σ(n) = {σi|σi∩π(n) �= ∅}

[2]; σ(G) = σ(|G|). For any collection of groups X, the symbol (X) denotes the class of 
all groups G such that G ∼= H for some H ∈ X. Following [2–6], a group G is called: 
σ-primary if G is a σi-group for some i ∈ I; σ-soluble if every chief factor of G is 
σ-primary; σ-nilpotent if G = G1 × · · · ×Gn for some σ-primary groups G1, · · · , Gn.

Note that in the classical case when σ = σ1 = {{2}, {3}, · · · } (we use the notation in 
[6,7]), G is σ-soluble (respectively, σ-nilpotent) if and only if it is soluble (respectively, 
nilpotent).

Recall that a class F of groups is said: (i) a formation if it is closed under taking 
homomorphic images and subdirect products; (ii) a Fitting class if it is closed under 
taking normal subgroups and products of normal F-subgroups.

Clearly, for a nonempty formation F, every group G has a smallest normal subgroup 
GF such that G/GF ∈ F; for a nonempty Fitting class F, every group G has a largest 
normal F-subgroup GF. The subgroups GF and GF are called the F-residual and the 
F-radical of G, respectively.

Recall that the product FH of two classes of groups F and H is the class (G|G has a 
normal subgroup N with G/N ∈ H); the product F ◦ H of two formations F and H is 
the class (G|GH ∈ F) and the product F 	 H of two Fitting classes F and H is the class 
(G|G/GF ∈ H). It is well known that if F is closed under taking normal subgroups and 
H is closed under taking homomorphic images, then F ◦ H = FH = F 	 H (see [8, p. 388 
and 566]). Also it is known that the product of two formations (resp. the product of two 
Fitting classes) is a formation (resp. a Fitting class) and the multiplication of formations 
(resp. Fitting classes) satisfies the associative law (see [8, IV, Theorem 1.8(a)(c) and IX, 
Theorem (1.12)(a)(c)]).

In [9], the author introduced the concept of σ-local formations: a function f of the form 
f : σ −→ {formations of groups} is called a formation σ-function. Let LFσ(f) = (G|G =
1 or G �= 1 and G/Oσ′

i,σi
(G) ∈ f(σi) for all σi ∈ σ(G)). A formation is called σ-local

if F = LFσ(f) for some formation σ-function f . Note that if σ = σ1, then a formation 
σ-function and a σ-local formation are just a local function and a local formation in the 
usual sense, respectively (see [8, IV, Definition (3.1)] or [10, p. 2]).
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If Π ⊆ σ, then following [2], we write GΠ to denote the class of all Π-groups. In 
particular, Gσi

is the class of all σi-groups and Gσ′
i

is the class of all σ′
i–groups. Clearly, 

the classes Gσi
and Gσ′

i
are both formations and Fitting classes.

A formation σ-function f of a formation F is said: integrated if f(σi) ⊆ F for all 
σi ∈ σ(F); full if Gσi

f(σi) = f(σi) for all σi ∈ σ(f); full integrated if f is full and 
integrated.

In [11,12], the authors proved the following basic results for σ-local formations:

Theorem A. [11, Proposition 2.5]. Every σ-local formation F can be defined by a unique 
full integrated formation σ-function F such that F (σi) = Gσi

F (σi) ⊆ F for all σi ∈ σ(F).

Theorem B. [12, Theorem 1.14]. The product F ◦ H of two σ-local formations F and H
is a σ-local formation.

Note that in the case that σ = σ1, Theorems A and B are the well-known basic 
results of Carter-Hawkes-Schmidt [13,14] and Gaschütz-Shemetkov [15,16] (see, also [8, 
IV, Proposition 3.8 and IV, Theorem 3.13]).

It is well known that Fitting classes may be regarded as dual to formations (see 
Hartley [17]). Therefore, in connection with the above theory of σ-local formations, it is 
natural to ask:

Question 1. Can we establish the theory of σ-local Fitting classes?

The main purpose of this article is to solve the question.
We call any function f of the form

f : σ −→ {Fitting classes}

a Hartley σ-function (or simply Hσ-function), and we put

LRσ(f) = (G|G = 1 or G �= 1 and G
Gσi

Gσ′
i ∈ f(σi) for all σi ∈ σ(G)).

Definition 1.1. Let F be a Fitting class. If there is an Hσ-function f such that F =
LRσ(f), then we say that F is σ-local and f is a σ-local definition of F.

In the particular case when σ = σ1, we use symbol LR(f) instead of LRσ(f), which 
was used in [18,19] (see also [10, p. 310]).

If f is an Hσ-function, then the symbol Supp(f) denotes the support of f , that is, 
the set of all σi such that f(σi) �= ∅. Let σ(F) =

⋃
{σ(G)|G ∈ F}.

Before continuing, consider some examples.

Examples 1.2. (i) For the Fitting class of all identity groups (1) we have (1) = LRσ(f), 
where f(σi) = ∅ for all i.
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(ii) Let F = Gσi
be the class of all σi-groups. Then F = LRσ(f), where f(σi) = F

and f(σj) = ∅ for all j �= i.
(iii) Let X be a nonempty Fitting classes and Nσ be the class of all σ-nilpotent groups. 

Then XNσ is a σ-local Fitting class. In fact, let f be the Hσ-function such that f(σi) = X

for all i. Clearly, every σi-group belongs to XNσ, so Π = Supp(f) =
⋃
σi = P . Then 

by Lemma 3.1 below, LRσ(f) =
⋂

σi
XGσi

Gσ′
i

= X(
⋂

i Gσi
Gσ′

i
) = FNσ. Hence XNσ is 

σ-local.
(iv) We use Nk

σ to denote the product Nσ · · ·Nσ of k copies of Nσ (k ∈ N), and N0
σ is 

the class of groups of order 1. Clearly, Nk
σ is a σ-local Fitting class with the Hσ-function 

f such that f(σi) = Nk−1
σi

for all σi by (iii). In particular, Nσ is the σ-local Fitting class 
with an Hσ-function f such that f(σi) = (1) for all σi.

(v) Let X be a nonempty Fitting class and Sσ be the class of all σ-soluble groups. 
Let f be the Hσ-function such that f(σi) = XSσ for all σi. Then by Lemma 3.1 below, 
LRσ(f) =

⋂
σi
XSσGσi

Gσ′
i

= XSσ(
⋂

σ Gσi
Gσ′

i
) = XSσNσ = XSσ and so XSσ is a 

σ-local Fitting class. In particular, the class Sσ is σ-local.
It is well known that the operations ∗ and ∗ defined by Lockett [20] play important 

roles in investigations of the structure of classes of groups and canonical subgroups (see 
[8, Chapters IX-X] and [10, Chapter 5, Section 5.9]). In fact, every nonempty Fitting 
class can be connected with a Fitting class F∗, where F∗ is the smallest Fitting class 
containing F such that (G × H)F∗ = GF∗ × HF∗ for all groups G and H. Moreover, 
F∗ =

⋂
{X|X is a Fitting class such that X∗ = F∗}. A Fitting class F is called a Lockett 

class if F = F∗.

Definition 1.3. Let F = LRσ(f) for some Hσ-function f . Then we say that

(a) f is integrated if f(σi) ⊆ F for all i;
(b) f is full if f(σi)Gσi

= f(σi) for all i;
(c) full integrated if f is full and integrated;
(d) Lockett Hσ-function if f(σi) is a Lockett class for all i.

In connection with Theorems A and B, the following dual questions for σ-local Fitting 
classes naturally arises:

Question 2. Is it true that every σ-local Fitting F can be defined by a unique full inte-
grated Hσ-function F such that F (σi) = F (σi)Gσi

for all σi ∈ σ(F)?

Question 3. Is it true that the product F 	 H of two σ-local Fitting classes F and H is a 
σ-local Fitting class?

The following Theorems 1.1 and 1.2 resolve Questions 2 and 3.
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Theorem 1.1. Every σ-local Fitting class can be defined by a unique full integrated 
Hσ-function F such that F (σi) = F (σi)Gσi

⊆ F and F (σi) is a Lockett class for all 
σi ∈ σ(F).

Theorem 1.2. The product M = F 	H of two σ-local Fitting classes F and H is a σ-local 
Fitting class. Moreover, if Π = σ(H), F = LRσ(f) for integrated Hσ-function f and 
H = LRσ(h) for integrated Hσ-function h, then M can be defined by an Hσ-function m
such that

m(σi) =
{

F 	 h(σi) if σi ∈ Π;
f(σi) if σi ∈ σ \ Π.

In the case when σ = σ1, we get from Theorems 1.1 and 1.2 the following well-known 
results.

Corollary 1.3. (Vorob’ev [21]). Every local Fitting class F can be defined by a unique full 
integrated H-function F such that F (p) = F (p)Np ⊆ F and F (p) is a Lockett class for 
all p ∈ π(F).

Corollary 1.4. (Vorob’ev [22]). The product of two every local Fitting classes is also a 
local Fitting class.

2. Preliminaries

Lemma 2.1. Let F and H be nonempty formations. If F ⊆ H, then GH ≤ GF for all 
groups G.

Proof. It is clear. �
Lemma 2.2. [8, IV, Theorem (1.8)(b)]. If F and H are nonempty formations, then GFH =
(GH)F for all groups G.

Lemma 2.3. [8, IX, Lemma (1.1)(a)]. Let F be a nonempty Fitting class and G a group. 
If N is a subnormal subgroup of G, then NF = N ∩GF.

Recall that a Fitting class F is called a Fischer class [17] if H ∈ F whenever K ≤
H ≤ G ∈ F, K � G and H/K is a p-group for some p ∈ P .

Lemma 2.4. [8, X, Proposition (1.25)]. If F is a Fischer class, then F is a Lockett class.

Lemma 2.5. Let F be a nonempty Fitting class. Then

(a) (F∗)∗ = F∗ = (F∗)∗ ⊆ F ⊆ F∗ = (F∗)∗ = (F∗)∗. [8, X, Theorems (1.8) and (1.15)]
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(b) If H is also nonempty Fitting class and F ⊆ H, then F∗ ⊆ H∗. [8, X, Theorem (1.8)]
(c) Let F be a nonempty Fitting class and H be both a nonempty local formation and a 

Fitting class, then (FH)∗ = F∗H. [23, Lemma 3]
(d) If F and H are nonempty Fitting classes, then (F ∩H)∗ = F∗∩H∗. [8, X, Proposition 

(1.13)]

Let G and H be groups. Then G �H denotes the regular wreath product of G with H. 
If K ≤ G, we denote by K� the subgroup of the base group of K �H which is isomorphic 
to the product of |H| copies of K. In particular, G� denotes the base group of G �H.

Lemma 2.6. [8, X, Proposition (2.1)(a)]. Let F be a Lockett class. If G /∈ F, then (G �
H)F = (GF)� for any group H.

Lemma 2.7. [8, A, Lemma (18.2)(d)]. Let W = G �H. If K�G and K� is the base group 
of K �H, then K� � W and W/K� ∼= (G/K) �H.

Lemma 2.8. [1, Lemma 1.1] (see also [24, Chapter 2, Lemma 2.1.3]). If F is a nonempty 
formation and N � G, then (G/K)F = GFK/K.

We use the following modification of [25, Lemma 1.1(2)].

Lemma 2.9. Let N be a normal subgroup of G and π ⊆ P . If G/N is a π′-group, then 
GGπGπ′ = NGπGπ′ .

3. Properties of σ-local Fitting classes

In order to prove our theorems, we need discuss some properties of σ-local Fitting 
classes.

Lemma 3.1. Let F = LRσ(f) and Π = Supp(f). Then

(a) Π = σ(F);
(b) G ∈ F if and only if G ∈ f(σi)Gσi

Gσ′
i

for all σi ∈ σ(G);
(c) F = GΠ ∩ (

⋂
σi∈Π f(σi)Gσi

Gσ′
i
);

(d) if every group in F is σ-soluble, then F = GΠ ∩ (
⋂

σi∈Π f(σi)Gσi
Sσ′

i
).

Proof. (a) If σi ∈ Π, then 1 ∈ f(σi) and for every σi-group G �= 1 we have σ(G) = {σi}. 
Hence G ∈ Gσi

Gσ′
i

and so 1 = G
Gσi

Gσ′
i ∈ f(σi). Therefore G ∈ LRσ(f) = F, and 

consequently Π ⊆ σ(F). On the other hand, if σi ∈ σ(F), then for some group G ∈ F we 
have σi ∈ σ(G) and GGσi

Gσ′
i ∈ f(σi). It follows that σi ∈ Π. Thus Π = σ(F).

(b) If G ∈ F and σi ∈ σ(G), then GGσi
Gσ′

i ∈ f(σi), and so GGσi
Gσ′

i ≤ Gf(σi). Since 
Gσi

Gσ′ is a formation,

i
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(G/G
Gσi

Gσ′
i )/(Gf(σi)/G

Gσi
Gσ′

i ) ∼= G/Gf(σi) ∈ Gσi
Gσ′

i
.

It follows that G ∈ f(σi)Gσi
Gσ′

i
. Conversely, if G ∈ f(σi)Gσi

Gσ′
i

for any σi ∈ σ(G), 
then GGσi

Gσ′
i ∈ f(σi), and so G ∈ F.

(c) If G ∈ F, then σ(G) ⊆ σ(F) = Π by (a). Hence G ∈ GΠ. Moreover, for every 
σi ∈ σ(G) we have G ∈ f(σi)Gσi

Gσ′
i

by (b). If σi ∈ Π \σ(G), then G ∈ Gσ′
i
⊆ Gσi

Gσ′
i
⊆

f(σi)Gσi
Gσ′

i
. Therefore F ⊆ GΠ ∩ (

⋂
σi∈Π f(σi)Gσi

Gσ′
i
). The anti-inclusion relationship 

is obvious by (b).
(d) See the proof (c). �

Lemma 3.2. Every σ-local Fitting class can be determined by a full integrated Hσ-function.

Proof. Assume that F is a σ-local Fitting class. Then there exists an Hσ-function f such 
that F = LRσ(f), and so F = GΠ ∩ (

⋂
σi∈Π f(σi)Gσi

Gσ′
i
), where Π = σ(F) = Supp(f), 

by Lemma 3.1. We define an Hσ-function ϕ as follows: ϕ(σi) = f(σi) ∩F for every σi ∈ Π. 
It is clear that F = LRσ(ϕ).

Now we define the Hσ-function ψ such that ψ(σi) = ϕ(σi)Gσi
for every σi ∈ Π. It is 

clear that ψ is a full Hσ-function of F. We show that ψ is an integrated Hσ-function of 
F. Let G ∈ ψ(σi). Then G/Gϕ(σi) ∈ Gσi

⊆ Gσi
Gσ′

i
and so G ∈ ϕ(σi)Gσi

Gσ′
i
. Assume 

that σj �= σi, then Gσi
⊆ Gσ′

j
and therefore G

Gσ′
j ≤ GGσi ∈ F by Lemma 2.1. It follows 

that (GGσ′
j )Gσj

Gσ′
j ∈ ϕ(σj). Then using Lemma 2.2, (GGσ′

j )Gσj
Gσ′

j = G
Gσj

Gσ′
j
Gσ′

j =
G

Gσj
Gσ′

j , so G
Gσj

Gσ′
j ∈ ϕ(σj). Therefore

G/Gϕ(σj)
∼= (G/G

Gσj
Gσ′

j )/(Gϕ(σj)/G
Gσj

Gσ′
j ) ∈ Gσj

Gσ′
j
.

Then G ∈ ϕ(σj)Gσj
Gσ′

j
for all j �= i. This shows that G ∈ ϕ(σi)Gσi

Gσ′
i

for all i ∈ Π. 
Hence G ∈ F by Lemma 3.1(b). The lemma is proved. �
Lemma 3.3. (1) Let F be a nonempty Fitting class. Then the class FGπGπ′ is a Fischer 
class, for every π ⊆ P .

(2) Every σ-local Fitting class is a Fischer class.

Proof. (1) Let G ∈ FGπGπ′ , N � G, N ≤ H ≤ G and H/N is a q-subgroup of G/N . 
Then H = HqN , where Hq is some Sylow q-subgroup of H.

Suppose that q /∈ π. Then H/N ∈ Gπ′ . Since N � G ∈ FGπGπ′ , N ∈ FGπGπ′ and so 
H ∈ FGπGπ′ . Now assume that q ∈ π. Since |G : GFGπ

| is a π′-number, every q-subgroup 
of G is contained in GFGπ

. Hence Hq ≤ GFGπ
. Then [N, Hq] ≤ [N, GFGπ

] ≤ N ∩GFGπ
=

NFGπ
by Lemma 2.3. Let L = NFGπ

. Then LHq � NHq, LHq ∈ FGπGπ = FGπ and 
(NHq)/(LHq) ∼= N/(L(N ∩Hq)) ∈ Gπ′ . Thus H = NHq ∈ FGπGπ′ . Note that if π = ∅
or π′ = ∅, then FGπGπ′ = G and the statement is obvious.

(2) Let F = LRσ(f) for some Hσ-function f . Then by Lemma 3.1(c), F = GΠ ∩
(
⋂

σ ∈Π f(σi)Gσi
Gσ′ ), where Π = Supp(f). Obviously, GΠ is a Fischer class since GΠ is 
i i
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closed under taking subgroups. Moreover, f(σi)Gσi
Gσ′

i
is a Fischer class for every σi ∈ Π

by the statement (1) of the lemma. It is clear that the intersection of Fischer classes is 
a Fischer class. Hence F is a Fischer class.

The lemma is proved. �
Corollary 3.4. Every σ-local Fitting class is a Lockett class.

Proof. It follows from Lemma 3.3(2) and Lemma 2.4. �
Lemma 3.5. Every σ-local Fitting class F can be defined by a Lockett Hσ-function.

Proof. Let ϕ be an Hσ-function of the Fitting class F. Then F = GΠ ∩ (
⋂

σi∈Π ϕ(σi)
Gσi

Gσ′
i
), where Π = Supp(ϕ), by Lemma 3.1(c). It is easy to see that for every σi ∈ Π

the Fitting class ϕ(σi)Gσi
Gσ′

i
is a Fischer class by Lemma 3.3(1). Hence ϕ(σi)Gσi

Gσ′
i

is a Lockett class by Lemma 2.4, that is, (ϕ(σi)Gσi
Gσ′

i
)∗ = ϕ(σi)Gσi

Gσ′
i
. Then by 

Lemma 2.5(c), (ϕ(p))∗Gσi
Gσ′

i
= ϕ(σi)Gσi

Gσ′
i

for all σi ∈ Π. We now construct an 
Hσ-function f as follows: f(σi) = (ϕ(σi))∗ for every σi ∈ Π. By Lemma 2.5(a), f(σi)
is a Lockett class and so f is a Lockett Hσ-function locally defining F. The lemma is 
proved. �
Lemma 3.6. Every σ-local Fitting class F can be defined by a full integrated Lockett 
Hσ-function.

Proof. By Lemma 3.5, every σ-local Fitting class F can be defined by a Lockett 
Hσ-function f . Let ψ(σi) = (f(σi) ∩ F)Gσi

for all σi ∈ Π = Supp(f). Then from the 
proof of Lemma 3.1 we see that ψ is a full integrated Hσ-function of F. We now show 
that ψ is a Lockett Hσ-function. In fact, ψ∗(σi) = (f(σi) ∩ F)∗Gσi

by Lemma 2.5(c). 
Since F is a Lockett class by Corollary 3.4, (f(σi) ∩ F)∗ = f(σi)∗ ∩ F∗ = f(σi) ∩ F by 
Lemma 2.5(d) and so ψ∗(σi) = ψ(σi) for all σi ∈ Π. �
4. On minimal Hσ-functions of σ-local Fitting classes

For any two Hσ-functions f and ϕ of F, following Shemetkov [1], we define a partial 
as follows: f � ϕ if f(σi) ⊆ ϕ(σi) for all σi ∈ Π, where Π = Supp(f).

If X is a set of groups, then we use Fit(X) to denote the Fitting class generated by 
X, that is, the interection of all Fitting classes containing X.

Proposition 4.1. Let F be a σ-local Fitting class. Then
(a) F can be defined by a unique minimal Hσ-function f such that f(σi) = Fit(G | G ∼=

X
Gσi

Gσ′
i , X ∈ F) for all σi ∈ Supp(f).

(b) F can be defined by a unique minimal full Hσ-function f such that f(σi) =

Fit(G | GGσi ∼= X
Gσi

Gσ′
i , X ∈ F)Gσi

for all σi ∈ Supp(f).
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Proof. (a) Let F = LRσ(f) for some Hσ-function f . Then by definition of f , we have 

f � f . Hence LRσ(f) ⊆ F. Conversely, let G ∈ F. Then GGσi
Gσ′

i ∈ f(σi) by the definition 
of f , and so G ∈ f(σi)Gσi

Gσ′
i

for all σi ∈ Supp(f). By Lemma 3.1(b), G ∈ LRσ(f). 
Hence F ⊆ LRσ(f). Therefore (a) holds.

(b) By Lemma 3.2, F = LRσ(ϕ) for some integrated full Hσ-function ϕ of F. Let 
ϕ1(σi) = (G|GGσi ∼= X

Gσi
Gσ′

i , X ∈ F). If G ∈ ϕ1(σi), then GGσi ∼= X
Gσi

Gσ′
i for some 

group X ∈ F. Since X ∈ F, X/Xϕ(p) ∈ Gσi
Gσ′

i
by Lemma 3.1(b) and the definition of the 

product of two Fitting classes, and so GGσi ∼= X
Gσi

Gσ′
i ∈ ϕ(σi). Hence G ∈ ϕ(σi)Gσi

=
ϕ(σi). Thus ϕ1(σi) ⊆ ϕ(σi) for all σi ∈ Supp(ϕ) and therefore f(σi) = Fit(ϕ1(σi)) ⊆
ϕ(σi), i.e. f � ϕ for every full Hσ-function ϕ of F. Therefore LRσ(f) ⊆ F.

Conversely, let G ∈ F. Since (GGσ′
i )Gσi = G

Gσi
Gσ′

i by Lemma 2.2, GGσ′
i ∈ ϕ1(σi) ⊆

f(σi). Now, by Lemma 2.1, GGσi
Gσ′

i ≤ GGσi . Hence GGσi
Gσ′

i ∈ f(σi) and so G ∈
f(σi)Gσi

Gσi
for all σi ∈ σ(F). By Lemma 3.1(b), G ∈ LRσ(f). Hence F ⊆ LRσ(f). This 

shows that f is an Hσ-function of F. Moreover, clearly, that f is a unique minimal full 
Hσ-function of LRσ(f).

The proposition is proved. �
5. Proof of Theorem 1.1

Proof of Theorem 1.1. By Lemma 3.6, every σ-local Fitting class F can be defined by 
a full integrated Lockett Hσ-function F . We show that F is a unique full integrated 
Lockett Hσ-function of F. Suppose that F = LRσ(F ) = LRσ(F1), where F and F1

are two full integrated Lockett Hσ-functions of G. Suppose that F � F1, so for some 
i we have F (σi) � F1(σi). Let G ∈ F (σi) \ F1(σi) and W = G � A be the regular 
wreath product of G and a σi-group A. If G� is the base group of W , then G� ∈ F (σi)
since F (σi) is a Fitting class. Hence G� ≤ WF (σi). Since W/G� ∈ Gσi

, we have that 
W/WF (σi)

∼= (W/G�)/(WF (σi)/G
�) ∈ Gσi

, and so W ∈ F (σi)Gσi
= F (σi). Since F (σi)

is a Lockett class and G /∈ F1(σi), WF1(p) = (GF1(p))� by Lemma 2.6. Now by Lemma 2.7, 
we have

W/WF1(σi)
∼= (G/GF1(σi)) �A /∈ Gσ′

i
.

But as W ∈ F (σi) ⊆ F = LRσ(F1) and F1 is a full integrated Hσ-function of F, we have 
that W ∈ F1(σi)Gσi

Gσ′
i

= F1(σi)Gσ′
i
, and so W/WF1(σi) ∈ Gσ′

i
, a contradiction. Hence 

F � F1. With a similar argument, F1 � F . Hence F1 = F .
The theorem is proved. �
The following corollary follows directly from Theorem 1.1 and Proposition 4.1.

Corollary 5.1. Let F = LRσ(F ) = LRσ(f) and H = LRσ(H) = LRσ(h), where F and H
are the unique full integrated Lockett Hσ-functions of F and H, and f , h are the unique 
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minimal Hσ-functions of F and H, respectively. Then any two of the following statements 
are equivalent:

(a) F ⊆ H;
(b) f � h;
(c) F � H.

Remarks 5.2. In Theorem 1.1, the uniqueness of the full integrated Hσ-function F of a 
σ-local Fitting class F holds only under the condition that F (σi) (σi ∈ σ(F)) is a Lockett 
class. To illustrate this, we give the following example.

Recall that a Fitting class F is said to be normal in S, where S is the Fitting class 
of all soluble groups, if the F-radical of G is an F-maximal subgroup of G for every 
group G ∈ S. By Blessenohl-Gaschütz Theorem [26], the intersection of all nonidentity 
normal Fitting classes is a nonidentity normal Fitting class S∗. Let σ = σ1 and F = S. 
Then F = LR(f), where f is an Hσ-function of F such that f(p) = S for all primes p. 
Obviously, f is a full integrated H-function of F and the value f(p) is a Lockett class. 
Let ϕ be the Hσ-function such that ϕ(p) = S∗Np for all primes p. Then LR(ϕ) =⋂

p∈P S∗NpNpGp′ = S∗(
⋂

p∈P NpSp′) = S∗N. By Cossey Theorem [27], S∗N = S and 
so ϕ is also a full integrated H-function of F. Moreover, obviously ϕ(p) �= S = f(p)
for all p ∈ P (see [28, Theorem 3.5(b)]). On the other hand, by Lemma 2.5(a)(c), 
ϕ∗(p) = (S∗Np)∗ = (S∗)∗Np = S∗Np = SNp = S. Hence ϕ(p) �= ϕ∗(p), and so ϕ
is not the Lockett function.

6. Proof of Theorem 1.2

Proof of Theorem 1.2. Let LRσ(m) be a σ-local Fitting class with the local Hσ-function 
such that

m(σi) =
{

F 	 h(σi) if σi ∈ σ(H) = Π;
f(σi) if σi ∈ σ \ Π.

We prove that M = LRσ(m). Let G ∈ M = F 	 H. First assume that σi ∈ σ(G/GF). 
By Lemma 2.3, GGσi

Gσ′
i/(GGσi

Gσ′
i )F = G

Gσi
Gσ′

i/(GF ∩ G
Gσi

Gσ′
i ) ∼= G

Gσi
Gσ′

iGF/GF. 
Then since Gσi

Gσ′
i
is a formation, GGσi

Gσ′
i /(GGσi

Gσ′
i )F ∼= (G/GF)Gσi

Gσ′
i by Lemma 2.8. 

Since G ∈ F 	 H, G/GF ∈ H. Hence (G/GF)Gσi
Gσ′

i ∈ h(σi) by Lemma 3.1(b), and so 
G

Gσi
Gσ′

i /(Gσi
Gσ′

i
)F ∈ h(σi). Therefore GGσi

Gσ′
i ∈ F 	 h(σi). Note that from G/GF ∈ H

we have σi ∈ σ(H). Thus GGσi
Gσ′

i ∈ m(σi) for all σi ∈ σ(H) ∩ σ(G/GF).
Now assume that σi ∈ σ(G) \ σ(G/GF). Then G/GF is a σ′

i-group and so GGσi
Gσ′

i =
(GF)Gσi

Gσ′
i by Lemma 2.9. Moreover, since GF ∈ F, (GF)Gσi

Gσ′
i ∈ f(p) by Lemma 3.1(b). 

Hence GGσi
Gσ′

i ∈ f(p). If σi ∈ σ(H), then GGσi
Gσ′

i ∈ f(σi) ⊆ F ⊆ F 	 h(σi) = m(σi). 
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Suppose that σi /∈ σ(H). Then GGσi
Gσ′

i ∈ f(σi) = m(σi). Thus GGσi
Gσ′

i ∈ m(σi) for all 
σi ∈ σ(G). Consequently, M ⊆ LRσ(m) by Lemma 3.1(b).

Conversely, we prove that LRσ(m) ⊆ M. Suppose that G ∈ LRσ(m) \ M and G is 
a counterexample of minimal order. Then G has a unique maximal normal subgroup 
M = GM < G. Since F ⊆ M and G /∈ M, we have that GF < G and GF ≤ M . Hence 
MF = GF∩M = GF by Lemma 2.3. Moreover, from M ∈ M we have M/MF = M/GF ∈
H.

We claim that G/M is a σi-group for some σi. In fact, assume that G/M is not 
σ-primary and σi, σj ∈ σ(G/M). Since G = G/M is a simple group, GGσi

Gσ′
i = 1 or 

G. If GGσi
Gσ′

i = 1, then G ∈ Gσi
Gσ′

i
and so G/GGσi

∈ Gσ′
i
. But GGσi

= 1 or G. 
If GGσi

= 1, then G/M is a σ′
i-group, a contradiction. If GGσi

= G, then G/M is a 
σi-group, a contradiction also. Hence G/M is a σi-group for some σi.

If σi ∈ σ(H), then GGσi
Gσ′

i ∈ m(σi) = F 	 h(σi) by Lemma 3.1(b). Hence 
G

Gσi
Gσ′

i /(GGσi
Gσ′

i )F ∈ h(σi). As shown above, GGσi
Gσ′

i /(GGσi
Gσ′

i )F ∼= (G/GF)Gσi
Gσ′

i . 
Therefore (G/GF)Gσi

Gσ′
i ∈ h(σi). Now we prove that (G/GF)Gσi

Gσ′
i ∈ h(σj) for all 

σj ∈ σ(H) different from σi. In fact, since M ∈ M = F 	 H, M/GF ∈ H. Hence 
σ(M/GF) ⊆ σ(H). Then as σ(G/M) = {σi} ⊆ σ(H), we have that σ(G/GF) ⊆ σ(H). 
Hence (G/GF)Gσi

Gσ′
i ∈ h(σj) for all σj ∈ σ(H) where σj �= σi. Thus (G/GF)Gσk

Gσ′
k ∈

h(σk) for all σk ∈ σ(G/GF). It follows from Lemma 3.1(b) that G/GF ∈ H. Consequently 
G ∈ F 	 H = M, a contradiction.

Hence σi /∈ σ(H). As G/M is a σi-group, it follows that G = G
Gσ′

i (in fact, 
if GGσ′

i < G, then (G/G
Gσ′

i )/(M/G
Gσ′

i ) ∼= G/M ∈ Gσ′
i
, a contradiction). Then 

G
Gσi

Gσ′
i = (GGσ′

i )Gσi = GGσi ∈ m(σi) = f(σi) by Lemma 2.2 and the definition of m. 
If GGσi = G, then G ∈ f(σi) ⊆ F ⊆ F 	H = M, a contradiction. Hence GGσi < G. Since 
M/GGσi �G/GGσi ∈ Gσi

, M/GGσi is a σ′
j-group for every σj ∈ σ(G) different from σi. 

Hence M
Gσj

Gσ′
j = (GGσi )Gσj

Gσ′
j by Lemma 2.9. Since G ∈ LRσ(m), by Lemma 3.1(b) 

G
Gσi

Gσ′
i ∈ m(σi) = f(σi) ⊆ F. Hence (GGσi )Gσj

Gσ′
j ∈ f(σj) for every σj ∈ σ(G) dif-

ferent from σi. Analogously, G/M is a σ′
j-group and G

Gσj
Gσ′

j = M
Gσj

Gσ′
j ∈ f(σj) for 

every σj ∈ σ(G) different from σi. Thus GGσk
Gσ′

k ∈ f(σk) for all σk ∈ σ(G). It follows 
from Lemma 3.1(b) that G ∈ F ⊆ F 	 H = M. The final contradiction completes the 
proof of the theorem. �
7. On n-multiply σ-local Fitting classes

In this section, we generalize the theory of σ-local Fitting classes to n-multiply σ-local 
Fitting classes, which is the dual theory of the paper [12] about n-multiply local forma-
tions.

Definition 7.1. Following [18], every Fitting class can be considered as 0-multiply σ-local. 
Let n > 0. Then a Fitting class F is called n-multiply σ-local if it has an Hσ-function f
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such that every nonempty value f(σi) of f is (n − 1)-multiply local. A Fitting class F is 
said to be totally σ-local if it is n-multiply local for all natural number n.

Proposition 7.2. Let F and H be n-multiply σ-local Fitting classes. Then M = F 	H is a 
n-multiply σ-local Fitting class.

Proof. Let n = 0. Then the statement holds for n = 0 since product of any two Fitting 
classes is also a Fitting class. Now assume that n > 0 and that the statement is true for 
n − 1. Then F = LRσ(f) and H = LRσ(h) for some Hσ-functions f and h such that all 
values of f and h are (n − 1)-multiply σ-local Fitting classes. Let M = F 	 H. In view 
of Lemma 3.1, we assume without loss of generality that both functions f and h are 
integrated. Then, by Theorem 1.2, M = LRσ(m), where

m(σi) =
{

F 	 h(σi) if σi ∈ Π;
f(σi) if σi ∈ Π′.

It is clear that F is (n − 1)-multiply σ-local, so F 	h(σi) is (n − 1)-multiply σ-local by 
inductive hypothesis. Hence m(σi) is (n − 1)-multiply σ-local for every σi. Therefore M
is n-multiply σ-local. �
Proposition 7.3. The intersection of every nonempty set of σ-local Fitting classes is a 
σ-local Fitting class, and the intersection of every nonempty set of n-multiply σ-local 
Fitting classes is a n-multiply σ-local Fitting class.

Proof. Let F = ∩i∈IFj , where Fj = LRσ(fj) for some integrated Hσ-function fj , j ∈ I. 
Let f = ∩j∈Ifj . Evidently, f is an Hσ-function. We show that F = LRσ(f). Since 
f ≤ fj for all j ∈ I, LRσ(f) ⊆ F. Let G ∈ F. Then G/Gfj(σi) ∈ Gσi

Gσ′
i

for all j ∈ I

and σi ∈ σ(G). Since Gσi
Gσ′

i
is a formation and ∩j∈IGfj(σi) = G∩j∈If(σi) = Gf(σi), we 

have G/ ∩j∈I Gfj(σi) = G/Gf(σi) ∈ Gσi
Gσ′

i
for all σi ∈ σ(G). Hence G ∈ LRσ(f) by 

Lemma 3.1(b). This shows that F = LRσ(f). Hence F is a σ-local Fitting class. The 
second statement can be similarly proved by induction.

The proposition is proved. �
Theorem 7.4. Let F = LRσ(ϕ), where ϕ is the full integrated Hσ-function of F, and let 
Π = σ(F). Then

(a) The Fitting class F is n-multiply σ-local if and only if the Fitting class ϕ(σi) is 
(n − 1)-multiply σ-local for all σi ∈ Π.

(b) The Fitting class F is totally σ-local if and only if the Fitting class ϕ(σi) is totally 
σ-local for all σi ∈ Π.

Proof. (a) It is enough to show that if F is n-multiply σ-local, then every value of ϕ is (n −
1)-multiply σ-local. Since F is n-multiply σ-local, F = LRσ(f) for some Hσ-function f
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such that all values f(σi) are (n −1)-multiply σ-local. Hence F = LRσ(ϕ) by Lemma 3.2, 
where ϕ(σi) = (f(σi) ∩F)Gσi

for every σi ∈ Π. It is clear that a n-multiply σ-local Fitting 
class is (n − 1)-multiply σ-local, so F is (n − 1)-multiply σ-local. Hence the Fitting class 
f(σi) ∩ F is also (n − 1)-multiply σ-local by Proposition 7.3. Note that Gσi

is a totally 
σ-local Fitting class with the Hσ-function h such that h(σi) = Gσi

and h(σj) = ∅ for 
j �= i. It follows from Proposition 7.2 that (f(σi) ∩ F)Gσi

is (n − 1)-multiply σ-local. 
Therefore, every value ϕ(σi) of ϕ is (n − 1)-multiply σ-local.

(b) This assertion is a corollary of the statement (a) of the theorem.
The theorem is proved. �
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