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1. Introduction

Throughout this paper, all groups are finite. All unexplained notions and terminologies 
are standard, and the reader is referred to [1,2] if necessary. Recall that a class F of 
groups is said to be: (i) a formation if it is closed under taking homomorphic images and 
subdirect products; (ii) a Fitting class if it is closed under taking normal subgroups and 
products of normal F-subgroups. If a class of groups is both a formation and a Fitting 
class, then it is said to be a Fitting formation.

Clearly, for a nonempty formation F, every group G has a least normal subgroup 
GF such that G/GF ∈ F; for a nonempty Fitting class F, every group G has a largest 
normal F-subgroup GF. The subgroups GF and GF are called F-residual and F-radical 
of G respectively.

Recall that the product FH of two classes of groups F and H is the class (G: G has 
a normal subgroup N ∈ F with G/N ∈ H); the product F ◦ H of two formation F and 
H is a class (G : GH ∈ F) and the product F � H of two Fitting classes F and H is a 
class (G : G/GF ∈ H). It is well known that if F is closed under taking normal sub-
groups and H is closed under taking homomorphic images, then F ◦H = FH = F �H (see 
p. 338 and p. 566 in [1]). Also, it is known that the product of two formations (resp. 
the product of two Fitting classes) is also a formation (resp. a Fitting class) and the 
multiplication of formations (resp. Fitting classes) satisfies the associative law (see 
[1, IV, Theorem 1.8(a)(c) and IX, Theorem (1.12)(a)(c)]).

Let π be a set of primes. We denote by π′ the set P\π, where P is the set of all primes. 
The symbols S, Eπ, Ep′ , Np denote the classes of all soluble groups, all π-groups, all 
p′-groups, all p-groups, respectively, where p′ denotes {p}′. Let G be a group and X
a class of groups. We define σ(G) = {p : p ∈ P, p||G|} and σ(X) =

⋃
{σ(X) : X ∈ X}. 

A function f : P → {formations} is called a formation function. Let f be an arbitrary 
formation function and LF (f) = Eπ ∩ (

⋂
p∈π Ep′Npf(p)), where π denotes the set {p ∈

P : f(p) �= ∅} (which is called the support of f).
A formation F is called local if F = LF (f) for some formation function f . In this case, 

we say that f is a formation function of F. By [1, IX Theorem 3.7], a local formation 
F can be defined by a unique formation function F such that F (p) = NpF (p) ⊆ F for 
all p ∈ P. This formation function F is called a canonical formation function of F. Note 
that if all groups in a formation F are soluble, then F is said to be a soluble formation.

In the theory of classes of groups, a basic result is the following well known Bryce–
Cossey Theorem:

Theorem 1.1 ([3, Theorem 3], see also [4, Theorem 4.7 and 4.10]). A soluble local for-
mation F is a Fitting class if and only if every value of the canonical formation function 
F of F is a Fitting class.

Recall that if ω is a nonempty set of primes, by Shemetkov and Skiba in [5], a function 
f : ω∪{ω′} → {Fitting classes} is called an ω-local Hartley function or simply an ω-local 
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H-function. For a ω-local H-function f , we put Supp(f) = {a ∈ ω ∪ {ω′} : f(a) �= φ}. 
For an arbitrary ω-local H-function f , let π1 = Supp(f) ∩ω and π2 = ω\π1. By using [6]
(to compare with [5]), we define the class

LRω(f) = (
⋂
p∈π2

Ep′) ∩ (
⋂
p∈π1

f(p)NpEp′) ∩ f(ω′)Eω. (1)

A Fitting class F is called ω-local if F = LRω(f) for some ω-local H-function f . If an 
ω-local H-function f of F satisfies that f(a) ⊆ F for all a ∈ ω ∪ {ω′}, then f is called 
integrated H-function of F. Note that if ω = P, then an ω-local Fitting class is called a 
local Fitting class (see [4] p. 87). It is easy to see that S, Sπ, Sp′ , Np and F = (1) are all 
local Fitting classes, where the class (1) is the class of all identity groups. By Lemma 22 
and Lemma 25 in [5], every ω-local Fitting class F can be defined by a H-function F
such that F (ω′) = F and F (p)Np = F (p) ⊆ F for all p ∈ ω.

By Theorem in [10] (see Lemma 2.3 below and also Lemma 9.10 in [2]), every ω-local 
Fitting class F can be defined by a unique maximal integrated ω-local H-function F
such that F (ω′) = F and F (p)Np = F (p) ⊆ F for all p ∈ ω and the value F (p) (for 
every p ∈ ω) is a Lockett class. This H-function is called the canonical ω-local Hartley 
function of F (or simply the canonical).

In connection with above, the following dual question of Bryce–Cossey Theorem nat-
urally arises:

Question I. Is it true that an ω-local (in particular local) Fitting class F is a formation 
if and only if every value of the canonical ω-local (local) Hartley function F of F is a 
formation?

Note that our discussion is not limited to the soluble groups.
It is well known that the operation “∗” defined by Lockett in [7] plays an important 

role in investigations of the structure of classes of groups and canonical subgroups (see 
[1, Chapter IX-X] and [2, Chapter 5, Section 5.9]). In fact, every nonempty Fitting class F
can be connected with a Fitting class F∗, where F∗ is the smallest Fitting class containing 
F such that (G ×H)F∗ = GF∗ ×HF∗ for all groups G and H. A Fitting class F is called 
a Lockett class if F = F∗.

As the duality of above concept in [7], Doerk and Hawkes [8] defined the operation “0” 
on the set of formations: For every nonempty formation F, let F0 be the least formation 
containing F such that (G ×H)F0 = GF

0 ×HF
0 for all groups G and H. Note that if F

is a soluble formation, then F = F0 (see Theorem 1.2 in [8]); if F contains non-soluble 
groups, then F �= F0 in general (see [8, Proposition 2.3])

Definition 1.2. A nonempty formation F is called a Lockett formation if F = F0.

Example 1.3. Let F be the product of Fitting classes S∗ and Np, where S∗ is the least 
normal Fitting class (note that a Fitting class X is said to be normal in class S if 
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(1) �= X ⊆ S and GX is X-maximal in G for all groups G in S). Let F = S∗Np. 
Obviously, F �= S∗ (see [9, Lemma 3.3]). Let

F(F p) =
{

Fit(F p(G) : G ∈ F), if p ∈ σ(F)
φ, if p /∈ σ(F),

where F p(G) = GNpSp′ , and Fit(F p(G) : G ∈ F) is the least Fitting class containing 
the class (F p(G) : G ∈ F). It is clear that F(F p) ⊆ S∗, therefore F(F p)Np ⊆ S∗Np = F. 
Consequently, by Theorem 9 in [5], we have that the Fitting class F is ω-local for ω = {p}. 
Since S∗ is a normal Fitting class and by Proposition X (3.11) in [1], F is a normal 
Fitting class. If F is a formation, then by Theorem X (3.7) and Proposition X (1.25) 
in [1], F = F∗ = S, a contradiction. This shows that F is not a formation, in particularly, 
F is not a Lockett formation.

Base on the above example, the following question also naturally arises:

Question II. Is it true that an nonempty ω-local Fitting class F is Lockett formation if 
and only if every nonempty value of the canonical Hartley function of F is a Lockett 
formation?

The following Theorems A and B completely resolve Questions I and II.

Theorem A. An ω-local Fitting class F is a formation if and only if every value of the 
canonical ω-local Hartley function of F is a formation.

Theorem B. A nonempty ω-local Fitting class F is a Lockett formation if and only if every 
nonempty value of the canonical ω-local Hartley function of F is a Lockett formation.

2. Preliminaries

Lemma 2.1 (see [1, IX, Lemma (1.1)(a)]). Let F be a Fitting class and G a group. If N
is a subnormal subgroup of G, then NF = N ∩GF.

Recall that a Fitting class F is called a Lockett class if (G ×H)F = GF ×HF for all 
groups G and H. A Fitting class F is called a Fischer class if K � G ∈ F and H/K is a 
nilpotent subgroup of G/K, then H ∈ F.

Lemma 2.2 (see [1, Proposition X(1.25) and Proposition IX(3.5)]). Every Q-closed Fit-
ting class (in particularly, every Fitting formation) and every Fischer class are Lockett 
class.

Lemma 2.3 (see [10, Theorem]). Let F be an ω-local Fitting class. Then F can be defined 
by a unique maximal integrated H-function F such that F (p)Np = F (p) ⊆ F and F (p)
is a Lockett class for all p ∈ ω and f(ω′) = F.
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Let G and H be groups. G 
H denotes the regular wreath product of G with H. If 
K ≤ G, we denote by K∗ the subgroup of the base group of K 
H which is isomorphic to 
the direct product of |H| copies of K. In particular, G∗ denotes the base group of G 
H.

Lemma 2.4 (see [1, A, Lemma (18.2)(d)]). Let W = G 
H, if K �G and K∗ is the base 
group of K 
H, then K∗ � W and W/K∗ ∼= (G/K) 
H.

Lemma 2.5 (see [1, Proposition X (2.1)(a)]). Let F be a Lockett class. If G /∈ F, then 
(G 
H)F = (GF)∗ for any group H.

The following facts about Lockett formations will be needed.

Lemma 2.6. Let F and H be nonempty formations, then

(a) F ⊆ F0 = (F0)0 ([8, Theorem 3.9 (a)]);
(b) F0 ⊆ EφF, where EφF = (G : there exists N � G with N ≤ Φ(G) and G/N ∈ F)

([8, Proposition (3.16)]);
(c) If F ⊆ H, then F0 ⊆ H0 ([8, Theorem 3.9(6)]);
(d) [GF, AutG] ≤ GF

0 , and if F ≤ H, then H ⊆ F0 if and only if [GF, AutG] ≤ GH for 
every group G ([11, Lemma 1.2 and Proposition 2.1]);

(e) If {Fλ}λ∈Λ is a family of nonempty formations, then (∩λ∈ΛFλ)0 = ∩λ∈Λ(Fλ)0
([8, Lemma 3.12]);

(f) A nonempty formation F is a Lockett formation if and only if (G ×H)F = GF×HF

for all groups G and H ([8, Theorem 3.10]).

3. The proof of Theorem A

Recall that a class F of groups is called homomorph (or Q-closed) if every homomor-
phic image of an F-group is an F-group.

Lemma 3.1. Let F and H be Fitting classes and F �H a Fitting product of F and H. Then

(a) If F and H are both homomorphs, then FH = F � H is a homomorph;
(b) If F and H are classes that are closed under taking subdirect products and H is a 

homomorph, then the class F �H = FH is closed under taking subdirect products.

Proof. (a) By [1, IX,(1.11)], FH = F � H, so we only need to prove that the prod-
uct is a homomorph. Let N � G ∈ FH. Since GF is the F-subgroup of G and F is 
a homomorph, GF/NF ∈ F. By Lemma 2.1, we have that GFN/N ∼= GF/NF. Hence 
GFN/N ∈ F and so GFN/N ≤ (G/N)F. Since G/GF ∈ H and H is a homomorph, 
G/GFN ∼= (G/GF)/(GFN/GF) ∈ H. Then ((G/N)/(GFN/N))/((G/N)F/(GFN/N)) ∼=
(G/N)/(G/N)F ∈ H. Hence G/N ∈ FH.
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(b) Let G be a group and Ni a normal subgroup of G such that G/Ni ∈ FH (i = 1, 2). 
Without loss of generality, we may assume that N1 ∩N2 = 1 ([1, Proposition II(2.6)]). 
We need show that G ∈ FH. Let Ki/Ni = (G/Ni)F for i = 1, 2. Since K1∩K2/K1∩N2 ∼=
(K1 ∩ K2)N2/N2 and K2/N2 ∈ F, we have that K1 ∩ K2/K1 ∩ N2 ∈ F. Analogously, 
K1 ∩ K2/K2 ∩ N1 ∈ F. Hence K1 ∩ K2/(K1 ∩ K2) ∩ (N1 ∩ N2) = K1 ∩ K2 ∈ F, and 
so K1 ∩ K2 = (K1 ∩ K2)F ≤ GF. Since G/Ni ∈ FH and G/Ki

∼= (G/Ni)/(Ki/Ni), 
we have that G/Ki ∈ H. Now as the class H is closed under taking subdirect products, 
G/K1∩K2 ∈ H. But since H is a homomorph, G/GF

∼= (G/K1∩K2)/(GF/K1∩K2) ∈ H. 
Therefore G ∈ FH. The lemma is proved. �
Corollary 3.2. The product of any two Fitting formations is a Fitting formation.

Lemma 3.3. Let F be an ω-local Fitting class defined by the canonical H-function F of F, 
and let W = G 
 Zp be a regular wreath product of G with the cyclic group Zp. If p ∈ ω

and G ∈ F (p), then W ∈ F.

Proof. Let G∗ be a base group of W . As F (p) is a Fitting class, G∗ ∈ F (p) and so 
G∗ ≤ WF (p). But since W/G∗ ∈ Np, we have that W ∈ F (p)Np ⊆ F. Hence W ∈ F. �
Proof of Theorem A. Necessity. Assume that the ω-local Fitting class F is a formation. 
Then F is a Lockett class by Lemma 2.2. Hence, by Lemma 2.3, all nonempty values of 
the canonical H-function F of F are Lockett classes.

We need to prove that every value of F is a formation, i.e. F (a) is a formation for all 
a ∈ ω ∪ {ω′}.

Firstly, we show that all values of F are homomorphs. Let Supp(f) = {a ∈ ω ∪ {ω′} :
f(a) �= φ}, π1 = Supp(f) ∩ ω and π2 = ω\π1. If a = ω′, then F (ω′) = F, so f(ω′) is a 
homomorph. Suppose that a ∈ ω\π1. Then F (p) = φ and so F (a) is a homomorph for 
all a ∈ π2.

Now we show that F (p) is a homomorph for every a ∈ π1. Assume G ∈ F (p) and 
G/N /∈ F (p) for some N �G. Let W = G 
Zp. Then W = K �Zp, where K is the base 
group of W . Since F (p) is a Fitting class and F (p)N = F (p), clearly W ∈ F (p) ⊆ F, so 
W ∈ F. Let W1 = (G/N) 
 Zp. Since F is a formation, by Lemma 2.4 W1 ∼= W/N∗ ∈ F, 
where N∗ is the base group of N 
 Zp. Consequently, W1 ∈ ∩p∈π1F (p)Ep′ (see the 
equation (1)). Then W1/(W1)F (p) ∈ Ep′ and so p � |W1/(W1)F (p)| for p ∈ π1. On the 
other hand, since G/N /∈ F (p) and F (p) is a Lockett class, (W1)F (p) = ((G/N)F (p))∗ by 
Lemma 2.5. Now, using Lemma 2.4, we obtain W1/(W1)F (p) ∼= (G/N)/(G/N)F (p) 
 Zp. 
Hence p||W1/(W1)F (p)|. This contradiction shows that F (p) is a homomorph for all 
p ∈ π1.

Now we prove that F (a) is closed under taking subdirect product for all a ∈ ω∪{ω′}. 
If a = ω′ or a ∈ ω \ π1, then as above, we can see that F (a) is closed under taking 
subdirect product.

Suppose that there exist p ∈ π1 such that G/Ni ∈ F (p), but G = G/N1 ∩N2 /∈ F (p)
for some Ni � G, where i ∈ {1, 2}. Without loss of generality, we may assume that 
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N1 ∩N2 = 1. Let W = G 
 Zp, Wi = (G/Ni) 
 Zp and (G/Ni)∗ be the basic group of Wi. 
Then Wi

∼= (G/Ni)∗ � Zp and Wi/(G/Ni)∗ ∈ Np. Since G/Ni ∈ F (p) and F (p) is a 
Fitting class, Wi ∈ F (p)Np = F (p) ⊆ F. Consequently, Wi ∈ F.

By Lemma 2.4, Wi = (G/Ni) 
 Zp
∼= W/N∗

i = (G 
 Zp)/N∗
i , where N∗

i is the basic 
group of N 
 Zp. Hence W/N∗

i ∈ F. Since F is a formation, W/N∗
1 ∩ N∗

2 = W ∈ F. It 
follows that W ∈ F (p)Ep′ by the equation (1), and so p � |W/WF (p)|.

On the other hand, F (p) is a Lockett class by Lemma 2.3 and G /∈ F (p). By 
Lemma 2.5, WF (p) = (GF (p))∗. Hence W/(GF (p))∗ = W/WF (p) ∼= (G/GF (p)) 
 Zp by 
Lemma 2.4, and so p||W/WF (p)|. This contradiction shows that the class F (p) is closed 
under taking subdirect product for all p ∈ π1. Therefore F (p) is a formation for all 
p ∈ ω ∪ {ω′}.

Sufficiency. Suppose that all values of the canonical function F of F are formations. 
Since F is an ω-local Fitting class, F = (∩p∈π2Ep′) ∩ (∩π1F (p)Ep′) ∩ F (ω′)Eω.

Obviously, the classes Gp′ , Gω are Fitting formations, and by the hypothesis F (p) and 
F (ω′) are also Fitting formations. It is also clear that the intersection of Fitting forma-
tions is a Fitting formation. Besides by Lemma 3.1, the product of Fitting formations is 
a Fitting formation. Hence F is a Fitting formation. The theorem is proved. �

If ω = P, we obtain the following Corollaries from Theorem A.

Corollary 3.4. A local Fitting class is a formation if and only if every value of the canon-
ical local Hartley function of F is a formation.

4. The proof of Theorem B

Lemma 4.1. Every nonempty local formation is a Lockett formation.

Proof. Let F be a local formation. Then by Lemma 2.6(a)(b), F ⊆ F0 and F0 ⊆ EΦF, 
where EφF = (G: there exists N � G with N ≤ Φ(G) and G/N ∈ F). Since F is local, 
by Gaschutz–Lubeseder–Schmid Theorem (see Theorem IV(4.6) in [1]), EΦF = F. Hence 
F = F0. The lemma is proved. �
Lemma 4.2 (see [12], Lemma 3.2 (2)). Suppose that F, H be any nonempty formations. 
If H be a Lockett formation, then F0H = (FH)0.

Definition 4.3. Let F be an ω-local Fitting class and f an ω-local H-function of F. Then 
we define the H-function f0: f0(a) = (f(a))0 for all a ∈ ω ∪ {ω′}.

Proof of Theorem B. Let F be an nonempty ω-local Fitting class. Then F = (∩p∈π2Ep′) ∩
(∩p∈π1F (p)Ep′) ∩ F(ω′)Eω for the canonical H-function F of F, where π1 = Supp(f) ∩ω

and π2 = ω\π1.
Assume that F is a Lockett formation, that is, F = F0. By Theorem A, every value of 

F is also a formation.
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Now we prove that all nonempty values of F are Lockett formations.
Suppose that a = ω′, then F (a) = F = F0 and so F (a) is a Lockett formation.
Let a = p ∈ ω. Since F (p) ⊆ F and F is a Lockett formation, by Lemma 2.6(c) 

F 0(p) = (F (p))0 ⊆ F0 = F. Since F is the canonical H-function F of F, F (p)Np = F (p)
for all p ∈ ω and F (ω′) = F. It is clear that the classes Gp′ , (∩p∈π2Ep′), Np and 
Gω are all local formations. Hence they are Lockett formations by Lemma 4.1. Then 
(∩p∈π2Ep′)0 = (∩p∈π2Ep′), (F (p))0 = (F (p)Np)0 = F 0(p)Np and (F (ω′)Gω)0 =
F (ω′)0Gω by Lemma 4.2. It follows from Lemma 2.6(e) and the equation (1) that 
F = F0 = (

⋂
p∈π2

Ep′) ∩ (
⋂

p∈π1
F 0(p)Ep′) ∩ F 0(ω′)Eω and F 0 is an integrated ω-local 

H-function of F. But since the canonical H-function F is such a unique of maximal 
integrated ω-local H-function of F, we have that F 0 ≤ F . On the other hand, by the 
definition of F0 and Definition 4.3, we know that F ≤ F 0. Therefore we obtain that 
F = F 0. Consequently, all values of F are Lockett formations.

Conversely, suppose that all nonempty values of the canonical ω-local H-function F
of F are Lockett formations. Then F = F 0 and F is a formation by Theorem A. Since 
F0 = ((∩p∈π2Ep′) ∩ (∩p∈π1F (p)Ep′) ∩ (F (ω′)Eω))0, by Lemma 2.6(e) F0 = (∩p∈π2Ep′)0 ∩
(∩p∈π1F (p)Ep′)0 ∩ (F (ω′)Eω)0. With a similar argument as above, we have that F0 =
(
⋂

p∈π2
Ep′) ∩ (

⋂
p∈π1

F 0(p)Ep′) ∩ F 0(ω′)Eω = (
⋂

p∈π2
Ep′) ∩ (

⋂
p∈π1

F (p)Ep′) ∩ F (ω′)Eω

since F = F 0. Thus F0 = F. This shows that F is a Lockett formation. The theorem is 
proved. �

If we put ω = P, then form Theorem B we have

Corollary 4.4. A nonempty local Fitting class F is a Lockett formation if and only if 
every nonempty value of the canonical H-function F of F is a Lockett formation.

The following result direct follows from Lemma 2.3 and Theorem B.

Corollary 4.5. If a local Fitting class F is a Lockett formation, then F can be defined by 
the canonical local H-function F such that every value of F is both a Lockett formation 
and a Lockett class.

5. A characterization of hereditary ω-local Fitting classes

As a continuation of the study of Theorem A, in this section, we discuss a character-
ization of hereditary ω-local Fitting classes

Let X be a class of groups, we say that X is hereditary if it is closed under taking 
subgroups.

Lemma 5.1. Let F and H are Fitting classes and F � H is a Fitting product of F with H. 
If F and H are hereditary and H is a homomorph, then F � H = FH is hereditary.
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Proof. Let G ∈ FH and H ≤ G. Since GF ∩H ≤ H, GF ∩H ∈ F. Note that HGF/GF

is a subgroup of the H-group G/GF. Hence H/H ∩ GF
∼= HGF/GF ∈ H. As H is a 

homomorph, from the isomorphism (H/H ∩GF)/(HF/H ∩GF) ∼= H/HF, we obtain that 
H/HF ∈ H, and so H ∈ FH. The Lemma is proved. �
Theorem 5.2. An ω-local Fitting class F is hereditary if and only if every value of the 
canonical ω-local Hartley function of F is hereditary.

Proof. Let F be a hereditary ω-local Fitting class and F is the canonical ω-local 
H-function of H. We show that all values of F is hereditary. Since F is hereditary, F
is a Lockett class by Lemma 2.2. Therefore, by Lemma 2.3, all nonempty values of F are 
Lockett classes.

Let a ∈ ω ∪ {ω′}. If a = ω′, then F (ω′) = F and so f(a) is a hereditary. Suppose that 
a ∈ ω\π1, where π1 = Supp(f) ∩ ω. Then F (a) = φ and the class F (a) is hereditary.

Now we show that F (p) is a hereditary class for all p ∈ π1. Assume that F (p) is not 
hereditary for some p ∈ π1. The there exists a group G and a subgroup H of G such that 
G is a F (p)-group but H /∈ F (p). Let W = G 
Zp. Since G ∈ F (p), W ∈ F by Lemma 3.3. 
Let W1 = H 
Zp. Since W1 ≤ W and F is hereditary, W1 ∈ F and so W1 ∈ F (p)Ep′ . Then 
W1/(W1)F (p) is a p′-group and so p � |W1/(W1)F (p)|. On the other hand, since F (p) is 
a Lockett class and H /∈ F (p), by Lemma 2.5 (W1)F (p) = (HF (p))∗, where (HF (p))∗ is 
the base group of (HF (p)) 
Zp. Hence by Lemma 2.4, W1/(W1)F (p) ∼= (H/HF (p)) 
Zp. It 
follows that p||W1/(W1)F (p)|. This contradiction shows that the class F (p) is hereditary 
for all p ∈ π1.

Conversely, suppose that every value F (a) of the canonical function F of F is hered-
itary for a ∈ ω ∪ {ω′}. Note that F = (∩p∈π2Ep′) ∩ (∩p∈π1F (p)Ep′) ∩ F (ω′)Eω, Ep′ , Eω

are hereditary and the intersection of hereditary classes is hereditary. Hence the class F
is hereditary by Lemma 5.1. This completes the proof. �

In the case of ω = P, we obtain:

Corollary 5.3. A local Fitting class F is hereditary if and only if all values of the canonical 
Hartley function F of F are hereditary.

Following [13], we define in [14], the concept of multiply locality of the Fitting class 
as follows: Every Fitting class can be considered as 0-multiply local. Let n > 0, then a 
Fitting class F is called n-multiply local if it has a local H-function f such that every 
nonempty value of f(p) is (n −1)-multiply local. A Fitting class is said to be totally local
if it is n-multiply local for all natural number.

A Fitting class F is said to be a soluble Fitting class if all groups in F are soluble. By 
Theorem 1 in [15] and Theorem 1 in [3], a soluble Fitting class F is hereditary if and 
only if F is a primitive local formation (see also Theorem XI.(1.7) and Theorem XI.(1.2) 
in [1]). Moreover, in [15], the author proved that a soluble Fitting class F is totally local 
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(as well F is a primitive local formation [3]) if and only if F is hereditary. Hence by 
Theorem A and Theorem 5.2, we obtain the basic result of Bryce and Cossey as the 
following Corollary:

Corollary 5.4 (see [3, Theorem 3]). Let F be a soluble local formation, then F is a sub-
group closed Fitting formation if and only if it can be locally defined by subgroup closed 
Fitting formations (i.e. primitive local formations).

Corollary 5.5 ([15], also [14, Theorem]). A soluble local Fitting class is hereditary if and 
only if F is totally local.
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