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ON THE PROBLEM OF FRATTINI DUALITY IN THE THEORY OF FITTING CLASSES

N. Yang,1 Sh. Zhao,1 and N. T. Vorob’ev2 UDC 512.542

We study the application of the Frattini duality to the description of multiple local Fitting classes. In par-
ticular, we establish a necessary and sufficient condition for the local Fitting class to be a formation.

1. Introduction

In the present paper, unless otherwise specified, we consider only finite groups. Recall that a class of groups
is a set of groups that contains, parallel with each group, all its isomorphic groups. A mapping ⌧ of a set of classes
of groups into a set of classes of groups is called the operation of closure (see [1], II, Definition 1.4) if, for any
classes of groups X and Y, the following conditions are satisfied:

(1) X ✓ ⌧X ;

(2) ⌧X = ⌧(⌧X) ;

(3) if X ✓ Y, then ⌧X ✓ ⌧Y.

In what follows, we use the conventional notation of the operations of closure: Sn, Q, R0, N0, and Eφ.

For the class of groups X, these operations are defined as follows:

SnX = (G : GEE H for a certain group H 2 X),

QX = (G : 9H 2 X is an epimorphism of H onto G),

R0X =
⇣
G : 9Ni EG (i = 1, . . . , r), G/Ni 2 X and

r\

i=1

Ni = 1
⌘
,

N0X =
�
G : 9Ki EE G (i = 1, . . . , r), Ki 2 X and G = hK1, . . . ,Kri

�
,

EφX =
�
G : 9N EG,N  Φ(G) and G/N 2 X

�
, where Φ(G) is a Frattini subgroup of G.

The class of groups X is called ⌧ -closed if ⌧X = X. If X is simultaneously Q-closed and R0-closed, then
the class X is called a formation. In the case where X is simultaneously Sn-closed and N0-closed, X is called
a Fitting class. The formation X is called saturated if it is Eφ-closed, i.e., the condition G/Φ(G) 2 X implies
that G 2 X.
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Let P be the set of all prime numbers. The mappings

f : P ! {formations of groups} and h : P ! {Fitting classes}

are called a formation function [1] (IV, 3.1(a)) and a Hartley function (or briefly an H-function [2]), respectively.
The symbols Supp(f) and Supp(h) denote the sets {p 2 P : f(p) 6= ?} and {p 2 P : h(p) 6= ?},

respectively, and the symbols E⇡, Np, and Ep0 stand for the class of all ⇡-groups (⇡ ✓ P), the class of all
p-groups, and the class of all p0-groups (p0 = P \ {p}), respectively.

If X and H are classes of groups, then their product is the class XH = (G : 9K 2 X and G/K 2 X).

Let LF (f) and LR(h) be classes of groups

E⇡ \
 
\

p2⇡
Ep0Npf(p)

!
and Eσ \

 
\

p2σ
h(p)NpEp0

!
,

where ⇡ = Supp(f) and σ = Supp(h).

Definition 1.1. The class of groups F is called:

(1) a local formation [1] (IV, 3.1(c)) if F = LF (f) for a certain formation function f;

(2) a local Fitting class [2] if F = LR(h) for a certain H-function h.

The Gaschütz–Lubeseder–Schmid theorem [3, 4] (see also [1], IV, Theorem 4.6) is a fundamental result from
the theory of formations of groups: a nonempty formation F is local if and only if F is saturated. This result
was later developed by Skiba and Shemetkov [5, 6] who characterized partially local formations by means of
partial saturation. However, in [7] (Theorem 2.1), it was established that it is impossible to get a dual analog
of the Gaschütz–Lubeseder–Schmid theorem in the theory of Fitting classes by applying a subgroup  (G) of the
group G dual to the Frattini subgroup of G. We recall that the subgroup  (G) was defined by Ito in [8] and studied
by Gaschütz in [9] as a subgroup of the group G generated by all minimal subgroups of G. In this connection,
for the characterization of Fitting classes, Doerk and Hauck [7, 10] proposed to use the Frattini duality in the sense
of the following definition:

Definition 1.2 ([10], Definition 2.2; see also [1], XI, 6). Let ⌧ be an operation of closure, let G be a group,
and let  ⌧ (G) be the least normal subgroup of G such that ⌧( ⌧ (G)\M) ◆ ⌧(M) for all MEEG. The Frattini
class F is called ⌧ -saturated or E ⌧-closed if the condition  ⌧ (G) 2 F always gives G 2 F.

Note that if ⌧1 and ⌧2 are operations of closure, then ⌧1  ⌧2 if and only if ⌧1X ✓ ⌧2X for all groups from
the class X. The class of groups X is called soluble if X ✓ S, where S is the Fitting class of all soluble groups.

In [1], Doerk and Hawkes formulated the following general problem for the characterization of ⌧ -saturated
Fitting classes:

Problem 1.1 [1, p. 829]. What Fitting classes in the class of groups S are ⌧ -saturated for a given operation
of closure ⌧ (Sn  ⌧)?

The main aim of the present paper is to determine a countable set of families of soluble Fitting classes for
which ⌧  Sn, and each Fitting class of these families is ⌧ -saturated. For the solution of this problem, we use the
idea of the Hartley localization [11] and the multiple Skiba localization [12].

Assume that any Fitting class F is 0-tuply local and that, for natural m > 0, the class F is called m-tuply
local [2] if it is defined by an H-function f all values of which are (m− 1)-tuply local Fitting classes. The Fitting
class F is called totally local if it is n-tuply local for all n 2 N.
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Definition 1.3. Let m 2 N and let ⌧m be an operation that associates each class of groups X with the
intersection of all m-tuply local Fitting classes containing X that are formations.

It is easy to see that ⌧m is the operation of closure and Sn  ⌧m.

The next theorem gives an answer to Problem 1.1 for a countable set of families from the Fitting classes and,
in particular, gives a classification of all local Fitting classes that are formations:

Theorem 1.1. Suppose that F is a soluble m-tuply local Fitting class (m ≥ 1) and that ⌧m is the operation
of closure from Definition 1.3. The class F is a formation if and only if F is ⌧m-saturated.

Corollary 1.1. A soluble local Fitting class is a formation if and only if it is ⌧1-saturated.

Let ⌧1 be the operation of closure that associates each class of groups X with a totally local Fitting class
generated by X. In [2], it was shown that the soluble totally local Fitting class F is exactly the Fitting class closed
with respect to taking subgroups. Moreover, by the Bryce–Cossey theorem [13], this is equivalent to the statement
that F is a primitive saturated formation. Thus, Theorem 1.1 yields the following statements:

Corollary 1.2. The soluble Fitting class F is ⌧1-saturated if and only if F is totally local.

Corollary 1.3 (Doerk–Hauck theorem [7], Theorem 2.5). The soluble Fitting class F is ⌧1-saturated if and
only if F is a formation closed with respect to taking subgroups.

2. Necessary Information

Let X be a class of groups and let ⌧ be an operation of closure. By E ⌧ we denote a class

(G : 9N EE G such that  ⌧ (G)  N 2 X)

(see [1], Definition XI, 6.10). If X = {G}, then we denote ⌧{G} simply by ⌧G.

By the definition of formation (Fitting class), for any group G, one can find the least (greatest) normal sub-
group GF (GF) such that G/GF 2 F (GF 2 F) in G. This subgroup is called a F-coradical (F-radical) of G,

respectively. If F and H are Fitting classes, then the class FH = (G : G/GF 2 H) is the product of F and H. It is
known that the product FH is a Fitting class and that the operation of multiplication of Fitting classes is associative
(see [1], Theorem IX, 1.12(a), (c)).

The group G is called comonolithic if it has a unique maximal normal subgroup called a comonolith of G.

We repeatedly use the following properties of comonolithic groups established in the universe S by Do-
erk [14]:

Lemma 2.1 ([14], Lemmas 1–3). The following assertions are true:

(1) if N EG, G/N is a comonolithic group and S is a minimal subnormal complement to N in G, then S

is a comonolithic group;

(2) if N1 and N2 are normal subgroups of the group G such that N1N2 6= G, N1 \ N2 = 1, G/Ni,

i = 1, 2, is a comonolithic group, and S is a minimal subnormal complement to N1N2 in G, then S is
a comonolithic group such that S/S \ Ni

⇠= G/Ni for i = 1, 2. In addition, if G/N1N2 is a p-group,
then S/(S \Ni)(S \Ni) is a nontrivial cyclic p-group;
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(3) if F is a Fitting class, p is a prime number, G1 is a group such that (G1)F is a comonolith with in-
dex p in the group G1, and G2 is a comonolithic non-p-perfect group belonging to F, then there exists
a comonolithic group S with the following properties:

(a) S has normal subgroups S1 and S2 such that S1\S2 = 1, S1S2/S2 is a cyclic nontrivial p-group,
and S/Si

⇠= Gi for i = 1, 2;

(b) SF is a maximal normal subgroup of S with index p.

We also use the Lockett operation ⇤ defined in [15].
Recall that if F is a nonempty Fitting class, then the operation ⇤ associates F with the least Fitting class F⇤

containing F and such that

(G⇥H)F⇤ = GF⇤ ⇥HF⇤

for all groups G and H. The Fitting class F is called a Lockett class if F = F⇤.

Lemma 2.2 ([16], Lemma 5). Every local Fitting class is a Lockett class.

Lemma 2.3 (improved version of the quasi-R0-lemma; [1], Theorem X, 1.24). The following assertions are
equivalent:

(1) F is a Lockett class;

(2) for each group G with normal subgroups N1 and N2 such that G/N1N2 is a nilpotent group, the fol-
lowing condition is satisfied:

G 2 F , G/N1 and G/N2 2 F.

By GwrH we denote the regular wreath product of the groups G and H. If K  G, then by K⇤ we denote
a subgroup of the basis group GwrH isomorphic to the direct product |H| of multipliers of the group K. By Zn

we denote a cyclic group of order n.

Lemma 2.4 {[1], A, 18.11(a)}. If p 2 P, n 2 N, and W = Zpn−1 wrZp, then W contains a subnormal
subgroup isomorphic to Zpn .

Lemma 2.5 {[1], X, 2.1(a)}. Suppose that F is a Lockett class and G is a group. If G /2 F, then

(GwrH)F = (GF)
⇤

for all groups H.

Lemma 2.6 {[1], Lemma A, 18.2}. Suppose that W = GwrH. If K EG, then K⇤ EW and

W/K⇤ ⇠= (G/K) wrH.

If X is a class of groups, then by σ(X) and Char(X) we denote, respectively, the set of all prime divisors of
all groups from X and the characteristic of the class X, i.e., the set {p 2 P : Zp 2 X}.



1056 N. YANG, SH. ZHAO, AND N. T. VOROB’EV

Lemma 2.7. If F = LR(f) for some H-function f with support of the function ⇡, then the following
assertions are true:

(1) ⇡ = σ(F) = Char(F) [18] (Lemma 2.3);

(2) LR(f) = LR(f⇤), where f⇤ is an H-function such that f⇤(p) = (f(p))⇤ for all p 2 ⇡ [17] (Theo-
rem 1).

3. Proof of Theorem 1.1

Lemma 3.1. For any local Fitting class F and any comonolithic group G 2 F with comonolith M of index p
in G, the regular wreath product GwrZp 2 F.

Proof. Let G be a comonolithic F-group with comonolith M of index p in G and let W = GwrZp. Since
F is a local Fitting class, we have

G 2 E⇡ \
 
\

p2⇡
f(p)NpEp0

!
,

where ⇡ = Supp(f).

It is clear that Op0(G) 6= 1. If Op0(G) � G and M is the comonolith of the group G, then Op0(G)  M and
the index |G : M | is a p0-number, which contradicts the choice of the group G. Hence, G = Op0(G) for all p 2 ⇡

and, by virtue of the assertion (1) of Lemma 2.7, we get W 2 E⇡.

It remains to show that W 2 f(p)NpEp0 for all p 2 ⇡.

Since G 2 F, we have G 2 f(p)NpEp0 for any p 2 ⇡. According to the assertion (2) of Lemma 2.7 and
Theorem X.1.8(a) in [7], we get

f(p)NpEp0 = f⇤(p)NpEp0 .

Thus, without loss of generality, we can assume that f is an H-function F such that f(p) is a Lockett class for
any p 2 ⇡.

If G 2 f(p), then it is clear that W 2 f(p)NpEp0 . Let G 2 f(p)Np \ f(p). Then, by virtue of Lemma 2.5,
we get Wf(p) = (Gf(p))

⇤. Hence, by Lemma 2.6,

W/Wf(p)
⇠= (G/Gf(p)) wrZp and W 2 f(p)Np ✓ f(p)NpEp0 .

Let

G 2 f(p)NpEp0 \ f(p)Np.

Similarly, by using Lemmas 2.5 and 2.6, we obtain

W/Wf(p)Np
⇠= (G/Gf(p)Np

) wrZp.

By using the condition G = Op0(G) 6= 1, we get

W 2 f(p)NpEp0 .

Hence, W 2 f(p)NpEp0 for all p 2 ⇡ and W 2 F.

The lemma is proved.
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Proof of Theorem 1.1. Let F be an m-tuply local Fitting class, which is a formation. We prove that F is
⌧m-saturated. Let G be a group of the least order such that  ⌧m(G) 2 F and G /2 F and let M be any maximal
normal subgroup of G.

We now show that  ⌧m(M)   ⌧m(G). Let K EE M. Then it is clear that K EE G. Therefore,

⌧mK  ⌧m(K \ ⌧m(G)) = ⌧m(K \ (M \ ⌧m(G))).

This implies that

 ⌧m(M)  M \ ⌧m(G)   ⌧m(G)

and, hence,  ⌧m(M) 2 F. By induction, M 2 F and M = GF. Thus, the group G is comonolithic.
Since G 2 ⌧mG and GF EG, we have GF 2 ⌧mG and ⌧mGF ✓ ⌧mG.

If ⌧mGF = ⌧mG, then ⌧mG ✓ ⌧mF = F. Therefore, G 2 F, which contradicts the choice of the group G.

Let ⌧mGF $ ⌧mG. Then G =  ⌧m(G) 2 F. The obtained contradiction completes the proof of the fact that
the Fitting class F is ⌧m-saturated.

We prove the converse assertion. Let F be a ⌧m-saturated m-tuply local Fitting class. It is necessary to show
that F is a formation, i.e., the class F is simultaneously Q-closed and R0-closed.

We first prove that F is a Q-closed Fitting class.
Assume that F is not a Q-closed class. Let G be a group of the least order such that G 2 F and G/K /2 F

for a certain normal subgroup K of the group G. Then there exists a subnormal subgroup H/K in G/K all
proper normal subgroups of which are F-groups. Let L/K be a F-radical of the group H/K. According to the
choice of G, we can assume that L = G. Hence, the group G/K is comonolithic and has the comonolith (G/K)F.

In view of the solubility of G/K, the index |G/K : (G/K)F| = p, where p 2 P. Let S be the minimal subnormal
complement to K in G. Then it follows from G 2 F that S 2 F. Hence, by the assertion (1) of Lemma 2.1,
the group S is comonolithic. Moreover, G/K ⇠= S/S \K /2 F. Due to the choice of the group G, we can assume
that S = G. Therefore, G is a comonolithic F-group. Since G 2 ⌧mG and the Fitting class ⌧mG is Q-closed,
G/K 2 ⌧mG and the inclusion

⌧m(G/K) ✓ ⌧mG (3.1)

is true.
Let M be a comonolith of the group G. Then ⌧nM ✓ ⌧nG. Assume that the following equality holds:

⌧nM = ⌧nG. (3.2)

Let G = G/K. It is clear that the group G is comonolithic, GF is its comonolith and, moreover, the index
|G : GF| = p for a certain prime p. In addition, G is a comonolithic non-p-perfect F-group. Hence, according to
the assertion (3) of Lemma 2.1, there exists a comonolithic group R with the following properties:

(a) R has normal subgroups R1 and R2 such that R1 \ R2 = 1, R/R1R2 is a cyclic nontrivial p-group,
R/R1

⇠= G, R/R2
⇠= G, and RF/R1

⇠= M, RF/R1
⇠= GF ;

(b) RF is a maximal normal subgroup with index p of the group R.

Then R/R1 2 ⌧mG and, according to (3.1), R/R2 2 ⌧mG.

On the other hand, in view of the property (a), we conclude that G is a homomorphic image of the group R.

Hence,

G 2 Q(⌧mR) = ⌧mR and ⌧mG ✓ ⌧mR.
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Thus, the equality ⌧mR = ⌧mG is true. Reasoning similarly, from M 2 QRF ✓ Q(⌧mRF) = ⌧mRF, we obtain

⌧mM ✓ ⌧mRF.

Further, according to proposition (3.2), we get

⌧mG = ⌧mM ✓ ⌧mRF ✓ ⌧mR = ⌧mG.

Therefore, ⌧mRF = ⌧mR and  ⌧m(R)  RF. Hence,  ⌧m(R) 2 F. Since the Fitting class F is ⌧m-saturated,
we conclude that R 2 F, which contradicts the property (b). This proves that equality (3.2) is impossible. Hence,
the inclusion

⌧nM & ⌧n(G) (3.3)

is true.
Now let W = GwrZp. Then M⇤ = M ⇥ . . . ⇥ M is a subgroup of the basis group G⇤ of the group W.

In this case, M = G⌧mM is the maximal normal subgroup with index p in G. Since M E G, by Lemma 2.6 we
have W/M⇤ ⇠= (G/M) wrZp. Hence,

W/M⇤ ⇠= ZpwrZp.

Further, applying Lemma 2.4, we conclude that the wreath product ZpwrZp has a cyclic subgroup Zp2 such
that the intersection of the basis group ZpwrZp with Zp2 is a cyclic group of order p. Let Zp2 be the complete
preimage of Zp2 in W. Since W/M⇤ 2 Np ✓ N, we have Zp2 EEW. In addition, by virtue of the isomorphism
W/M⇤ ⇠= ZpwrZp, we conclude that Zp2/M

⇤ ⇠= Zp2 and (Zp2 \ G⇤)/M⇤ is a subgroup of order p of the
group Zp2/M

⇤. Since G 2 ⌧mG and ⌧mG is a local Fitting class, by Lemma 2.5, we get W 2 ⌧mG. By using
Zp2 EE W, we obtain Zp2 2 ⌧mG. Therefore, ⌧mZp2 ✓ ⌧nG.

On the other hand, in view of Lemma 2.2 and the locality of the class ⌧mZp2 , this is a Lockett class. Since
Zp2 * G⇤, by applying Lemma 2.5, we obtain W 2 ⌧mZp2 . Hence, the group G 2 ⌧mZp2 and the inclusion
⌧mG ✓ ⌧mZp2 is true. This means that the equality

⌧mZp2 = ⌧mG (3.4)

is proved.
As already shown, W 2 ⌧mG. Hence, ⌧mW ✓ ⌧mG. Since Zp2 E E W, we get ⌧mZp2 ✓ ⌧mW. Further,

by using (3.4), we arrive at the equality

⌧mZp2 = ⌧mW. (3.5)

Let F be the minimal subnormal complement to M⇤ in the group Zp2 . Then ⌧mF ✓ ⌧mZp2 . Assume
that F ✓ G⇤. In this case, Zp2 ✓ G⇤, which is impossible because (Zp2 \ G⇤)/M⇤ is a subgroup of order p
in Zp2/M. Hence, F ⇥ G⇤. Since the class ⌧mF is local, by Lemma 2.2, ⌧mF is a Lockett class. Therefore,
according to Lemma 2.5, W 2 ⌧mF. Thus, by using (3.5), we arrive at the inclusion ⌧mZp2 ✓ ⌧mF. Hence,
the equalities

⌧mF = ⌧mZp2 = ⌧mG (3.6)

are true.
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Since Zp2/M
⇤ is a comonolithic group, by the assertion (1) of Lemma 2.1, the complement F in M⇤ is also

a comonolithic group. In view of the isomorphism F/F \ M⇤ ⇠= Zp2/M
⇤, the group F/F \ M⇤ is cyclic of

order p2 and F \G⇤ is the maximal normal subgroup of F.
Further, we prove the validity of the equality

⌧mF = ⌧m(F \G⇤). (3.7)

Let (Zp2)⌧m(F\G⇤) ⇥ G⇤. Note that, by Lemma 2.2, ⌧m(F \G⇤) is a Lockett class. Hence, by Lemma 2.5,
we get W 2 ⌧m(F \G⇤). Since Zp2EEW, we have Zp2 2 ⌧m(F \G⇤). Thus, by using FEE Zp2 , we conclude
that F 2 ⌧m(F \G⇤) and, therefore, ⌧mF ✓ ⌧m(F \G⇤). Since the reverse inclusion is obvious, equality (3.7)
is true in this case.

Assume that

(Zp2)⌧m(F\G⇤)  G⇤.

If (Zp2)⌧m(F\G⇤) = G⇤, then we arrive at a contradiction with G⇤ ⇥ Zp2 . Therefore,

(Zp2)⌧m(F\G⇤)  (G⇤)⌧mM = M⇤ < G.

Note that the indicated relation is obtained by using the reasoning according to which, by Lemma 2.2, the rad-
icals of direct products of the groups of local Fitting classes coincide with the direct products of radicals of these
groups for these classes and, hence, there exists a one-to-one correspondence between the radicals of the groups G
and G⇤ .

However, F \G⇤ ⇥ M⇤ and, therefore, the case (Zp2)⌧m(F\G⇤)  M⇤ is impossible.
Thus, (Zp2)⌧m(F\G⇤) ⇥ G⇤ and equality (3.7) is proved. Applying equality (3.5), we get

 ⌧m(F )  F \G⇤ 2 F.

With regard for the ⌧m-saturation of F, we conclude that F 2 F.

According to (3.6), we replace ⌧mG in equality (3.1) with ⌧mF and equality (3.2) with equality (3.7). Further,
for the groups G and F, we use the reasoning similar to the reasoning used for the groups G and G. As a result,
in view of the assertion (3) of Lemma 2.1, we construct the comonolithic group eR, which is not a F-group.
However,  ⌧m( eR) 2 F and, hence, in view of the ⌧m-saturation of F, we get eR 2 F. The obtained contradiction
completes the proof of Q-closeness of the Fitting class F.

We now prove that F is an R0-closed Fitting class.
Let G be a counterexample of the minimal order. Then there exist normal subgroups K1 and K2 in G such

that K1 \K2 = 1, G/Ki 2 F, and G /2 F, i = 1, 2.

Let K1K2 < G. In this case, we show that the group G is comonolithic with comonolith GF of index p.

Assume that L/K1 is a maximal normal subgroup of the group G/K1. Then L/K1 2 F. In addition, in view of
the isomorphism L/L \K2

⇠= LK2/K2, the group L/L \K2 2 F. Hence, by induction, we get

L/K1 \ L \K2 = L 2 F.

If another maximal normal subgroup L1/K1 exists in G/K1, then, by using the same reasoning, we conclude
that L1 2 F. In this case, G = L1L2 2 F. The obtained contradiction proves that the group G/K1 is comonolithic.
Similarly, we conclude that G/K2 is a comonolithic group.
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Let H be the minimal subnormal complement to K1K2 in G. Since the group G/Ki, i=1, 2, is comono-
lithic, by the assertion (2) of Lemma 2.1, the group H is comonolithic and H/H\Ki

⇠=G/Ki. Since |K1K2|< |G|
and K1K2/Ki 2 F, i = 1, 2, by induction, we get K1K2/Ki 2 F. In this case, the condition G /2 F implies
that H /2 F. Since H/H \Ki 2 F, in view of the minimality of the choice of the group G, we prove that H = G

and G is a comonolithic group with comonolith GF of index p in G.

In view of the assertion (3) of Lemma 2.1, for the comonolithic groups G/K1 and G/K2, there exists
a comonolithic group M with two maximal normal subgroups M1 and M2 such that M1\M2 = 1, M/M1M2 is
a nontrivial cyclic p-group, and M/Mi

⇠= G/Ki for i = 1, 2. Since G/Ki 2 F, by the quasi-R0-lemma (see [1],
Theorem IX, 1.13), we conclude that M 2 F. Moreover, in view of Lemma 2.2, we prove that ⌧mM is a Lockett
class. Hence, according to Lemma 2.3 (improved version of the quasi-R0-lemma), we find

G/Ki
⇠= M/Mi 2 ⌧mM, i = 1, 2.

Since G 2 ⌧mM, the inclusion

⌧mG ✓ ⌧mM (3.8)

is true.
Thus, we have proved that G is a comonolithic group with comonolith GF of index p in G and M is

a comonolithic F-group.
Further, following the proof of Q-closure of the class F with obvious changes and replacements of (3.1)

with (3.8) and the groups G with G, G with M, we arrive at a contradiction with the ⌧m-saturation of the class F.
Assume that G = K1K2. In this case, K2

⇠= G/K1 and K2
⇠= G/K2. Hence, G = G/K1 \ K2 2 F.

The obtained contradiction completes the proof of the theorem.
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14. K. Doerk, “Über den Rand einer Fittingklasse auflösbarer Gruppen,” J. Algebra, 51, No. 2, 619–630 (1978).
15. P. Lockett, “The Fitting class F⇤,” Math. Z., 137, No. 2, 131–136 (1974).
16. N. T. Vorob’ev, “On the radical classes of finite groups with Lockett condition,” Mat. Zametki, 43, No. 2, 91–94 (1988).
17. N. T. Vorob’ev, “On the maximal group functions of local Fitting classes,” Vopr. Alg., No. 7, 60–69 (1992).
18. W. Guo, X. Liu, and B. Li, “On F-radicals of finite ⇡-soluble group,” Algebra Discrete Math., No. 3, 49–54 (2006).


	Abstract
	1. Introduction
	2. Necessary Information
	3. Proof of Theorem 1.1
	REFERENCES

