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1 Introduction

Throughout this paper, all groups are finite. The notations and terminologies are
standard as in [1, 4].

The famous Sylow theorem asserts that if G is a finite group and p is a prime
divisor of |G|, then G has a Sylow p-subgroup, and any two Sylow p-subgroups of G
are conjugate in G. In 1928, Hall [7] proved that a finite soluble group G has a Hall
π-subgroup, and any two Hall π-subgroups are conjugate in G. In 1967, Fischer,
Gaschütz and Hartley [2] developed further the Sylow theorem and Hall theorem,
and proved the following bright result:

Theorem 1.1. [2] For any Fitting class F, every finite soluble group G has an
F-injector, and any two F-injectors are conjugate in G.
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Recall that a class F of groups is called a Fitting class provided (i) if G ∈ F and
N E G, then N ∈ F; and (ii) if N1, N2 E G and N1, N2 ∈ F, then N1N2 ∈ F.

From the condition (ii), we see that for a Fitting class F, every group G has a
largest normal F-subgroup, which is called the F-radical of G and denoted by GF.

Let F be a Fitting class. A subgroup V of G is called an F-injector of G if V ∩N
is an F-maximal subgroup of N for any subnormal subgroup N of G.

Hartley [8] proved that for any soluble Fitting class F (that is, all groups in F
are soluble), every F-injector V of a soluble group G either covers or avoids every
chief factor H/K of G, that is, either (V ∩H)K = H or (V ∩H)K = K.

In this connection, the following problem arises:

Problem 1.2. In the class of non-soluble groups, describe the cover-avoid property
of F-injectors of a group G on its chief factors.

In [3], Guo proved that if F is a Fitting class and G ∈ FSπ(F) (that is, G/GF is a
π-soluble group, where π = π(F) := {prime divisors p of G : G ∈ F}, then G has a
unique conjugate class of F-injectors (see also [4, Theorem 2.5.3]). The result in [3]
allows us in some universe U contained in FSπ(F) to further study the cover-avoid
property of F-injectors on chief factors of a group G. Obviously, we may choose, for
example, the universe U as the class S of all finite soluble groups or the class Sπ

of all finite π-soluble groups.

2 Preliminaries

Suppose that F and H be two Fitting classes. Then the product FH of F and H is
the class (G : G/GF ∈ H). It is well known that the product of any two Fitting
classes is also a Fitting class and the multiplication of Fitting classes satisfies the
associative law (see [1, X.1.12]).

We use P to denote the set of all prime numbers. If π ⊆ P and H is a Fitting class,
then put Hπ = H ∩ Eπ, where Eπ is the class of all finite π-groups. In particular, if
π = {p}, then Hp is the class of all finite p-groups in H. For a group G, let π(G) be
the set of prime divisors of G. If X is a class, then let π(X) =

⋃{π(G) : G ∈ X}.
Recall that a subgroup L of G covers (resp., avoids) H/K if (L ∩ H)K = H

(resp., (L ∩H)K = K).
A function f : P → {Fitting classes} is called a Hartley function, or in brevity,

an H-function (see, for example, [11]), and Supp(f) = {p ∈ P : f(p) 6= ∅} is called
the support of f . Let π = Supp(f) and LR(f) = Sπ∩

(⋂
p∈π f(p)NpSp′

)
. A Fitting

class F is said to be local if there exists an H-function f such that F = LR(f).
For a class X of groups, let Char(X) = {p ∈ P : Zp ∈ X}, called the characteristic

of X. By [5, Lemma 2.3], we know that if F is a local Fitting class, then Supp(f) =
π(F) = Char(F).

For an H-function f with π = Supp(f) = P, put LH(h) =
⋂

p∈P h(p)Up′Up.
Following [6, 8], a Fitting class H is called a Hartley class (or in brevity, an H-class)
if there exists an H-function h such that H = LH(h).

Proposition 2.1. Every H-class H is a local Fitting class, but in general, the
converse is not true.
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Proof. Since H is an H-class, H =
⋂

p∈P h(p)Up′Up for some H-function h. It is
easy to see that the intersection of local Fitting classes is also a local Fitting class
(see [10, Theorem]). Hence, we only need to prove that Xp := h(p)Up′Up is a local
Fitting class for any p ∈ P. In fact, by [9, Corollary], we see that Xp = LR(f) for
the H-function f such that f(p) = h(p)Up′ and f(q) = Xp for all q 6= p.

Now we prove that the converse is not true in general. Let F = UpUp′ . It is well
known that Up and Up′ are local. Hence, the product F is local by [10, Theorem].
Moreover, by [9, Corollary], we have F = LR(f) for the H-function f such that
f(p) = Np and f(q) = F for all p 6= q. But by [8, 4.2, p. 207], F 6= LH(h) for any
H-function h. Thus, F is not an H-class. This completes the proof. ¤
Lemma 2.2. [6] Let H be an H-class. Then H = LH(h) for any function h such
that h(p) ⊆ H for any p ∈ P and h(p) ⊆ h(q)Uq′ for any q ∈ P with q 6= p.

Recall [6] that an H-function h of H is called integrated if h(p) ⊆ H for all p ∈ P.

3 Main Results

Theorem 3.1. Let F be a Fitting class and U = Sπ be the class of all π-soluble
groups, where π = σ(F). Then every F-injector of G ∈ U either covers or avoids
every chief factor of G.

Proof. Since G ∈ U, G/GF ∈ U. By [4, Theorem 2.5.3], there exist F-injectors of G,
and any two F-injectors of G are conjugated in G. Let V be an arbitrary F-injector
of G and H/K be a chief factor of G. Then by the definition of F-injectors, we know
that V ∩H is an F-injector of H, and by [4, Theorem 2.5.3], any two F-injectors of
H are conjugated in H. Hence, V ∩H and (V ∩H)g are conjugated in H for any
g ∈ G. Then by the Frattini argument, G = NG(V ∩H)H.

Since G is π-soluble, the chief factor H/K is either an elementary abelian p-
group for some p ∈ π or a π′-group.

Assume that H/K is an elementary abelian p-group, then obviously, K(V ∩H)
EH. Hence, K(V ∩H) = K or K(V ∩H) = H. This shows that the F-injector V
either covers H/K or avoids H/K.

Assume that H/K is a π′-group, then (V ∩ H)K/K ≤ H/K ∈ Eπ′ , that is,
(V ∩H)K/K is a π′-group. On the other hand, since G is a π-soluble group and
π = π(F), the F-injector V is a π-group and so (V ∩H)K/K ' (V ∩H)/(V ∩K) ≤
V/(V ∩K) ∈ Eπ, that is, (V ∩H)K/K is a π-group. Hence, (V ∩H)K/K = 1 and
so (V ∩H)K = K. This shows that the F-injector V avoids H/K. ¤
Theorem 3.2. Let H = LH(h) be an H-class and G ∈ U ⊆ HS. Then any H-
injector of G covers all such G-chief factors which are covered by the h(p)-radical
of G for all p ∈ P.

Proof. Let V be an H-injector of G. Since G ∈ HS, by [4, Theorem 2.5.3], all H-
injectors of G are conjugated in G. Hence, the cover-avoid property of H-injectors
on chief factors of G does not depend on the choice of H-injectors. Obviously, V
covers all such G-chief factors that covered by Vf(p) for all p ∈ P. Therefore, we
only need to prove Vh(p) = Gh(p) for all p ∈ P.

By the definition of H-injectors, we know that GH ⊆ V . Hence, by Lemma 2.2,
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we may without loss of generality assume that the H-function h is integrated. Then

Vh(p) ∩GH = (GH)h(p) = Gh(p)∩H = Gh(p). (∗)

Hence, [Vh(p), GH] ≤ Gh(p) and thereby Vh(p) ⊆ CG(GH/Gh(p)). By using (∗), we
only need to prove C := CG(GH/Gh(p)) ⊆ GH.

Assume that it is not true. Since C ∩GH EG, we may construct a normal series
1 E C ∩GH C K E C E G such that K/(C ∩GH) is a non-trivial chief factor of G.
Obviously, K ∩GH = C ∩GH. Then K/(C ∩GH) = K/(K ∩GH) ' KGH/GH. By
hypothesis, G/GH is a soluble group. Hence, KGH/GH ' K/(K ∩ GH) is a non-
trivial abelian p-group. It follows that the A-residual (K/(K ∩GH))A = 1, where A
is the class of all abelian groups. By [4, Lemma 2.1.3], KA(K ∩GH)/(K ∩GH) = 1.
Hence, KA ⊆ K∩GH. Since K ⊆ CG(GH/Gh(p)), we have K ⊆ CG((K∩GH)/Gh(p))
and so [KA,K] ⊆ [K ∩ GH,K] ⊆ Gh(p). This shows that K/Gh(p) is a nilpotent
group with nilpotent class at most 2. Let P/Gh(p) be a non-trivial normal Sylow
p-subgroup of K/Gh(p). By [4, Theorems 2.6.7 and 2.6.14], P covers the p-chief
factor K/(K ∩GH), that is, P (K ∩GH) ⊇ K. Hence, PGH = KGH.

Now we prove P ∈ H. Since P/Gh(p) ∈ Up, P ∈ h(p)Up. But by Lemma 2.2,
h(p) ⊆ h(q)Uq′ for all q 6= p. Thus, h(p)Up ⊆ h(q)Uq′Up = h(q)Uq′ ⊆ h(q)Uq′Uq

for all q 6= p. This shows P ∈ h(q)Up′Uq for all q 6= p. On the other hand, P ∈
h(p)Up ⊆ h(p)Up′Up. Thus, P ∈ ⋂

p∈P h(q)Up′Up = H.
Since P E E G, we have PGH = GH and consequently KGH = GH. It follows

that the chief factor KGH/GH ' K/(K ∩ GH) = 1. This contradiction completes
the proof. ¤
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