On the Cover-Avoid Property of Injectors for Hartley Classes

Yufeng Liu[†]

School of Mathematics and Informational Science Shandong Institute of Business and Technology, Yantai, Shandong 264005, China E-mail: yfliu@sdibt.edn.cn

Xiaolan Yi

Department of Mathematics, Zhejiang Sci-Tech University Hangzhou, Zhejiang 310018, China E-mail: yixiaolan@126.com

N.T. Vorob'ev

Department of Mathematics, Masherov Vitebsk State University Vitebsk 210038, Belarus E-mail: nicholas@vsu.by Received 4 January 2011

Revised 13 July 2011

Communicated by K.P. Shum

Abstract. In this paper, we study the cover-avoid property of \mathfrak{F} -injectors on chief factors of a group G for a Fitting class \mathfrak{F} in some universe \mathfrak{U} with partial solubility.

2010 Mathematics Subject Classification: 20D10

Keywords: Fitting class, Hartley class, F-injector, cover-avoid property, chief factor

1 Introduction

Throughout this paper, all groups are finite. The notations and terminologies are standard as in [1, 4].

The famous Sylow theorem asserts that if G is a finite group and p is a prime divisor of |G|, then G has a Sylow p-subgroup, and any two Sylow p-subgroups of G are conjugate in G. In 1928, Hall [7] proved that a finite soluble group G has a Hall π -subgroup, and any two Hall π -subgroups are conjugate in G. In 1967, Fischer, Gaschütz and Hartley [2] developed further the Sylow theorem and Hall theorem, and proved the following bright result:

Theorem 1.1. [2] For any Fitting class \mathfrak{F} , every finite soluble group G has an \mathfrak{F} -injector, and any two \mathfrak{F} -injectors are conjugate in G.

[†]Research of the first author is supported by the Natural Science Foundation of Sandong Province (No. ZR2014AL001), China.

Recall that a class \mathfrak{F} of groups is called a Fitting class provided (i) if $G \in \mathfrak{F}$ and $N \leq G$, then $N \in \mathfrak{F}$; and (ii) if $N_1, N_2 \leq G$ and $N_1, N_2 \in \mathfrak{F}$, then $N_1N_2 \in \mathfrak{F}$.

From the condition (ii), we see that for a Fitting class \mathfrak{F} , every group G has a largest normal \mathfrak{F} -subgroup, which is called the \mathfrak{F} -radical of G and denoted by $G_{\mathfrak{F}}$.

Let \mathfrak{F} be a Fitting class. A subgroup V of G is called an \mathfrak{F} -injector of G if $V \cap N$ is an \mathfrak{F} -maximal subgroup of N for any subnormal subgroup N of G.

Hartley [8] proved that for any soluble Fitting class \mathfrak{F} (that is, all groups in \mathfrak{F} are soluble), every \mathfrak{F} -injector V of a soluble group G either covers or avoids every chief factor H/K of G, that is, either $(V \cap H)K = H$ or $(V \cap H)K = K$.

In this connection, the following problem arises:

Problem 1.2. In the class of non-soluble groups, describe the cover-avoid property of \mathfrak{F} -injectors of a group G on its chief factors.

In [3], Guo proved that if \mathfrak{F} is a Fitting class and $G \in \mathfrak{FS}^{\pi(\mathfrak{F})}$ (that is, $G/G_{\mathfrak{F}}$ is a π -soluble group, where $\pi = \pi(\mathfrak{F}) := \{\text{prime divisors } p \text{ of } G : G \in \mathfrak{F}\}, \text{ then } G \text{ has a unique conjugate class of } \mathfrak{F}\text{-injectors}$ (see also [4, Theorem 2.5.3]). The result in [3] allows us in some universe \mathfrak{U} contained in $\mathfrak{FS}^{\pi(\mathfrak{F})}$ to further study the cover-avoid property of $\mathfrak{F}\text{-injectors}$ on chief factors of a group G. Obviously, we may choose, for example, the universe \mathfrak{U} as the class \mathfrak{S} of all finite soluble groups or the class \mathfrak{S}_{π} of all finite π -soluble groups.

2 Preliminaries

Suppose that \mathfrak{F} and \mathfrak{H} be two Fitting classes. Then the product $\mathfrak{F}\mathfrak{H}$ of \mathfrak{F} and \mathfrak{H} is the class $(G : G/G_{\mathfrak{F}} \in \mathfrak{H})$. It is well known that the product of any two Fitting classes is also a Fitting class and the multiplication of Fitting classes satisfies the associative law (see [1, X.1.12]).

We use \mathbb{P} to denote the set of all prime numbers. If $\pi \subseteq \mathbb{P}$ and \mathfrak{H} is a Fitting class, then put $\mathfrak{H}_{\pi} = \mathfrak{H} \cap \mathfrak{E}_{\pi}$, where \mathfrak{E}_{π} is the class of all finite π -groups. In particular, if $\pi = \{p\}$, then \mathfrak{H}_p is the class of all finite *p*-groups in \mathfrak{H} . For a group *G*, let $\pi(G)$ be the set of prime divisors of *G*. If \mathfrak{X} is a class, then let $\pi(\mathfrak{X}) = \bigcup \{\pi(G) : G \in \mathfrak{X}\}$.

Recall that a subgroup L of G covers (resp., avoids) H/K if $(L \cap H)K = H$ (resp., $(L \cap H)K = K$).

A function $f : \mathbb{P} \to \{\text{Fitting classes}\}$ is called a Hartley function, or in brevity, an *H*-function (see, for example, [11]), and $\text{Supp}(f) = \{p \in \mathbb{P} : f(p) \neq \emptyset\}$ is called the support of f. Let $\pi = \text{Supp}(f)$ and $LR(f) = \mathfrak{S}_{\pi} \cap (\bigcap_{p \in \pi} f(p)\mathfrak{N}_p\mathfrak{S}_{p'})$. A Fitting class \mathfrak{F} is said to be local if there exists an *H*-function f such that $\mathfrak{F} = LR(f)$.

For a class \mathfrak{X} of groups, let $\operatorname{Char}(\mathfrak{X}) = \{p \in \mathbb{P} : Z_p \in \mathfrak{X}\}$, called the characteristic of \mathfrak{X} . By [5, Lemma 2.3], we know that if \mathfrak{F} is a local Fitting class, then $\operatorname{Supp}(f) = \pi(\mathfrak{F})$.

For an *H*-function f with $\pi = \text{Supp}(f) = \mathbb{P}$, put $LH(h) = \bigcap_{p \in \mathbb{P}} h(p)\mathfrak{U}_{p'}\mathfrak{U}_p$. Following [6, 8], a Fitting class \mathfrak{H} is called a Hartley class (or in brevity, an *H*-class) if there exists an *H*-function h such that $\mathfrak{H} = LH(h)$.

Proposition 2.1. Every *H*-class \mathfrak{H} is a local Fitting class, but in general, the converse is not true.

Proof. Since \mathfrak{H} is an *H*-class, $\mathfrak{H} = \bigcap_{p \in \mathbb{P}} h(p) \mathfrak{U}_{p'} \mathfrak{U}_p$ for some *H*-function *h*. It is easy to see that the intersection of local Fitting classes is also a local Fitting class (see [10, Theorem]). Hence, we only need to prove that $\mathfrak{X}_p := h(p) \mathfrak{U}_{p'} \mathfrak{U}_p$ is a local Fitting class for any $p \in \mathbb{P}$. In fact, by [9, Corollary], we see that $\mathfrak{X}_p = LR(f)$ for the *H*-function *f* such that $f(p) = h(p) \mathfrak{U}_{p'}$ and $f(q) = \mathfrak{X}_p$ for all $q \neq p$.

Now we prove that the converse is not true in general. Let $\mathfrak{F} = \mathfrak{U}_p \mathfrak{U}_{p'}$. It is well known that \mathfrak{U}_p and $\mathfrak{U}_{p'}$ are local. Hence, the product \mathfrak{F} is local by [10, Theorem]. Moreover, by [9, Corollary], we have $\mathfrak{F} = LR(f)$ for the *H*-function *f* such that $f(p) = \mathfrak{N}_p$ and $f(q) = \mathfrak{F}$ for all $p \neq q$. But by [8, 4.2, p. 207], $\mathfrak{F} \neq LH(h)$ for any *H*-function *h*. Thus, \mathfrak{F} is not an *H*-class. This completes the proof.

Lemma 2.2. [6] Let \mathfrak{H} be an *H*-class. Then $\mathfrak{H} = LH(h)$ for any function *h* such that $h(p) \subseteq \mathfrak{H}$ for any $p \in \mathbb{P}$ and $h(p) \subseteq h(q)\mathfrak{U}_{q'}$ for any $q \in \mathbb{P}$ with $q \neq p$.

Recall [6] that an *H*-function *h* of \mathfrak{H} is called integrated if $h(p) \subseteq \mathfrak{H}$ for all $p \in \mathbb{P}$.

3 Main Results

Theorem 3.1. Let \mathfrak{F} be a Fitting class and $\mathfrak{U} = \mathfrak{S}^{\pi}$ be the class of all π -soluble groups, where $\pi = \sigma(\mathfrak{F})$. Then every \mathfrak{F} -injector of $G \in \mathfrak{U}$ either covers or avoids every chief factor of G.

Proof. Since $G \in \mathfrak{U}$, $G/G_{\mathfrak{F}} \in \mathfrak{U}$. By [4, Theorem 2.5.3], there exist \mathfrak{F} -injectors of G, and any two \mathfrak{F} -injectors of G are conjugated in G. Let V be an arbitrary \mathfrak{F} -injector of G and H/K be a chief factor of G. Then by the definition of \mathfrak{F} -injectors, we know that $V \cap H$ is an \mathfrak{F} -injector of H, and by [4, Theorem 2.5.3], any two \mathfrak{F} -injectors of H are conjugated in H. Hence, $V \cap H$ and $(V \cap H)^g$ are conjugated in H for any $g \in G$. Then by the Frattini argument, $G = N_G(V \cap H)H$.

Since G is π -soluble, the chief factor H/K is either an elementary abelian pgroup for some $p \in \pi$ or a π' -group.

Assume that H/K is an elementary abelian *p*-group, then obviously, $K(V \cap H) \leq H$. Hence, $K(V \cap H) = K$ or $K(V \cap H) = H$. This shows that the \mathfrak{F} -injector V either covers H/K or avoids H/K.

Assume that H/K is a π' -group, then $(V \cap H)K/K \leq H/K \in \mathfrak{E}_{\pi'}$, that is, $(V \cap H)K/K$ is a π' -group. On the other hand, since G is a π -soluble group and $\pi = \pi(\mathfrak{F})$, the \mathfrak{F} -injector V is a π -group and so $(V \cap H)K/K \simeq (V \cap H)/(V \cap K) \leq V/(V \cap K) \in \mathfrak{E}_{\pi}$, that is, $(V \cap H)K/K$ is a π -group. Hence, $(V \cap H)K/K = 1$ and so $(V \cap H)K = K$. This shows that the \mathfrak{F} -injector V avoids H/K.

Theorem 3.2. Let $\mathfrak{H} = LH(h)$ be an *H*-class and $G \in \mathfrak{U} \subseteq \mathfrak{HS}$. Then any \mathfrak{H} -injector of *G* covers all such *G*-chief factors which are covered by the h(p)-radical of *G* for all $p \in \mathbb{P}$.

Proof. Let V be an \mathfrak{H} -injector of G. Since $G \in \mathfrak{HS}$, by [4, Theorem 2.5.3], all \mathfrak{H} -injectors of G are conjugated in G. Hence, the cover-avoid property of \mathfrak{H} -injectors on chief factors of G does not depend on the choice of \mathfrak{H} -injectors. Obviously, V covers all such G-chief factors that covered by $V_{f(p)}$ for all $p \in \mathbb{P}$. Therefore, we only need to prove $V_{h(p)} = G_{h(p)}$ for all $p \in \mathbb{P}$.

By the definition of \mathfrak{H} -injectors, we know that $G_{\mathfrak{H}} \subseteq V$. Hence, by Lemma 2.2,

we may without loss of generality assume that the H-function h is integrated. Then

$$V_{h(p)} \cap G_{\mathfrak{H}} = (G_{\mathfrak{H}})_{h(p)} = G_{h(p)\cap\mathfrak{H}} = G_{h(p)}.$$
(*)

Hence, $[V_{h(p)}, G_{\mathfrak{H}}] \leq G_{h(p)}$ and thereby $V_{h(p)} \subseteq C_G(G_{\mathfrak{H}}/G_{h(p)})$. By using (*), we only need to prove $C := C_G(G_{\mathfrak{H}}/G_{h(p)}) \subseteq G_{\mathfrak{H}}$.

Assume that it is not true. Since $C \cap G_{\mathfrak{H}} \subseteq G$, we may construct a normal series $1 \leq C \cap G_{\mathfrak{H}} \leq K \leq C \leq G$ such that $K/(C \cap G_{\mathfrak{H}})$ is a non-trivial chief factor of G. Obviously, $K \cap G_{\mathfrak{H}} = C \cap G_{\mathfrak{H}}$. Then $K/(C \cap G_{\mathfrak{H}}) = K/(K \cap G_{\mathfrak{H}}) \simeq KG_{\mathfrak{H}}/G_{\mathfrak{H}}$. By hypothesis, $G/G_{\mathfrak{H}}$ is a soluble group. Hence, $KG_{\mathfrak{H}}/G_{\mathfrak{H}} \simeq K/(K \cap G_{\mathfrak{H}})$ is a nontrivial abelian *p*-group. It follows that the \mathfrak{A} -residual $(K/(K \cap G_{\mathfrak{H}}))^{\mathfrak{A}} = 1$, where \mathfrak{A} is the class of all abelian groups. By [4, Lemma 2.1.3], $K^{\mathfrak{A}}(K \cap G_{\mathfrak{H}})/(K \cap G_{\mathfrak{H}}) = 1$. Hence, $K^{\mathfrak{A}} \subseteq K \cap G_{\mathfrak{H}}$. Since $K \subseteq C_G(G_{\mathfrak{H}}/G_{h(p)})$, we have $K \subseteq C_G((K \cap G_{\mathfrak{H}})/G_{h(p)})$ and so $[K^{\mathfrak{A}}, K] \subseteq [K \cap G_{\mathfrak{H}}, K] \subseteq G_{h(p)}$. This shows that $K/G_{h(p)}$ is a nilpotent group with nilpotent class at most 2. Let $P/G_{h(p)}$ be a non-trivial normal Sylow *p*-subgroup of $K/G_{h(p)}$. By [4, Theorems 2.6.7 and 2.6.14], *P* covers the *p*-chief factor $K/(K \cap G_{\mathfrak{H}})$, that is, $P(K \cap G_{\mathfrak{H}}) \supseteq K$. Hence, $PG_{\mathfrak{H}} = KG_{\mathfrak{H}}$.

Now we prove $P \in \mathfrak{H}$. Since $P/G_{h(p)} \in \mathfrak{U}_p$, $P \in h(p)\mathfrak{U}_p$. But by Lemma 2.2, $h(p) \subseteq h(q)\mathfrak{U}_{q'}$ for all $q \neq p$. Thus, $h(p)\mathfrak{U}_p \subseteq h(q)\mathfrak{U}_{q'}\mathfrak{U}_p = h(q)\mathfrak{U}_{q'} \subseteq h(q)\mathfrak{U}_{q'}\mathfrak{U}_q$ for all $q \neq p$. This shows $P \in h(q)\mathfrak{U}_{p'}\mathfrak{U}_q$ for all $q \neq p$. On the other hand, $P \in h(p)\mathfrak{U}_p \subseteq h(p)\mathfrak{U}_{p'}\mathfrak{U}_p$. Thus, $P \in \bigcap_{n \in \mathbb{P}} h(q)\mathfrak{U}_{p'}\mathfrak{U}_p = \mathfrak{H}$.

 $h(p)\mathfrak{U}_p \subseteq h(p)\mathfrak{U}_{p'}\mathfrak{U}_p$. Thus, $P \in \bigcap_{p \in \mathbb{P}} h(q)\mathfrak{U}_{p'}\mathfrak{U}_p = \mathfrak{H}$. Since $P \trianglelefteq \trianglelefteq G$, we have $PG_{\mathfrak{H}} = G_{\mathfrak{H}}$ and consequently $KG_{\mathfrak{H}} = G_{\mathfrak{H}}$. It follows that the chief factor $KG_{\mathfrak{H}}/G_{\mathfrak{H}} \simeq K/(K \cap G_{\mathfrak{H}}) = 1$. This contradiction completes the proof.

References

- K. Doerk, T.O. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin-New York, 1992.
- [2] B. Fischer, W. Gaschütz, B. Hartley, Injektoren endlicher auflösbarer Gruppen, Math. Z. 102 (1967) 337–339.
- [3] W. Guo, Injectors of finite groups, Chin. Ann. Math. 18A (1997) 145–148.
- [4] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.
- [5] W. Guo, X. Liu, B. Li, On *ξ*-radicals of finite π-soluble groups, Algebra Discrete Math. 2006, No.3, 49–54.
- [6] W. Guo, N.T. Vorob'ev, On injectors of finite soluble groups, Comm. Algebra 36 (2008) 3200–3208.
- [7] P. Hall, A note on soluble groups, J. London Math. Soc. 3 (1928) 98–105.
- [8] B. Hartley, On Fisher's dualization of formation theory, Proc. London Math. Soc. (Ser. 3) 19 (1969) 193–207.
- [9] N.T. Vorob'ev, On radical classes of finite groups with the Lockett condition, Math. Zametki 43 (1988) 161–168; translated in: Math. Notes 43 (1988) 91–94.
- [10] N.T. Vorob'ev, Local products of Fitting classes, Vesti AN BSSR (Ser. Fiz. Math. Navuk) 6 (1991) 28–32.
- [11] N.T. Vorob'ev, On the Hawkes conjecture for radical classes, Siberian Math. J. 37 (5) (1996) 1296–1302.