Injectors in Fitting Sets of Finite Groups

N. T. Vorob'ev* and M. G. Semenov**

Masherov Vitebsk State University, Vitebsk, Belarus Received July 29, 2013; in final form, April 23, 2014

Abstract—A set of subgroups \mathscr{F} of a finite group G is referred to as a *Fitting set* if it is closed with respect to taking normal subgroups, products of normal \mathscr{F} -subgroups, and inner automorphisms of G. A Fitting set \mathscr{F} of a group G is said to be π -saturated if $H \in \mathscr{F}$ for every subgroup H in G such that $O^{\pi'}(H) \in \mathscr{F}$. In the paper, it is proved that, if \mathscr{F} is a π -saturated Fitting set of a π -solvable group G, then there are \mathscr{F} -injectors in G and every two of them are conjugate.

DOI: 10.1134/S0001434615030244

Keywords: finite group, Fitting set, π -solvable group, π -saturated Fitting set.

1. INTRODUCTION

A basic result in the theory of classes of finite solvable groups is the generalization of fundamental Sylow and Hall theorems which was obtained by Fischer, Gaschütz, and Hartley in [1], where it was proved that, for every Fitting class \mathfrak{F} , every finite solvable group in G contains \mathfrak{F} -injectors, and every two of them are conjugate. Recall that a class of groups \mathfrak{F} is said to be a *Fitting class* if \mathfrak{F} is closed with respect to taking normal subgroups and products of normal \mathfrak{F} -subgroups. Here a subgroup V of a group G is said to be an \mathfrak{F} -injector of G if, for every subnormal subgroup N of the group G, the subgroup $V \cap N$ is maximal among the subgroups of N belonging to \mathfrak{F} . By a *Fitting set* \mathfrak{F} of a group G one means a set of subgroups. The notion of \mathfrak{F} -injector of a group for a Fitting set \mathfrak{F} of the group is defined similarly to the above definition of \mathfrak{F} -injector for a Fitting class \mathfrak{F} .

The validity of the above Fischer–Gaschütz–Hartley theorem in [1] was confirmed by Shemetkov [2] for a Fitting set of a finite partially solvable group (for the solvable case, see also [3]). As was established in [2], for every Fitting set \mathscr{F} of a finite π -solvable group $G(\pi$ stands for the set of all prime divisors of all groups in \mathscr{F}), G contains a unique class of conjugate \mathscr{F} -injectors.

Note that, if \mathfrak{F} is a Fitting class, then the set of subgroups $\{H \leq G \mid H \in \mathfrak{F}\}\$ of the group G is a Fitting set of G. It is denoted by $\operatorname{Tr}_{\mathfrak{F}}(G)$ and referred to as the *trace of the Fitting class* \mathfrak{F} in the group G. As is well known (see [4, Examples VIII.2.2]), to every Fitting class \mathfrak{F} there corresponds its trace in the group G; however, the converse is false in general. Moreover, it is clear that the set of \mathfrak{F} -injectors for a Fitting class \mathfrak{F} and of \mathscr{F} -injectors for the Fitting set $\mathscr{F} = \operatorname{Tr}_{\mathfrak{F}}(G)$ coincide and, therefore, the above-mentioned theorem of Shemetkov [2], in particular, implies the Fischer–Gaschütz–Hartley theorem [1].

Let π be an arbitrary nonempty set of primes and let π' be the complement of π in the set of all primes. The main result of the present paper is the proof of the fact that every π -solvable group G contains \mathscr{F} -injectors for every π -saturated Fitting set \mathscr{F} in G, and every two of these injectors are conjugate (Theorem 3.10).

In the concluding section of the paper, we generalize Shemetkov's result from [2] concerning the existence and conjugacy of \mathscr{F} -injectors by weakening the condition that the group is π -solvable and replacing it by the condition that an appropriate quotient group of *G* is π -solvable. All groups considered in the paper are finite. For the definitions and notation which we do not present, see [4]–[6] if necessary.

^{*}E-mail: vorobyovnt@tut.by

^{**}E-mail: mg-semenow@mail.ru

2. PRELIMINARIES

Let \mathscr{X} be a set of subgroups of a group $G, H \leq G$, and $\mathscr{X}_H = \{S \leq H : S \in \mathscr{X}\}$. In this case, if \mathscr{X} is a Fitting set of G, then \mathscr{X}_H is obviously a Fitting set of the group H. Denote by the symbol $G_{\mathscr{X}}$ the largest normal \mathscr{X} -subgroup of G. This subgroup is referred to as the \mathscr{X} -radical of G.

We shall use the well-known property of the \mathcal{F} -radical of a group given by the following lemma.

Lemma 2.1 (see [4, Property VIII.2.4(a)]). Let \mathscr{F} be a Fitting set of a group G, and let N be a subnormal subgroup. Then $N_{\mathscr{F}} = G_{\mathscr{F}} \cap N$.

Definition 2.2. Let \mathscr{F} be a set of subgroups of a group *G*.

(a) An \mathscr{F} -subgroup V of G is said to be (see [4, VIII.2.5(a)]) \mathscr{F} -maximal if it follows from $V \leq W \leq G$ and $V \in \mathscr{F}$ that V = W.

(b) By an \mathscr{F} -injector of G one means (see [4, VIII.2.5(b)]) a subgroup V such that $V \cap K$ is an \mathscr{F} -maximal subgroup of K for every subnormal subgroup K of G.

We also use some known assertions concerning \mathscr{F} -injectors of a group for Fitting sets; we present these assertions as lemmas.

Lemma 2.3 (see [4, Theorem VIII.2.9]). If \mathscr{F} is a Fitting set of a solvable group G, then the group G contains \mathscr{F} -injectors, and every two of them are conjugate.

By the symbol $\sigma(G)$ we denote the set of all prime divisors of the order of the group G and by $\sigma(\mathscr{F})$ the union of the sets $\sigma(G)$ for all groups G in a Fitting set \mathscr{F} .

Lemma 2.4 (see [2, Theorem 2.2]). Let \mathscr{F} be a Fitting set of a π -solvable group G, where $\pi = \sigma(\mathscr{F})$. Then the group G contains \mathscr{F} -injectors, and every two of them are conjugate.

Lemma 2.5 (see [3, Property 2.2]). Let A be a normal subgroup of a group G. Then the following assertions hold.

(1) If \mathscr{F} is a Fitting set of G and $A \in \mathscr{F}$, then

$$\overline{\mathscr{F}} = \{S/A : A \le S \in \mathscr{F}\}$$

is a Fitting set of the group G/A. Moreover, if V is an \mathscr{F} -injector of G, then V/A is an $\overline{\mathscr{F}}$ -injector of G/A.

(2) If $\overline{\mathscr{F}}$ is a Fitting set of G/A and V/A is an $\overline{\mathscr{F}}$ -injector of G/A, then

 $\mathscr{F}_0 = \{ S \le G : (SA) / A \in \overline{\mathscr{F}} \}$

is a Fitting set of G and V is an \mathscr{F}_0 -injector of G.

(3) If \mathscr{F} is a Fitting set of G and $V \in \mathscr{F}$ is a subgroup of G such that VA = G and $V \cap A$ is an \mathscr{F} -injector of A, then V is an \mathscr{F} -injector of G.

(4) If V is an \mathscr{F} -injector of G, then VA/A is an \mathscr{F} -injector of G/A.

Recall that the symbol F(G) denotes the *Fitting subgroup* of a group G, i.e., the largest normal nilpotent subgroup of G, and the symbol $F_{\pi}(G)$ denotes the largest normal π -nilpotent subgroup of G.

Lemma 2.6 (see [5, Corollary 4.1.2]). For every π -solvable group G, we have the inclusion

$$C_G(F_\pi(G)) \subseteq F_\pi(G).$$

Let \mathbb{P} be the set of all primes, let $\pi \subseteq \mathbb{P}$, and let $\pi' = \mathbb{P} \setminus \pi$. Recall that the symbol $O_{\pi'}(G)$ denotes the largest normal π' -subgroup of a group G and the symbol $O^{\pi}(G)$ denotes the smallest normal subgroup of G for which the quotient group $G/O^{\pi}(G)$ is a π -group.

To prove the main result, we use also properties of Hall θ -bases.

Definition 2.7. Let θ be a finite system of pairwise disjoint subsets of the set of primes,

$$\theta = \{\pi_1, \pi_2, \pi_3, \dots, \pi_k\}.$$

The set of subgroups

$$H_1, \quad H_2, \quad H_3, \quad \dots, \quad H_k$$
 (2.1)

is said to be (see [8]) a Hall θ -Base of a group G if these subgroups satisfy the following conditions:

1) H_i , $i = 1, 2, \ldots, k$, is a Hall π_i -subgroup of G;

2) the subgroups (2.1) pairwise commute.

Lemma 2.8 (see [8, Theorem 1]). Let G be a π -solvable group, let $\overline{\pi}$ be the set of prime divisors of the order of G not belonging to π , and let a set $\theta = {\pi_1, \pi_2, \pi_3, ..., \pi_k}$ be an arbitrary finite system of pairwise disjoint subsets $\pi_1, \pi_2, \pi_3, ..., \pi_k$ of the set of prime numbers satisfying the following condition: either $\pi_i \cap \overline{\pi} = \emptyset$, i = 1, 2, ..., k, or θ contains a π_s such that $\overline{\pi} \subseteq \pi_s$.

Then the group G admits at least one Hall θ -base and every two Hall θ -bases are conjugate to each other.

3. INJECTORS FOR π -SATURATED FITTING SETS

The present subsection is devoted to the proof of the existence and conjugacy of injectors for a π -saturated Fitting set of a π -solvable group.

Definition 3.1. A Fitting set \mathscr{F} of a group G is said to be π -saturated if $H \in \mathscr{F}$ for every subgroup H in G such that $O^{\pi'}(H) \in \mathscr{F}$.

We use the notion of strong π -closeness for π -subgroups of a group and some properties of this notion.

Definition 3.2. Let *G* be a group, let π be a set of primes, and let H_0 be a π -subgroup of *G* such that $H_0 \leq H \in \text{Hall}_{\pi}(G)$. A subgroup H_0 of *H* is said to be *strongly* π -closed with respect to *G* if $H_0^g \cap H \leq H_0$ for any $g \in G$.

Note that the notion of strong closeness (π -closeness for $\pi = \{p\}$) was introduced in [7].

Let us prove the properties of strong π -closeness of subgroups similar to properties of strong closeness in [7] that we use below.

Lemma 3.3. Let G be a group, let π be a set of primes, and let H_0 be a π -subgroup of G such that $H_0 \leq H \in \text{Hall}_{\pi}(G)$. If H_0 is strongly π -closed in H with respect to G, then the following assertions hold:

- 1) if $H_0 \leq H^x$ for some element $x \in G$, then the subgroup H_0 is strongly π -closed in H^x with respect to G;
- 2) if N is a normal subgroup of G, then the subgroup H_0N/N is strongly π -closed in HN/N with respect to G/N;
- 3) H_0^x is strongly π -closed in H^x with respect to G.

MATHEMATICAL NOTES Vol. 97 No. 4 2015

Proof. 1) It follows from the condition $H_0 \leq H^x$ that $H_0^{x^{-1}} \leq H$. Then, by the definition of strong π -closeness,

$$H_0^{x^{-1}} = H_0^{x^{-1}} \cap H \le H_0.$$

Hence $x \in N_G(H_0)$. Since, for every element $g \in G$, we have

$$H_0^g \cap H^x = (H_0^{gx^{-1}} \cap H)^x \le H_0^x = H_0,$$

it follows that H_0 is strongly π -closed in H^x with respect to G.

2) Note that, for every element $g \in G$, there is an element $x \in N$ for which

$$H_0^g \cap HN = H_0^g \cap H^x = (H_0^{gx^{-1}} \cap H)^x \le H_0^x \le H_0N.$$

This implies that $H_0 N/N$ is strongly π -closed in HN/N with respect to G/N.

3) For every element $g \in G$, the inclusion $H_0^g \cap H \leq H_0$ holds. However,

$$(H_0^g \cap H)^x = H_0^{gx} \cap H^x \le H_0^x.$$

Therefore, since the choice of g is arbitrary, H_0^x is strongly π -closed in H^x with respect to G.

Lemma 3.4. Let G be a π -solvable group and let H_0 be strongly π -closed in $H \in \text{Hall}_{\pi}(G)$ with respect to G. Then there is a normal subgroup N of G such that $N \cap H = H_0$.

Proof. We carry out the proof by induction on the order of the group. Let *G* be a group of the least order for which the lemma is false and let *M* be a nonidentity normal subgroup of *G*. Denote by \overline{K} the subgroup KM/M of the quotient group $\overline{G} = G/M$. Then, by assertion 2 of Lemma 3.3, the subgroup \overline{H}_0 is strongly π -closed in \overline{H} with respect to \overline{G} . Since |M| > 1, it follows that $|\overline{G}| < |G|$. In this case, by induction, \overline{G} contains a normal subgroup \overline{L} such that $\overline{L} \cap \overline{H} = \overline{H}_0$. Hence the group *G* contains a normal subgroup *L* such that $LM \cap HM = H_0M$. Applying the Dedekind identity, we obtain

$$LM \cap H = LM \cap HM \cap H = H_0M \cap H = H_0(M \cap H).$$

This means that G contains a normal subgroup N for which $N \cap H = H_0(M \cap H)$.

Let $O_{\pi'}(G) \neq 1$ and $M = O_{\pi'}(G)$. Then

$$N \cap H = H_0(O_{\pi'}(G) \cap H).$$

Since *H* is a π -subgroup and $O_{\pi'}(G)$ is a π' -subgroup, it follows that $O_{\pi'}(G) \cap H = 1$. Hence $N \cap H = H_0$, and the lemma is true in this case.

Suppose that $O_{\pi}(G) \cap H_0 \neq 1$. Thus, we may assume that $M = O_{\pi}(G) \cap H_0$. Then

$$N \cap H = H_0(O_\pi(G) \cap H_0 \cap H) = H_0,$$

and the lemma holds.

Suppose now that $O_{\pi'}(G) = 1$ and $O_{\pi}(G) \cap H_0 = 1$. Then $H_0 \leq C_G(O_{\pi}(G))$. Note that the inclusion $C_G(F_{\pi}(G)) \subseteq F_{\pi}(G)$ holds by Lemma 2.6. Since $O_{\pi'}(G) = 1$, we have $C_G(O_{\pi}(G)) \subseteq O_{\pi}(G)$. Hence

$$H_0 \le C_G(O_{\pi}(G)) \le O_{\pi}(G), \qquad H_0 = O_{\pi}(G) \cap H_0 \ne 1.$$

The contradiction thus obtained completes the proof of the lemma.

Corollary 3.5 (see [7]). Let G be a π -solvable group and let P_0 be strongly closed in $P \in \operatorname{Syl}_p(G)$ with respect to G for some prime p in π . Then there is a normal subgroup N in G such that $N \cap P = P_0$.

Lemma 3.6. Let a group G be π -solvable, let π_1 be a subset of the set π , and let H_0 be a strongly π_1 -closed subgroup of $H \in \operatorname{Hall}_{\pi_1}(G)$ with respect to G. Then the following assertions hold:

1) if a group L_0 is strongly π' -closed in $L \in \operatorname{Hall}_{\pi'}(G)$ with respect to G, then there are elements $s \in G$ and $t \in G$ such that

$$H_0^s L_0^t = L_0^t H_0^s;$$

2) if π_2 is a subset of π such that either $\pi_1 \cap \pi_2 = \emptyset$ or $\pi_1 = \pi_2$ and a subgroup L_0 is strongly π_2 -closed in $L \in \operatorname{Hall}_{\pi_2}(G)$ with respect to G, then there are elements $s \in G$ and $t \in G$ such that $H_0^s L_0^t = L_0^t H_0^s$.

Proof. 1) Let a group L_0 be strongly π' -closed in $L \in \operatorname{Hall}_{\pi'}(G)$ with respect to G and let $\theta = {\pi_1, \pi'}$. Note that, for this choice of a set θ , G admits at least one Hall θ -base by Lemma 2.8. Since the Hall subgroups are conjugate, it follows that the group G contains elements $s \in G$ and $t \in G$ for which H^s and L^t belong to a Hall θ -base. Thus, $H^s L^t = L^t H^s$. In this case, by assertion 3 of Lemma 3.3 and by Lemma 3.4, there are normal subgroups N and M in G such that $N \cap H^s = H_0^s$ and $M \cap L^t = L_0^t$. Hence

$$H_0^s L_0^t = (N \cap H^s)(M \cap L^t) \subseteq NL^t \cap H^s M \cap H^s L^t.$$

Since $N \cap H^s = H^s_0$, we have $H^s_0 \in \operatorname{Hall}_{\pi_1}(N)$. Then it follows from $L^t \in \mathfrak{E}_{\pi'} \subseteq \mathfrak{E}_{\pi'_1}$ that

 $|NL^t| = |H_0^s| \cdot l$, where *l* is a π'_1 -number.

Similarly, $|H^sM| = |L_0^t| \cdot m$, where *m* is a π -number. Since $|NL^t \cap H^sM \cap H^sL^t|$ divides $|NL^t|$, $|H^sM|$, and $|H^sL^t|$, we obtain

$$|NL^t \cap H^s M \cap H^s L^t| \le |H_0^s| \cdot |L_0^t| = |H_0^s L_0^t|.$$

Hence $NL^t \cap H^s M \cap H^s L^t = H_0^s L_0^t$, and $H_0^s L_0^t$ is a subgroup of *G*. This fact completes the proof of assertion 1).

2) Let the group L_0 be strongly π_2 -closed in $L \in \operatorname{Hall}_{\pi_2}(G)$ with respect to G and let $\pi_2 \subseteq \pi$. Consider two cases.

a) *Case* $\pi_1 \cap \pi_2 = \emptyset$. Let $\theta = {\pi_1, \pi_2}$. Then, by Lemma 2.8, the group *G* admits at least one Hall θ -base. As in the proof of assertion 1), there are elements $s \in G$ and $t \in G$ such that H^s and L^t belong to a Hall θ -base and $H^s L^t = L^t H^s$. Further, taking the equation $\pi_1 \cap \pi_2 = \emptyset$ into account and following the lines of the proof of assertion 1) of the present lemma, one can readily show that

$$NL^t \cap H^s M \cap H^s L^t = H^s_0 L^t_0.$$

Thus, $H_0^s L_0^t$ is a subgroup of G and $H_0^s L_0^t = L_0^t H_0^s$.

b) *Case* $\pi_1 = \pi_2$. Since the Hall π_1 -subgroups of G are conjugate, there are elements $s \in G$ and $t \in G$ such that $H^s = L^t = \overline{H}$. In this case, by assertion 3 of Lemma 3.3 and by Lemma 3.4, there are normal subgroups N and M in G such that $N \cap \overline{H} = H_0^s$ and $M \cap \overline{H} = L_0^t$. Hence, by Lemma 4.1 of [9],

$$H_0^s L_0^t = (N \cap \overline{H})(M \cap \overline{H}) = NM \cap \overline{H}.$$

Thus, $H_0^s L_0^t$ is a subgroup of G and $H_0^s L_0^t = L_0^t H_0^s$.

Corollary 3.7 (see [7]). Let G be a π -solvable group, let p and q be primes in π , and let a group P_0 be strongly closed in $P \in Syl_p(G)$ with respect to G and a group Q_0 be strongly closed in $Q \in Syl_q(G)$ with respect to G. Then there are elements $s \in G$ and $t \in G$ such that

$$P_0^s Q_0^t = Q_0^t P_0^s$$

Corollary 3.8. Let G be a π -solvable group and $p \in \pi$. If a group P_0 is strongly closed in $P \in Syl_p(G)$ with respect to G and H_0 is strongly π' -closed in $H \in Hall_{\pi'}(G)$ with respect to G, then there are elements $s \in G$ and $t \in G$ such that

$$P_0^s H_0^t = H_0^t P_0^s.$$

MATHEMATICAL NOTES Vol. 97 No. 4 2015

The crucial property for the proof of the main result of the paper is as follows.

Lemma 3.9. Let G be a π -solvable group, and let \mathscr{F} be a π -saturated Fitting set of G. Let N be a subgroup of G such that G/N is either a π' -group or a nilpotent π -group. If W is an \mathscr{F} -maximal subgroup of N and if V_1 and V_2 are \mathscr{F} -maximal subgroups G such that $W \leq V_1 \cap V_2$, then the subgroups V_1 and V_2 are conjugate in G.

Proof. Let *G* be a group of the least order for which the lemma fails. Note that $W = V_1 \cap N = V_2 \cap N$ and $V_i \leq N_G(W)$ for $i \in \{1, 2\}$. It can readily be seen that the conditions of the lemma are satisfied for the group $N_G(W)$. If $N_G(W) < G$, then the lemma holds for $N_G(W)$ by induction. In this case, the lemma obviously holds for the group *G*. Therefore, we may assume that $N_G(W) = G$, i.e., $W \leq G$. Thus,

$$V_i/W = V_i/V_i \cap N \cong V_iN/N \le G/N$$
 for $i \in \{1, 2\}$.

Consider two cases.

Case 1: G/N *is a* π' -*group*. In that case, V_i/W is a π' -group. Hence there are Hall π' -subgroups H_i/W of the quotient group G/W such that $V_i/W \leq H_i/W$. Since H_i/W are π' -subgroups and $W \leq G$, it follows that $O^{\pi'}(H_i) \leq W$. Thus, $O^{\pi'}(H_i) \in \mathscr{F}$. Since \mathscr{F} is a π -saturated Fitting set of G, it follows that $H_i \in \mathscr{F}$. In this case, since V_i is \mathscr{F} -maximal, one can conclude that $V_i = H_i$, and the conjugacy of V_1 and V_2 follows from the conjugacy of the Hall π' -subgroups.

Case 2: G/N *is a nilpotent* π *-group.* In this case, since W is \mathscr{F} -maximal in N and \mathscr{F} is π -saturated, it follows that N/W is also a π -group. Hence by the isomorphism

$$G/N \cong G/W/N/W,$$

we see that G/W is a solvable π -group, and the proof is just like that of Lemma VIII.2.8 in [4].

The main result of the paper is the following theorem.

Theorem 3.10. Let G be a π -solvable group, and let \mathscr{F} be a π -saturated Fitting set of G. Then the group G contains \mathscr{F} -injectors, and every two of them are conjugate.

Proof. Let us prove the theorem by induction on the order of the group for all pairs (G, \mathscr{F}) satisfying the conditions of the theorem. Let G be a counterexample of minimal order, and let M be a maximal normal subgroup of G. Since the group G is π -solvable, it follows that the quotient group G/M is either a π' -group or an elementary Abelian p-group for some prime $p \in \pi$. Consider the following two cases.

Case 1: G/M is a π' -group for every maximal normal subgroup M of G. By the induction assumption, there are \mathscr{F} -injectors in M. Let V_1 be an \mathscr{F} -injector of M and let \overline{V}_1 be an \mathscr{F} -maximal subgroup of G such that $V_1 \leq \overline{V}_1$. We claim that $\overline{V}_1 \cap N$ is an \mathscr{F} -injector of N for every maximal normal subgroup N of G.

By induction, there are \mathscr{F} -injectors of N, and any two of them are conjugate. Let V_2 be an \mathscr{F} -injector of N and let \overline{V}_2 be a maximal \mathscr{F} -subgroup of G such that $V_2 \leq \overline{V}_2$. It follows from the conjugacy of injectors of M and N, and also of $M \cap N$, that

$$W = V_1 \cap M \cap N = V_2 \cap M \cap N.$$

Then $W \leq \overline{V}_1 \cap \overline{V}_2$. Since $G/M \cap N$ is a π' -group in the present case, it follows that, by Lemma 3.9, there is an element $x \in G$ for which $\overline{V}_1^x = \overline{V}_2$. Hence

$$(\overline{V}_1 \cap N)^x = \overline{V}_1^x \cap N = \overline{V}_2 \cap N = V_2.$$

It follows now from the conjugacy of the \mathscr{F} -injectors of N that $\overline{V}_1 \cap N$ is an \mathscr{F} -injector of N for every maximal normal subgroup N of G. Hence the subgroup \overline{V}_1 is an \mathscr{F} -injector of G, and this proves the existence of \mathscr{F} -injectors of G.

Let us prove now the conjugacy of \mathscr{F} -injectors of G. Let V_1 and V_2 be \mathscr{F} -injectors of G. Then the subgroups $V_1 \cap M$ and $V_2 \cap M$ are \mathscr{F} -injectors of M. Hence, by induction, there is an element x of the group M such that

$$(V_1 \cap M)^x = V_1^x \cap M = V_2 \cap M.$$

Let

$$W = V_1^x \cap M = V_2 \cap M.$$

Then V_1^x and V_2 are \mathscr{F} -maximal subgroups of G containing W. Moreover, the subgroup W is an \mathscr{F} -injector of M. Hence V_1^x and V_2 are conjugate in G, and this completes the proof of the theorem in Case 1.

Case 2. There is a maximal normal subgroup M of G such that G/M is a p-group for some number $p \in \pi$. In this case, $O^p(G) < G$. If $O^p(G) = 1$, then the group G is solvable, and the theorem holds by Lemma 2.3. Let $O^p(G) \neq 1$. Then, by induction, there are \mathscr{F} -injectors in the group $O^p(G)$, and any two of them are conjugate. If a subgroup S is an \mathscr{F} -injector of $O^p(G)$, then the subgroup S^g is an \mathscr{F} -injector of $O^p(G)$ for any $g \in G$. Applying induction again, we see that $S^g = S^h$ for some element $h \in O^p(G)$. By the Frattini lemma, $G = N_G(S)O^p(G)$. Hence if P is a Sylow p-subgroup of $N_G(S)$, then $G = PO^p(G)$.

Let *R* be a subgroup generated by the \mathscr{F} -subgroups of the group *PS* that contain *S*. Since every subgroup of this kind is subnormal in *PS*, it follows that $R \in \mathscr{F}$.

Let *T* be an \mathscr{F} -subgroup of *G* such that *S* is contained in *T*. Note that $T \cap O^p(G)$ is an \mathscr{F} -subgroup. It follows from the \mathscr{F} -maximality of *S* in $O^p(G)$ that $S = T \cap O^p(G)$. Hence $T \leq N_G(S)$. Thus, every Sylow *p*-subgroup of *T* is conjugate in $N_G(S)$ to a subgroup of *P*. Since the quotient group

$$T/S = T/T \cap O^p(G) \cong TO^p(G)/O^p(G)$$

is a *p*-group, it follows that *T* is conjugate to a subgroup of the form P_0S in $N_G(S)$ for some subgroup P_0 of *P*. Hence all extensions of *S* in \mathscr{F} are conjugate in $N_G(S)$ to subgroups of *R*. In particular, if there are \mathscr{F} -injectors of *G*, then they are conjugate to *R*.

Thus, to complete the proof of the theorem, it remains to show that R is an \mathscr{F} -injector of G. Since the subgroup R is \mathscr{F} -maximal in G, it suffices to prove that R contains an \mathscr{F} -injector of a subgroup L for every maximal normal subgroup L of G.

Since the group G is π -solvable, it follows that either |G:L| = q for some prime $q \in \pi$ or |G:L| is a π' -number.

Let *T* be an \mathscr{F} -injector of the group *L*. The subgroups

$$T \cap L \cap O^p(G) = T \cap O^p(G)$$
 and $S \cap L \cap O^p(G) = S \cap L$

are \mathscr{F} -injectors of the normal subgroup $L \cap O^p(G)$. Hence these subgroups are conjugate in the group $L \cap O^p(G)$. Choose a group T in such a way that

$$T \cap O^p(G) = L \cap S = U.$$

Consider the following two cases separately.

Case 2.1. The index |G:L| is a π' -number. Let $P_1 \in Syl_p(T)$, and let $H_1 \in Hall_{\pi'}(S)$. Note that the group

$$T/U = T/T \cap O^p(G) \cong TO^p(G)/O^p(G)$$

is a *p*-group, and the group

$$S/U = S/S \cap L \cong SL/L$$

is a π' -group. Hence $T = P_1U$ and $S = H_1U$. Since S and T are subgroups of $N_G(U)$, it follows that there are a Sylow subgroup P and a Hall π' -subgroup H of $N_G(U)$ for which $P_1 \leq P$ and $H_1 \leq H$. If $g \in N_G(U)$, then

$$(H_1^g \cap H)U \le S^g \in \mathscr{F}.$$

MATHEMATICAL NOTES Vol. 97 No. 4 2015

Since HU/U is a π' -group, it follows that $\langle H_1^g \cap H, H_1 \rangle U/U$ is also a π' -group. Since the Fitting set is π -saturated and $U \leq HU$, it follows now that the group $\langle H_1^g \cap H, H_1 \rangle U$ is an \mathscr{F} -subgroup of HU. Thus,

$$S \leq \langle H_1^g \cap H, H_1 \rangle U \leq \langle S^g, S \rangle \leq O^p(G).$$

It follows from the \mathscr{F} -maximality of S in $O^p(G)$ that $H_1^g \cap H \leq H_1$. Thus, H_1 is strongly π' -closed in H with respect to $N_G(U)$. It can readily be seen that $(P_1^g \cap P)U$ and $T = P_1U$ are subnormal subgroups of PU and, therefore, $\langle P_1^g \cap P, P_1 \rangle U$ is an \mathscr{F} -subgroup of PU. In this case,

$$T \leq \langle P_1^g \cap P, P_1 \rangle U \leq \langle T^g, T \rangle \leq L,$$

and we have $P_1^g \cap P \leq P_1$ because T is \mathscr{F} -maximal in L. Thus, P_1 is strongly closed in P with respect to $N_G(U)$. Therefore, by Corollary 3.8, we conclude that there is an element $g \in N_G(U)$ for which the product $P_1^g H_1$ is a subgroup of $N_G(U)$.

Let

$$K = P_1^g H_1 U = (P_1 U)^g (H_1 U) = T^g S.$$

K is a subgroup. Then

$$K \cap O^{p}(G) = T^{g}S \cap O^{p}(G) = (T^{g} \cap O^{p}(G))S = (T \cap O^{p}(G))^{g}S = U^{g}S = US = S$$

and, similarly, $K \cap L = T^g$. Hence *S* and T^g are normal \mathscr{F} -subgroups of *K* and, therefore, $K \in \mathscr{F}$. Since *S* is contained in *K*, it follows that *R* contains a subgroup conjugate to *K*. Hence *R* contains an \mathscr{F} -injector of the subgroup *L*, and the theorem is proved in Case 2.1.

It remains to consider

Case 2.2. *The index* |G:L| *is equal to q for some prime* $q \in \pi$. Let

$$P_1 \in \operatorname{Syl}_p(T)$$
 and $Q_1 \in \operatorname{Syl}_q(S)$.

Note that the group

$$T/U = T/T \cap O^p(G) \cong TO^p(G)/O^p(G)$$

is a *p*-group, and the group

$$S/U = S/S \cap L \cong SL/L$$

is a q-group. In this case, $T = P_1U$ and $S = Q_1U$. Since S and T are subgroups of $N_G(U)$, it follows that there are Sylow subgroups P and Q of $N_G(U)$ such that $P_1 \leq P$ and $Q_1 \leq Q$. If $g \in N_G(U)$, then

$$(P_1^g \cap P)U \leq T^g \in \mathscr{F}.$$

As in Case 2.1, P_1 is strongly closed in P with respect to $N_G(U)$ and Q_1 is strongly closed in Q with respect to $N_G(U)$. By Corollary 3.7, there is an element $g \in N_G(U)$ such that the product $P_1^g Q_1$ is a subgroup of $N_G(U)$.

Let

$$K_2 = P_1^g Q_1 U = (P_1 U)^g (Q_1 U) = T^g S.$$

 K_2 is a subgroup. In this case,

$$K_2 \cap O^p(G) = T^g S \cap O^p(G) = (T^g \cap O^p(G))S = (T \cap O^p(G))^g S = U^g S = US = S.$$

Similarly, one can show that $K_2 \cap L = T^g$. Hence 3S and T^g are normal \mathscr{F} -subgroups of K_2 and $K_2 \in \mathscr{F}$. Since S is contained in K_2 , it follows that R contains a subgroup conjugate to K_2 . Hence R contains an \mathscr{F} -injector of the subgroup L.

Following Definition 3.1, we say that a Fitting class \mathfrak{F} is π -saturated if $\mathfrak{F} = \mathfrak{F}\mathfrak{E}_{\pi'}$.

Corollary 3.11. Let G be a π -solvable group, and let \mathfrak{F} be a π -saturated Fitting class of G. Then there are \mathfrak{F} -injectors in the group G, and every two of them are conjugate.

Proof. Let

$$\mathscr{F} = \operatorname{Tr}_{\mathfrak{F}}(G) = \{ H \le G : H \in \mathfrak{F} \}.$$

Then \mathscr{F} is a π -saturated Fitting set, and the sets of \mathscr{F} -injectors and \mathfrak{F} -injectors of the group G coincide. The existence and conjugacy of \mathfrak{F} -injectors G now immediately follows from Theorem 3.10.

A group *G* is said to be (see [5, p. 251]) π -closed if it has a normal Hall π -subgroup and π -special if it has a normal nilpotent Hall π -subgroup. It can readily be seen that the class of all π -closed groups and the class of all π -special groups are π -saturated Fitting classes. Therefore, the following assertions hold.

Corollary 3.12. Every π -solvable group contains a unique class of conjugate π -closed injectors.

Corollary 3.13. Every π -solvable group contains π -special injectors, and any two of them are conjugate.

Corollary 3.14 (see [7, Theorem 3]). If \mathscr{F} is a Fitting set of a solvable group G, then G contains \mathscr{F} -injectors, and every two of them are conjugate.

Corollary 3.15 (see [1, Theorem 1]). If \mathfrak{F} is a Fitting class and a group G is solvable, then G contains \mathfrak{F} -injectors, and every two of them are conjugate.

4. INJECTORS OF GROUPS WITH π -SOLVABLE QUOTIENT GROUP

In this subsection, we extend known results of Shemetkov [2] and Ballester-Bolinches [6, Theorem 2.4.27] on the existence and conjugacy of \mathscr{F} -injectors of a group G under the assumption that the quotient group by the \mathscr{F} -radical is π -solvable (rather than the group G itself is π -solvable).

Theorem 4.1. Let \mathscr{F} be a Fitting set of a group G and let $G/G_{\mathscr{F}}$ be a π -solvable group, where $\pi = \sigma(\mathscr{F})$. Then the group G contains \mathscr{F} -injectors, and every two of them are conjugate.

Proof. By Lemma 2.5, the set

$$\mathscr{F}^* = \{ H/G_{\mathscr{F}} : H \in \mathscr{F} \land G_{\mathscr{F}} \le H \}$$

is a Fitting set of the group $G/G_{\mathscr{F}}$, and

$$\mathscr{F}_0 = \{ S \leq G : SG_{\mathscr{F}}/G_{\mathscr{F}} \in \mathscr{F}^* \land S \trianglelefteq SG_{\mathscr{F}} \}$$

is a Fitting set of G.

Let us show first that the equation $K_{\mathscr{F}} = K_{\mathscr{F}_0}$ holds for every subnormal subgroup K in G. Obviously, $\mathscr{F}_0 \subseteq \mathscr{F}$ and $K_{\mathscr{F}_0} \leq K_{\mathscr{F}}$. Since $K_{\mathscr{F}}G_{\mathscr{F}} \in \mathscr{F}$ and $K_{\mathscr{F}}G_{\mathscr{F}}/G_{\mathscr{F}} \in \mathscr{F}^*$, it follows that $K_{\mathscr{F}} \in \mathscr{F}_0$ and $K_{\mathscr{F}} \leq K_{\mathscr{F}_0}$. Thus, $K_{\mathscr{F}} = K_{\mathscr{F}_0}$.

Note that $\sigma(\mathscr{F}^*) \subseteq \sigma(\mathscr{F})$, and $G/G_{\mathscr{F}}$ is a π -solvable group for $\pi = \sigma(\mathscr{F}^*)$. Now, applying Lemma 2.4, we see that the π -solvable group $G/G_{\mathscr{F}}$ contains an \mathscr{F}^* -injector $V/G_{\mathscr{F}}$. Hence, by Lemma 2.5, V is an \mathscr{F}_0 -injector of G. We claim that V is an \mathscr{F} -injector of G. To this end, it suffices to show that, for every subnormal subgroup K of G, the subgroup $K \cap V$ is \mathscr{F} -maximal in K. Let there be a subgroup $W \in \mathscr{F}$ such that $K \cap V \leq W \leq K$. Then

$$(K \cap V)G_{\mathscr{F}}/G_{\mathscr{F}} = (V/G_{\mathscr{F}}) \cap (KG_{\mathscr{F}}/G_{\mathscr{F}}) \le WG_{\mathscr{F}}/G_{\mathscr{F}} \le KG_{\mathscr{F}}/G_{\mathscr{F}}.$$

Note that $K \cap V$ is an \mathscr{F}_0 -injector of K. Hence

$$K_{\mathscr{F}} = K_{\mathscr{F}_0} \le V \cap K \le W,$$

and therefore $K_{\mathscr{F}} \leq W$. Now $K_{\mathscr{F}} = K \cap G_{\mathscr{F}}$ by Lemma 2.1, and thus

$$WG_{\mathscr{F}} \cap K = W(G_{\mathscr{F}} \cap K) = WK_{\mathscr{F}} = W.$$

Hence W is subnormal in $WG_{\mathscr{F}}$ and $WG_{\mathscr{F}} \in \mathscr{F}$, i.e., $WG_{\mathscr{F}}/G_{\mathscr{F}} \in \mathscr{F}^*$. Since $(V/G_{\mathscr{F}}) \cap (KG_{\mathscr{F}}/G_{\mathscr{F}})$ is \mathscr{F} -maximal in $KG_{\mathscr{F}}/G_{\mathscr{F}}$, we have the equation

$$(K \cap V)G_{\mathscr{F}} = WG_{\mathscr{F}}.$$

MATHEMATICAL NOTES Vol. 97 No. 4 2015

Therefore,

$$K \cap V = (K \cap V)(G_{\mathscr{F}} \cap K) = (K \cap V)G_{\mathscr{F}} \cap K = WG_{\mathscr{F}} \cap K = W$$

and V is an \mathscr{F} -injector of G.

Let us prove the conjugacy of injectors of G. Let V be an \mathscr{F} -injector of G. Then, by assertion 1 of Lemma 2.5, $V/G_{\mathscr{F}}$ is an \mathscr{F}^* -injector of $G/G_{\mathscr{F}}$. However, by Lemma 2.4, the \mathscr{F}^* -injectors of $G/G_{\mathscr{F}}$ are conjugate, and thus so are the \mathscr{F} -injectors of G.

Corollary 4.2 (see [2, Theorem 2.2]). Let \mathscr{F} be a Fitting set of a π -solvable group G, where $\pi = \sigma(\mathcal{F})$. Then the group G contains \mathcal{F} -injectors, and any two of them are conjugate.

Corollary 4.3 (see [6, Theorem 2.4.27]). Let \mathscr{F} be a Fitting set of a group G, and let $G/G_{\mathscr{F}}$ be a solvable group. Then the group G contains \mathcal{F} -injectors, and any two of them are conjugate.

Corollary 4.4 (see [10]). Let \mathfrak{F} be a Fitting class, and let $G/G_{\mathfrak{F}}$ be a π -solvable group, where $\pi = \sigma(\mathfrak{F})$. Then the group G contains \mathfrak{F} -injectors, and any two of them are conjugate.

Corollary 4.5 (see [11]). Let \mathfrak{F} be a Fitting class, and let $G/G_{\mathfrak{F}}$ be a solvable group. Then the group G contains \mathfrak{F} -injectors, and any two of them are conjugate.

In conclusion, note that an interesting problem remains: To find characterizations of \mathscr{F} -injectors for a Fitting set \mathcal{F} of a given group, by using radicals and Hall subgroups similar to the characterizations of \mathfrak{F} -injectors for Fitting classes \mathfrak{F} that were obtained in [12] and [13].

REFERENCES

- 1. B. Fischer, W. Gaschütz, and B. Hartley, "Injektoren endlicher auflösbarer Gruppen," Math. Z. 102 (5), 337-339 (1967).
- 2. L. A. Shemetkov, "Subgroups of π -solvable groups," in *Finite Groups* (Nauka i Tekhnika, Minsk, 1975), pp. 207-212 [in Russian].
- 3. W. Anderson, "Injectors in finite solvable groups," J. Algebra 36 (3), 333-338 (1975).
- 4. K. Doerk and T. Hawkes, Finite Soluble Groups, in de Gruyter Exp. Math. (Walter de Gruyter, Berlin, 1992), Vol. 4 [in Russian].
- 5. L. A. Shemetkov, Formations of Finite Groups, in Modern Algebra (Nauka, Moscow, 1978) [in Russian].
- 6. A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups, in Math. Appl. (Springer) (Springer, Dordrecht, 2006), Vol. 584 [in Russian].
- 7. I. Hawthorn, "The existence and uniqueness of injectors for Fitting sets of solvable groups," Proc. Amer. Math. Soc. 126 (8), 2229-2230 (1998).
- 8. P. A. Gol'berg, "Hall θ-bases of finite groups," Izv. Vyss. Uchebn. Zaved. Matematika, No. 1, 36-43 (1961).
- 9. S. N. Vorob'ev and E. N. Zalesskaya, "An analog of Shemetkov's conjecture for Fischer classes of finite groups," Sib. Math. J. **54** (5), 989–999 (2013) [Sib. Math. J. **54** (5), 790–797 (2013)]. 10. W. Guo, "Injectors of finite groups," Chinese Ann. Math. Ser. A **18** (2), 145–148 (1997).
- V. G. Sementovskii, "Injectors of finite groups," in *Investigation of the Normal and Subgroup Structure of Finite Groups* ("Nauka i Tekhnika", Minsk, 1984), pp. 166–170 [in Russian].
- 12. W. Guo and N. T. Vorob'ev, "On injectors of finite soluble groups," Comm. Algebra 36 (9), 3200–3208 (2008).
- 13. Y. Liu, W. Guo, and N. T. Vorob'ev, "Description of Finite Soluble Groups," Math. Sci. Res. J. 12(1), 17-22(2008).

Copyright of Mathematical Notes is the property of Springer Science & Business Media B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.