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Abstract—A set of subgroups % of a finite group G is referred to as a Fitting set if it is closed with
respect to taking normal subgroups, products of normal .% -subgroups, and inner automorphisms
of G. A Fitting set % of a group G is said to be w-saturated if H € .% for every subgroup H
in G such that O™ (H) € .Z. In the paper, it is proved that, if .Z is a w-saturated Fitting set of a
m-solvable group G, then there are .#-injectors in G and every two of them are conjugate.
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1. INTRODUCTION

A basic result in the theory of classes of finite solvable groups is the generalization of fundamental
Sylow and Hall theorems which was obtained by Fischer, Gaschiitz, and Hartley in [1], where it was
proved that, for every Fitting class §, every finite solvable group in G contains §-injectors, and every
two of them are conjugate. Recall that a class of groups § is said to be a Fitting class if § is closed
with respect to taking normal subgroups and products of normal §-subgroups. Here a subgroup V' of a
group G is said to be an §-injector of G if, for every subnormal subgroup N of the group G, the subgroup
V' N N is maximal among the subgroups of N belonging to §. By a Fitting set % of a group G one
means a set of subgroups of G which is closed with respect to taking normal subgroups, their products,
and conjugate subgroups. The notion of .#-injector of a group for a Fitting set .% of the group is defined
similarly to the above definition of §-injector for a Fitting class §.

The validity of the above Fischer—Gaschiitz—Hartley theorem in [1] was confirmed by Shemetkov [2]
for a Fitting set of a finite partially solvable group (for the solvable case, see also [3]). As was established
in [2], for every Fitting set .# of a finite w-solvable group G (7 stands for the set of all prime divisors of
all groups in .%), G contains a unique class of conjugate .% -injectors.

Note that, if § is a Fitting class, then the set of subgroups {H < G | H € §} of the group G is a
Fitting set of G. Itis denoted by Trz(G) and referred to as the trace of the Fitting class § in the group G.
As is well known (see [4, Examples VIII.2.2]), to every Fitting class § there corresponds its trace in the
group G; however, the converse is false in general. Moreover, it is clear that the set of §-injectors
for a Fitting class § and of .#-injectors for the Fitting set .# = Trz(G) coincide and, therefore, the
above-mentioned theorem of Shemetkov [2], in particular, implies the Fischer—Gaschiitz—Hartley
theorem [1].

Let 7 be an arbitrary nonempty set of primes and let 7" be the complement of 7 in the set of all primes.
The main result of the present paper is the proof of the fact that every w-solvable group G contains
F -injectors for every m-saturated Fitting set .%# in G, and every two of these injectors are conjugate
(Theorem 3.10).

In the concluding section of the paper, we generalize Shemetkov’s result from [2] concerning the
existence and conjugacy of .#-injectors by weakening the condition that the group is m-solvable and
replacing it by the condition that an appropriate quotient group of G is w-solvable. All groups considered
in the paper are finite. For the definitions and notation which we do not present, see [4]—[6] if necessary.
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522 VOROB’EV AND SEMENOV

2. PRELIMINARIES

Let 2" be a set of subgroups of a group G, H < G,and 2y = {S < H : S € Z}. In this case, if 2
is a Fitting set of G, then 2 is obviously a Fitting set of the group H. Denote by the symbol G 2- the
largest normal 2" -subgroup of G. This subgroup is referred to as the 2 -radical of G.

We shall use the well-known property of the .% -radical of a group given by the following lemma.

Lemma 2.1 (see [4, Property VIII.2.4(a)]). Let ¥ be a Fitting set of a group G, and let N be a
subnormal subgroup. Then Ny = G N N.

Definition 2.2. Let .# be a set of subgroups of a group G.

(a) An Z-subgroup V of G is said to be (see [4, VIII.2.5(a)]) .#-maximal ii it follows from
V<SW<GandV € Z thatV =W.

(b) By an Z-injector of G one means (see [4, VII.2.5(b)]) a subgroup V such that V' N K is an
Z -maximal subgroup of K for every subnormal subgroup K of G.

We also use some known assertions concerning .% -injectors of a group for Fitting sets; we present
these assertions as lemmas.

Lemma 2.3 (see (4, Theorem VIII1.2.9]). If % is a Fitting set of a solvable group G, then the group G
contains F-injectors, and every two of them are conjugate.

By the symbol o(G) we denote the set of all prime divisors of the order of the group G and by o(.%)
the union of the sets o(G) for all groups G in a Fitting set #

Lemma 2.4 (see[2, Theorem 2. 2]) Let F be a Fitting set of a w-solvable group G, where m = o(F).
Then the group G contains F-injectors, and every two of them are conjugate.

Lemma 2.5 (see [3, Property 2.2]). Let A be a normal subgroup of a group G. Then the following
assertions hold.

(1) I} % is a Fitting set of G and A € F, then
F={S/A: A< S e F}
is a Fitting set of the group G/A. Moreover, if V is an F-injector of G, then V/A is an ¥ -injector
of G/A.
(2) If 7 is a Fitting set of G/A and V/A is an F-injector of G/ A, then
Fo={S<G:(SA)/A e F}

is a Fitting set of G and V' is an %y- injector of G.
(3) I} F is a Fitting set of G and 'V € Z is a subgroup of G such that VA= GandV NAisan
F-injector of A, then'V is an F-injector of G.

(4)If V is an F-injector of G, then VA/A is an F-injector of G /A.

Recall that the symbol F(G) denotes the Fitting subgroup of a group G, i.e., the largest normal
nilpotent subgroup of G, and the symbol F,(G) denotes the largest normal w-nilpotent subgroup of G.
Lemma 2.6 (see [5, Corollary 4.1.2]). For every m-solvable group G, we have the inclusion

Ca(Fx(Q)) C Fr(G).

Let P be the set of all primes, let # C P, and let 7’ = P\ 7. Recall that the symbol O,/(G) denotes the
largest normal 7’-subgroup of a group G and the symbol O™(G) denotes the smallest normal subgroup
of G for which the quotient group G/O™(G) is a w-group.

To prove the main result, we use also properties of Hall #-bases.
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INJECTORS IN FITTING SETS OF FINITE GROUPS 523
Definition 2.7. Let 6 be a finite system of pairwise disjoint subsets of the set of primes,
0 = {m,ma, 73, ..., Tk}
The set of subgroups
Hy, H,, Hs, ..., Hy (2.1)
is said to be (see [8]) a Hall 6-Base of a group G if these subgroups satisfy the following conditions:
1) H;,i=1,2,... k,is a Hall m;-subgroup of G;
2) the subgroups (2.1) pairwise commute.

Lemma 2.8 (see [8, Theorem 1]). Let G be a w-solvable group, let 7 be the set of prime divisors

of the order of G not belonging to ©, and let a set 0 = {my,m9,7s,..., 7} be an arbitrary finite
system of pairwise disjoint subsets my, wa, s, ..., T Of the set of prime numbers satisfying the
following condition: either m;;y Nmw = &,1=1,2,...,k, or 8 contains a 7s such that = C 7.

Then the group G admits at least one Hall §-base and every two Hall §-bases are conjugate to
each other.

3. INJECTORS FOR 7-SATURATED FITTING SETS

The present subsection is devoted to the proof of the existence and conjugacy of injectors for a
m-saturated Fitting set of a m-solvable group.

Definition 3.1. A Fitting set .# of a group G is said to be w-saturated it H € ¥ for every subgroup H
in G such that O™ (H) € ..

We use the notion of strong m-closeness for m-subgroups of a group and some properties of this
notion.

Definition 3.2. Let G be a group, let m be a set of primes, and let Hy be a w-subgroup of G such
that Hy < H € Hall(G). A subgroup Hy of H is said to be strongly n-closed with respect to G if
H§NH < Hyforany g € G.

Note that the notion of strong closeness (7-closeness for 7 = {p}) was introduced in [7].

Let us prove the properties of strong w-closeness of subgroups similar to properties of strong
closeness in [7] that we use below.

Lemma 3.3. Let G be a group, let 7w be a set of primes, and let Hy be a w-subgroup of G such

that Hy < H € Hall(G). If Hy is strongly n-closed in H with respect to G, then the following
assertions hold:

1) if Hy < H* for some element x € G, then the subgroup Hy is strongly w-closed in H* with
respect to G;

2) if N is a normal subgroup of G, then the subgroup HyN/N is strongly w-closed in HN/N
with respect to G/N,

3) H{ is strongly m-closed in H* with respect to G.
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Proof. 1) It follows from the condition Hy < H? that Hgfl < H. Then, by the definition of strong
m-closeness,

H "= H{ ' NH < H,.
Hence x € Ng(Hy). Since, for every element g € G, we have
HYAHE = (B 0 H)? < Hf = Hy,

it follows that H is strongly m-closed in H* with respect to G.

2) Note that, for every element g € G, there is an element z € N for which

H{NHN = HJ N H* = (H{® N H)” < HY < HyN.

This implies that HyN/N is strongly m-closed in H N/N with respect to G/N.

3) For every element g € G, the inclusion H N H < H, holds. However,

(HSNH)*=H" N H* < Hf.

Therefore, since the choice of g is arbitrary, Hf is strongly m-closed in H* with respect to G.

Lemma 3.4. Let G be a m-solvable group and let Hy be strongly m-closed in H € Hall(G) with
respect to G. Then there is a normal subgroup N of G such that N N H = Hy.

Proof. We carry out the proof by induction on the order of the group. Let G be a group of the least
order for which the lemma is false and let M be a nonidentity normal subgroup of G. Denote by K the
subgroup K M /M of the quotient group G = G/M. Then, by assertion 2 of Lemma 3.3, the subgroup
H, is strongly 7-closed in H with respect to G. Since | M| > 1, it follows that |G| < |G|. In this case,
by induction, G contains a normal subgroup L such that L " H = H,. Hence the group G contains a
normal subgroup L such that LM N HM = HoM. Applying the Dedekind identity, we obtain
LMNnH=LMNHMNH=HyMNH=Hy(MnH).

This means that G contains a normal subgroup N for which NN H = Ho(M N H).
Let O (G) # 1and M = O,/(G). Then
NNH=Hy(On(G)NH).

Since H is a w-subgroup and O./(G) is a n’-subgroup, it follows that O, (G) N H = 1. Hence
N N H = Hy, and the lemma is true in this case.

Suppose that O, (G) N Hy # 1. Thus, we may assume that M = O,(G) N Hy. Then
NNH= Ho(Oﬂ—(G) ﬂHoﬂH) = Hy,

and the lemma holds.

Suppose now that O/(G) =1 and O,(G) N Hy=1. Then Hy < Cs(O,(G)). Note that the
inclusion Cg(Fr(G)) C Fr(G) holds by Lemma 2.6. Since O,/ (G) = 1, we have Cg(O,(G)) C O (G).
Hence

Hy < CG(OW(G)) < OW(G)’ Hy = OW(G) N Hy # 1.

The contradiction thus obtained completes the proof of the lemma.

Corollary 3.5 (see [7]). Let G be a w-solvable group and let Py be strongly closed in P € Syl ,(G)

with respect to G for some prime p in w. Then there is a normal subgroup N in G such that
NNP=P~h,.

Lemma 3.6. Lef a group G be w-solvable, let 1 be a subset of the set w, and let Hy be a strongly
mi-closed subgroup of H € Hall, (G) with respect to G. Then the following assertions hold:
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1) if a group Ly is strongly ©'-closed in L € Hall,.(G) with respect to G, then there are
elements s € Gandt € G such that

H3Lh = LyH}:

2) if mo is a subset of w such that either my N = @ or my = my and a subgroup Ly is strongly
ma-closed in L € Hall.,(G) with respect to G, then there are elements s € G and t € G such
that HSLY = LEHE.

Proof. 1) Let a group Ly be strongly 7’-closed in L € Hall,»(G) with respect to G and let § = {my, 7'}.
Note that, for this choice of a set 6, G admits at least one Hall #-base by Lemma 2.8. Since the Hall
subgroups are conjugate, it follows that the group G contains elements s € G and t € G for which H*®
and L! belong to a Hall §-base. Thus, H*L! = L*H*. In this case, by assertion 3 of Lemma 3.3 and
by Lemma 3.4, there are normal subgroups N and M in G such that N N H® = H§ and M N L' = L,
Hence
H{Lh = (NNH*)(MNLY)C NL'n H*M 0 HL".
Since N N H® = H§, we have Hi € Hall,, (N). Then it follows from L* € &, C €, that
INL'| = |H§|-1,  wherelisar}-number.

Similarly, |H*M| = |L§| - m, where m is a w-number. Since |[NL' N H*M N H5L'| divides |[NL'|,
|H*M|, and |H*Lt|, we obtain

INL' A H°M N0 H°LY < |Hg| - |LY| = | H3LY|.
Hence NL'* N H*M N H*L! = HSLY, and HSLY is a subgroup of G. This fact completes the proof of
assertion 1).

2) Let the group Lo be strongly ma-closed in L € Hall,,(G) with respect to G and let my C 7.
Consider two cases.

a) Case m N = &. Let @ = {my, m}. Then, by Lemma 2.8, the group G admits at least one Hall
O-base. As in the proof of assertion 1), there are elements s € G and t € G such that H* and L belong to
a Hall 6-base and H* L' = L'H*. Further, taking the equation 7 N my = @ into account and following
the lines of the proof of assertion 1) of the present lemma, one can readily show that

NL'NHM N H°L' = H{L},.
Thus, H§ L} is a subgroup of G and H§LY = LY H.

b) Case m = my. Since the Hall m;-subgroups of G' are conjugate, there are elements s € G
and t € G such that H® = L' = H. In this case, by assertion 3 of Lemma 3.3 and by Lemma 3.4, there
are normal subgroups N and M in G such that N N H = H§ and M N H = Lf,. Hence, by Lemma 4.1
of [9],

HLh=(NNH)MNH)=NMNH.
Thus, H3L{ is a subgroup of G and H{ L, = LY H.
Corollary 3.7 (see[7]). Let G be a m-solvable group, let p and q be primes inw, and let a group Py be

strongly closed in P € Syl,(G) with respect to G and a group Qg be strongly closed in Q € Syl (G)
with respect to G. Then there are elements s € G and t € G such that

P5Qh = Qo Py
Corollary 3.8. Let G be a w-solvable group and p e w. If a group Py is strongly closed

in P € Syl,(G) with respect to G and Hy is strongly 7'-closed in H € Hall,/(G) with respect to G,
then there are elements s € G and t € G such that

PSHY = HYPS.
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The crucial property for the proof of the main result of the paper is as follows.

Lemma 3.9. Let G be a w-solvable group, and let ¥ be a m-saturated Fitting set of G. Let N be a
subgroup of G such that G/N is either a w'-group or a nilpotent w-group. If W is an .F-maximal
subgroup of N and if Vi and V5 are F-maximal subgroups G such that W < Vy NVa, then the
subgroups Vi and Va are conjugate in G.

Proof. Let G be a group of the least order for which the lemma fails. Note that W =V NN =Vo N N
and V; < Ng(W) for i € {1,2}. It can readily be seen that the conditions of the lemma are satisfied
for the group Ng(W). If Ng(W) < G, then the lemma holds for Ng(W') by induction. In this case,

the lemma obviously holds for the group G. Therefore, we may assume that Ng(W) = G, i.e., W < G.
Thus,

Vi)W =V;/VinN=V,N/N <G/N  Tor ie{l,2}.

Consider two cases.

Case 1: G/N is a ©’-group. In that case, V;/W is a «’-group. Hence there are Hall 7’-subgroups
H;/W of the quotient group G/W such that V;/W < H;/W. Since H;/W are ©’-subgroups
and W <G, it follows that O™ (H;) SW. Thus, O™ (H;) € .%. Since .Z is a m-saturated Fitting

set of G, it follows that H; € .%. In this case, since V; is % -maximal, one can conclude that V; = H;,
and the conjugacy of V4 and V5 follows from the conjugacy of the Hall 7’-subgroups.

Case 2: G/N is a nilpotent w-group. In this case, since W is #-maximal in N and %
is m-saturated, it follows that N/W is also a w-group. Hence by the isomorphism
G/N = G/W/N/W,

we see that G/W is a solvable m-group, and the proof is just like that of Lemma VII1.2.8 in [4].

The main result of the paper is the following theorem.

Theorem 3.10. Let G be a w-solvable group, and let ¥ be a m-saturated Fitting set of G. Then the
group G contains Z-injectors, and every two of them are conjugate.

Proof. Let us prove the theorem by induction on the order of the group for all pairs (G, %) satislying
the conditions of the theorem. Let G be a counterexample of minimal order, and let M be a maximal
normal subgroup of G. Since the group G is m-solvable, it follows that the quotient group G/M is either
a 7'-group or an elementary Abelian p-group for some prime p € . Consider the following two cases.

Case 1: G/M is a ©'-group for every maximal normal subgroup M of G. By the induction

assumption, there are .#-injectors in M. Let V} be an .#-injector of M and let V'; be an .#-maximal

subgroup of G such that V; < V';. We claim that V1 NV is an .% -injector of N for every maximal normal
subgroup N of G.

By induction, there are .# -injectors of IV, and any two of them are conjugate. Let V5 be an .% -injector

of N and let V5 be a maximal .#-subgroup of G such that Vo < V5. It follows from the conjugacy of
injectors of M and N, and also of M N N, that

W=VinMNN=V,nNnMnNN.

Then W < V1 NVs. Since G/M N N is a ’-group in the present case, it follows that, by Lemma 3.9,
there is an element z € G for which Vf = V5. Hence

(ViNN)?®=V{NN=VynN =V,

[t follows now from the conjugacy of the .# -injectors of N that V1 N IV is an .% -injector of N for every

maximal normal subgroup N of G. Hence the subgroup V1 is an .% -injector of G, and this proves the
existence of .# -injectors of G.
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Let us prove now the conjugacy of Z -injectors of G. Let V; and V5 be .#-injectors of G. Then the
subgroups Vi N M and Vo N M are .% -injectors of M. Hence, by induction, there is an element x of the
group M such that

WMnM*=VNM=V,nN M.
Let
W=V¥NnM=V,N M.

Then V{* and V4 are .#-maximal subgroups of G containing W. Moreover, the subgroup W is an
F -injector of M. Hence V| and V3 are conjugate in G, and this completes the proof of the theorem
in Case 1.

Case 2. There is a maximal normal subgroup M of G such that G/M is a p-group for some
number p € . In this case, OP(G) < G. If OP(G) = 1, then the group G is solvable, and the theorem
holds by Lemma 2.3. Let OP(G) # 1. Then, by induction there are .# -injectors in the group OP(G),
and any two of them are conjugate. If a subgroup S is an Z -injector of OP(@), then the subgroup S9 is

an .Z -injector of OP(G) for any g € G. Applying induction again, we see that S9 = S” for some element
h € OP(G). By the Frattini lemma, G = Ng(5)OP(G). Hence if P is a Sylow p-subgroup of Ng(S),
then G = POP(G).

Let R be a subgroup generated by the .% -subgroups of the group P.S that contain S. Since every
subgroup of this kind is subnormal in P.S, it follows that R € .#

Let T'be an .% -subgroup of G such that S is contained in 7". Note that 7N OP(G) is an .# -subgroup.
[t follows from the .#-maximality of S in OP(G) that S = T' N OP(G). Hence T' < Ng(S). Thus, every
Sylow p-subgroup of T' is conjugate in Ng(S) to a subgroup of P. Since the quotient group
T/S=T/TNOP(G)=TO"(G)/O"(G)

is a p-group, it follows that 7' is conjugate to a subgroup of the form Py.S in Ng(.S) for some subgroup P
of P. Hence all extensions of S in .% are conjugate in Ng(.S) to subgroups of R. In particular, if there
are .# -injectors of G, then they are conjugate to R.

Thus, to complete the proof of the theorem, it remains to show that R is an F -injector of G. Since
the subgroup Ris .#-maximal in G, it suffices to prove that R contains an .# -injector of a subgroup L
for every maximal normal subgroup L of G.

Since the group G is w-solvable, it follows that either |G : L| = ¢ for some prime ¢ € wor |G : L|is a
7/ -number.
Let T be an .# -injector of the group L. The subgroups

TALNOP(G)=TNOP(G) and SNLNOPG)=SNL

are % -injectors of the normal subgroup L N OP(G). Hence these subgroups are conjugate in the group
LN OP(G). Choose a group T in such a way that

TNOP(G)=LNS=U.
Consider the following two cases separately.

Case 2.1. The index |G : L| is a n'-number. Let Py € Syl (T), and let H; € Hall+(S). Note that
the group

T/U=T/TNOP(G) ZTOP(G)/OP(G)
is a p-group, and the group
S/U=S/SNL=SL/L

is a ’-group. Hence T'= P,U and S = H,U. Since S and T are subgroups of Ng(U), it follows that
there are a Sylow subgroup P and a Hall #’-subgroup H of Ng(U) for which Py < P and H; < H. Ii
g € Ng(U), then

(HINnHU < S9e¢ F
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Since HU/U is a w’-group, it follows that (H{ N H, H,)U/U is also a #’-group. Since the Fitting
set is m-saturated and U < HU, it follows now that the group (H{ N H, H;)U is an .% -subgroup of HU..
Thus,

[t follows from the . -maximality of S in OP(G) that H{ N H < Hy. Thus, H; is strongly 7’-closed in H

with respect to Ng(U). It can readily be seen that (P N P)U and T = P,U are subnormal subgroups
of PU and, therefore, (PY N P, P,)U is an % -subgroup of PU. In this case,

T <(P/NP,P)U<(TYT)<L,

and we have P{ N P < P because T is . -maximal in L. Thus, P, is strongly closed in P with respect
to Ng(U). Therefore, by Corollary 3.8, we conclude that there is an element g € N¢(U) for which the
product P{ Hy is a subgroup of Ng(U).
Let
K =P/H\U = (PU)Y(H,U) = T95.
K is a subgroup. Then
KNOP(G)=T9SNOP(G)=(T'Nn0OP(G))S =(T'NOP(G))fIS=09S=US=9

and, similarly, K N L =T9. Hence S and 79 are normal .%-subgroups of K and, therefore, K € .Z.
Since S is contained in K, it follows that R contains a subgroup conjugate to K. Hence R contains an
Z -injector of the subgroup L, and the theorem is proved in Case 2.1.

[t remains to consider
Case 2.2. The index |G : L| is equal to q for some prime q € . Let

Py € Syl(T) and Q1 € Syl,(5).
Note that the group
T/U=T/TNOPG) =TOP(G)/O?(G)
is a p-group, and the group
S/U=5/SNL=SL/L

is a g-group. In this case, T'= P,U and S = @Q,U. Since S and T are subgroups of Ng(U), it follows
that there are Sylow subgroups P and @ of Ng(U) such that P, < Pand @1 < Q. lig € Ng(U), then

(PPNPU<LTI e Z.
Asin Case 2.1, P is strongly closed in P with respect to Ng(U) and @ is strongly closed in @ with
respect to Ng(U). By Corollary 3.7, there is an element g € Ng(U) such that the product P{Q; is a

subgroup of Ng(U).
Let

Ky = P/QvU = (PU)Y(Q1U) = T9S.
K is a subgroup. In this case,
KonNOP(G) =T9SNOP(G)=(TINOP(G)S =(TNOPG))S=UIS=US =S.

Similarly, one can show that Ko N L =T9. Hence3 S and 79 are normal .#-subgroups of Ky
and Ko € #. Since S is contained in Ky, it follows that R contains a subgroup conjugate to K. Hence
R contains an .# -injector of the subgroup L.

Following Definition 3.1, we say that a Fitting class § is m-saturated ii § = §&,.

Corollary 3.11. Let G be a m-solvable group, and let § be a m-saturated Fitting class of G. Then
there are §-injectors in the group G, and every two of them are conjugate.
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Proof. Let

=Trz(G)={H <G :H€§g}
Then .7 is a m-saturated Fitting set, and the sets of .# -injectors and §-injectors of the group G coincide.
The existence and conjugacy of §-injectors G now immediately follows from Theorem 3.10.

A group G is said to be (see [5, p. 251]) m-closed if it has a normal Hall w-subgroup and w-special
if it has a normal nilpotent Hall m-subgroup. It can readily be seen that the class of all w-closed groups
and the class of all m-special groups are w-saturated Fitting classes. Therefore, the following assertions
hold.

Corollary 3.12. Every m-solvable group contains a unique class of conjugate m-closed injectors.

Corollary 3.13. Every m-solvable group contains w-special injectors, and any two of them are
conjugate.

Corollary 3.14 (see [7, Theorem 3)). If ¥ is a Fitting set of a solvable group G, then G contains
F-injectors, and every two of them are conjugate.

Corollary 3.15 (see [1, Theorem 1]). /f § is a Fitting class and a group G is solvable, then G
contains §-injectors, and every two of them are conjugate.

4. INJECTORS OF GROUPS WITH n-SOLVABLE QUOTIENT GROUP

In this subsection, we extend known results of Shemetkov [2] and Ballester-Bolinches [6, Theo-
rem 2.4.27] on the existence and conjugacy of .% -injectors of a group G under the assumption that the
quotient group by the .% -radical is w-solvable (rather than the group G itself is w-solvable).

Theorem 4.1. Let ¥ be a Fitting set of a group G and let G/G ¢ be a w-solvable group, where
m = o(F). Then the group G contains ¥ -injectors, and every two of them are conjugate.
Proof. By Lemma 2.5, the set
F*={H/Gyz :He NGy <H}
is a Fitting set of the group G/G #, and
Fo={5<G:5Gz/Gz € F*NSI5Gz}

is a Fitting set of G.

Let us show first that the equation Kz = K, holds for every subnormal subgroup K in G.
Obviously, %y C.%# and Kz, < Kz. Since KzGz € .7 and KzGz/Gz € %, it follows that
Kz € Foand Kz < Kg,. Thus, Kz = K z,.

Note that o(F*) C o(&F), and G/G4 is a w-solvable group for # = o(%#*). Now, applying
Lemma 2.4, we see that the m-solvable group G/G# contains an .#*-injector V/G#. Hence, by
Lemma 2.5, V' is an .%j-injector of G. We claim that V' is an .#-injector of G To this end, it suffices to

show that, for every subnormal subgroup K of G, the subgroup K NV is .#-maximal in K. Let there
be a subgroup W € . suchthat KNV < W < K. Then

(KNV)Gz/Gz =(V/Ga)N(KGz/Gz) <WGz/Gz < KGz/Gz.
Note that K NV is an .%p-injector of K. Hence
Kg=Kgz <VNK<IW,
and therefore Kz < W. Now Kz = K N G4 by Lemma 2.1, and thus
WGyﬁK:W(GyOK):WK/:W

Hence Wissubnormalin WGz and WG4 € %,ie, WG4 /Gg € F*. Since (V/G2)N(KG#/Gz)
is #-maximal in KG # /G #, we have the equation

(KNV)Gy = WGy
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Therefore,
KNnV=(KnNV)(GzgnNK)=(KNV)GaNK=WGzNK=W

and V' is an % -injector of G.

Let us prove the conjugacy of injectors of G. Let V' be an .#-injector of G. Then, by assertion 1 of
Lemma 2.5, V/G # is an F*-injector of G/G #. However, by Lemma 2.4, the .#*-injectors of G/G #
are conjugate, and thus so are the .# -injectors of G.

Corollary 4.2 (see [2, Theorem 2.2]). Let .% be a Fitting set of a w-solvable group G, where
m = o(F). Then the group G contains ¥ -injectors, and any two of them are conjugate.

Corollary 4.3 (see [6, Theorem 2.4.27]). Let ¥ be a Fitting set of a group G, and let G/G 4 be a
solvable group. Then the group G contains % -injectors, and any two of them are conjugate.

Corollary 4.4 (see [10]). Let § be a Fitting class, and let G/Gg be a m-solvable group, where
m = 0(§). Then the group G contains §-injectors, and any two of them are conjugate.

Corollary 4.5 (see [11]). Let § be a Fitting class, and let G/Ggz be a solvable group. Then the
group G contains §-injectors, and any two of them are conjugate.

In conclusion, note that an interesting problem remains: To find characterizations of . -injectors for
a Fitting set .# of a given group, by using radicals and Hall subgroups similar to the characterizations
of §-injectors for Fitting classes § that were obtained in [12] and [13].
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