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Abstract—A set of subgroups F of a finite group G is referred to as a Fitting set if it is closed with
respect to taking normal subgroups, products of normal F-subgroups, and inner automorphisms
of G. A Fitting set F of a group G is said to be π-saturated if H ∈ F for every subgroup H

in G such that Oπ′
(H) ∈ F . In the paper, it is proved that, if F is a π-saturated Fitting set of a

π-solvable group G, then there are F-injectors in G and every two of them are conjugate.
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1. INTRODUCTION

A basic result in the theory of classes of finite solvable groups is the generalization of fundamental
Sylow and Hall theorems which was obtained by Fischer, Gaschütz, and Hartley in [1], where it was
proved that, for every Fitting class F, every finite solvable group in G contains F-injectors, and every
two of them are conjugate. Recall that a class of groups F is said to be a Fitting class if F is closed
with respect to taking normal subgroups and products of normal F-subgroups. Here a subgroup V of a
groupG is said to be an F-injector of G if, for every subnormal subgroupN of the groupG, the subgroup
V ∩N is maximal among the subgroups of N belonging to F. By a Fitting set F of a group G one
means a set of subgroups of G which is closed with respect to taking normal subgroups, their products,
and conjugate subgroups. The notion of F-injector of a group for a Fitting set F of the group is defined
similarly to the above definition of F-injector for a Fitting class F.

The validity of the above Fischer–Gaschütz–Hartley theorem in [1] was confirmed by Shemetkov [2]
for a Fitting set of a finite partially solvable group (for the solvable case, see also [3]). As was established
in [2], for every Fitting set F of a finite π-solvable group G (π stands for the set of all prime divisors of
all groups in F ), G contains a unique class of conjugate F-injectors.

Note that, if F is a Fitting class, then the set of subgroups {H ≤ G | H ∈ F} of the group G is a
Fitting set ofG. It is denoted byTrF(G) and referred to as the trace of the Fitting classF in the groupG.
As is well known (see [4, Examples VIII.2.2]), to every Fitting class F there corresponds its trace in the
group G; however, the converse is false in general. Moreover, it is clear that the set of F-injectors
for a Fitting class F and of F-injectors for the Fitting set F = TrF(G) coincide and, therefore, the
above-mentioned theorem of Shemetkov [2], in particular, implies the Fischer–Gaschütz–Hartley
theorem [1].

Let π be an arbitrary nonempty set of primes and let π′ be the complement of π in the set of all primes.
The main result of the present paper is the proof of the fact that every π-solvable group G contains
F-injectors for every π-saturated Fitting set F in G, and every two of these injectors are conjugate
(Theorem 3.10).

In the concluding section of the paper, we generalize Shemetkov’s result from [2] concerning the
existence and conjugacy of F-injectors by weakening the condition that the group is π-solvable and
replacing it by the condition that an appropriate quotient group of G is π-solvable. All groups considered
in the paper are finite. For the definitions and notation which we do not present, see [4]–[6] if necessary.
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2. PRELIMINARIES

Let X be a set of subgroups of a group G, H ≤ G, and XH = {S ≤ H : S ∈ X }. In this case, if X
is a Fitting set of G, then XH is obviously a Fitting set of the group H . Denote by the symbol GX the
largest normal X -subgroup of G. This subgroup is referred to as the X -radical of G.

We shall use the well-known property of the F-radical of a group given by the following lemma.

Lemma 2.1 (see [4, Property VIII.2.4 (a)]). Let F be a Fitting set of a group G, and let N be a
subnormal subgroup. Then NF = GF ∩N .

Definition 2.2. Let F be a set of subgroups of a group G.
(a) An F-subgroup V of G is said to be (see [4, VIII.2.5 (a)]) F-maximal if it follows from

V ≤ W ≤ G and V ∈ F that V = W .
(b) By an F-injector of G one means (see [4, VIII.2.5 (b)]) a subgroup V such that V ∩K is an

F-maximal subgroup of K for every subnormal subgroup K of G.

We also use some known assertions concerning F-injectors of a group for Fitting sets; we present
these assertions as lemmas.

Lemma 2.3 (see [4, Theorem VIII.2.9]). If F is a Fitting set of a solvable group G, then the group G
contains F-injectors, and every two of them are conjugate.

By the symbol σ(G) we denote the set of all prime divisors of the order of the group G and by σ(F )
the union of the sets σ(G) for all groups G in a Fitting set F .

Lemma 2.4 (see [2, Theorem 2.2]). Let F be a Fitting set of a π-solvable group G, where π = σ(F ).
Then the group G contains F-injectors, and every two of them are conjugate.

Lemma 2.5 (see [3, Property 2.2]). Let A be a normal subgroup of a group G. Then the following
assertions hold.

(1) If F is a Fitting set of G and A ∈ F , then

F = {S/A : A ≤ S ∈ F}

is a Fitting set of the group G/A. Moreover, if V is an F-injector of G, then V/A is an F-injector
of G/A.

(2) If F is a Fitting set of G/A and V/A is an F-injector of G/A, then

F0 = {S ≤ G : (SA)/A ∈ F}
is a Fitting set of G and V is an F0-injector of G.

(3) If F is a Fitting set of G and V ∈ F is a subgroup of G such that V A = G and V ∩A is an
F-injector of A, then V is an F-injector of G.

(4) If V is an F-injector of G, then V A/A is an F-injector of G/A.

Recall that the symbol F (G) denotes the Fitting subgroup of a group G, i.e., the largest normal
nilpotent subgroup of G, and the symbol Fπ(G) denotes the largest normal π-nilpotent subgroup of G.

Lemma 2.6 (see [5, Corollary 4.1.2]). For every π-solvable group G, we have the inclusion

CG(Fπ(G)) ⊆ Fπ(G).

Let P be the set of all primes, let π ⊆ P, and let π′ = P \ π. Recall that the symbol Oπ′(G) denotes the
largest normal π′-subgroup of a group G and the symbol Oπ(G) denotes the smallest normal subgroup
of G for which the quotient group G/Oπ(G) is a π-group.

To prove the main result, we use also properties of Hall θ-bases.
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Definition 2.7. Let θ be a finite system of pairwise disjoint subsets of the set of primes,

θ = {π1, π2, π3, . . . , πk}.

The set of subgroups

H1, H2, H3, . . . , Hk (2.1)

is said to be (see [8]) a Hall θ-Base of a group G if these subgroups satisfy the following conditions:

1) Hi, i = 1, 2, . . . , k, is a Hall πi-subgroup of G;

2) the subgroups (2.1) pairwise commute.

Lemma 2.8 (see [8, Theorem 1]). Let G be a π-solvable group, let π be the set of prime divisors
of the order of G not belonging to π, and let a set θ = {π1, π2, π3, . . . , πk} be an arbitrary finite
system of pairwise disjoint subsets π1, π2, π3, . . . , πk of the set of prime numbers satisfying the
following condition: either πi ∩ π = ∅, i = 1, 2, . . . , k, or θ contains a πs such that π ⊆ πs.

Then the group G admits at least one Hall θ-base and every two Hall θ-bases are conjugate to
each other.

3. INJECTORS FOR π-SATURATED FITTING SETS

The present subsection is devoted to the proof of the existence and conjugacy of injectors for a
π-saturated Fitting set of a π-solvable group.

Definition 3.1. A Fitting set F of a group G is said to be π-saturated if H ∈ F for every subgroup H

in G such that Oπ′
(H) ∈ F .

We use the notion of strong π-closeness for π-subgroups of a group and some properties of this
notion.

Definition 3.2. Let G be a group, let π be a set of primes, and let H0 be a π-subgroup of G such
that H0 ≤ H ∈ Hallπ(G). A subgroup H0 of H is said to be strongly π-closed with respect to G if
Hg

0 ∩H ≤ H0 for any g ∈ G.

Note that the notion of strong closeness (π-closeness for π = {p}) was introduced in [7].

Let us prove the properties of strong π-closeness of subgroups similar to properties of strong
closeness in [7] that we use below.

Lemma 3.3. Let G be a group, let π be a set of primes, and let H0 be a π-subgroup of G such
that H0 ≤ H ∈ Hallπ(G). If H0 is strongly π-closed in H with respect to G, then the following
assertions hold:

1) if H0 ≤ Hx for some element x ∈ G, then the subgroup H0 is strongly π-closed in Hx with
respect to G;

2) if N is a normal subgroup of G, then the subgroup H0N/N is strongly π-closed in HN/N
with respect to G/N ;

3) Hx
0 is strongly π-closed in Hx with respect to G.

MATHEMATICAL NOTES Vol. 97 No. 4 2015



524 VOROB’EV AND SEMENOV

Proof. 1) It follows from the condition H0 ≤ Hx that Hx−1

0 ≤ H . Then, by the definition of strong
π-closeness,

Hx−1

0 = Hx−1

0 ∩H ≤ H0.

Hence x ∈ NG(H0). Since, for every element g ∈ G, we have

Hg
0 ∩Hx = (Hgx−1

0 ∩H)x ≤ Hx
0 = H0,

it follows that H0 is strongly π-closed in Hx with respect to G.

2) Note that, for every element g ∈ G, there is an element x ∈ N for which

Hg
0 ∩HN = Hg

0 ∩Hx = (Hgx−1

0 ∩H)x ≤ Hx
0 ≤ H0N.

This implies that H0N/N is strongly π-closed in HN/N with respect to G/N .

3) For every element g ∈ G, the inclusion Hg
0 ∩H ≤ H0 holds. However,

(Hg
0 ∩H)x = Hgx

0 ∩Hx ≤ Hx
0 .

Therefore, since the choice of g is arbitrary, Hx
0 is strongly π-closed in Hx with respect to G.

Lemma 3.4. Let G be a π-solvable group and let H0 be strongly π-closed in H ∈ Hallπ(G) with
respect to G. Then there is a normal subgroup N of G such that N ∩H = H0.

Proof. We carry out the proof by induction on the order of the group. Let G be a group of the least
order for which the lemma is false and let M be a nonidentity normal subgroup of G. Denote by K the
subgroup KM/M of the quotient group G = G/M . Then, by assertion 2 of Lemma 3.3, the subgroup
H0 is strongly π-closed in H with respect to G. Since |M | > 1, it follows that |G| < |G|. In this case,
by induction, G contains a normal subgroup L such that L ∩H = H0. Hence the group G contains a
normal subgroup L such that LM ∩HM = H0M . Applying the Dedekind identity, we obtain

LM ∩H = LM ∩HM ∩H = H0M ∩H = H0(M ∩H).

This means that G contains a normal subgroup N for which N ∩H = H0(M ∩H).

Let Oπ′(G) �= 1 and M = Oπ′(G). Then

N ∩H = H0(Oπ′(G) ∩H).

Since H is a π-subgroup and Oπ′(G) is a π′-subgroup, it follows that Oπ′(G) ∩H = 1. Hence
N ∩H = H0, and the lemma is true in this case.

Suppose that Oπ(G) ∩H0 �= 1. Thus, we may assume that M = Oπ(G) ∩H0. Then

N ∩H = H0(Oπ(G) ∩H0 ∩H) = H0,

and the lemma holds.
Suppose now that Oπ′(G) = 1 and Oπ(G) ∩H0 = 1. Then H0 ≤ CG(Oπ(G)). Note that the

inclusion CG(Fπ(G)) ⊆ Fπ(G) holds by Lemma 2.6. Since Oπ′(G) = 1, we have CG(Oπ(G)) ⊆ Oπ(G).
Hence

H0 ≤ CG(Oπ(G)) ≤ Oπ(G), H0 = Oπ(G) ∩H0 �= 1.

The contradiction thus obtained completes the proof of the lemma.

Corollary 3.5 (see [7]). Let G be a π-solvable group and let P0 be strongly closed in P ∈ Sylp(G)

with respect to G for some prime p in π. Then there is a normal subgroup N in G such that
N ∩ P = P0.

Lemma 3.6. Let a group G be π-solvable, let π1 be a subset of the set π, and let H0 be a strongly
π1-closed subgroup of H ∈ Hallπ1(G) with respect to G. Then the following assertions hold:
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1) if a group L0 is strongly π′-closed in L ∈ Hallπ′(G) with respect to G, then there are
elements s ∈ G and t ∈ G such that

Hs
0L

t
0 = Lt

0H
s
0 ;

2) if π2 is a subset of π such that either π1 ∩ π2 = ∅ or π1 = π2 and a subgroup L0 is strongly
π2-closed in L ∈ Hallπ2(G) with respect to G, then there are elements s ∈ G and t ∈ G such
that Hs

0L
t
0 = Lt

0H
s
0 .

Proof. 1) Let a group L0 be strongly π′-closed in L ∈ Hallπ′(G) with respect to G and let θ = {π1, π′}.
Note that, for this choice of a set θ, G admits at least one Hall θ-base by Lemma 2.8. Since the Hall
subgroups are conjugate, it follows that the group G contains elements s ∈ G and t ∈ G for which Hs

and Lt belong to a Hall θ-base. Thus, HsLt = LtHs. In this case, by assertion 3 of Lemma 3.3 and
by Lemma 3.4, there are normal subgroups N and M in G such that N ∩Hs = Hs

0 and M ∩ Lt = Lt
0.

Hence

Hs
0L

t
0 = (N ∩Hs)(M ∩ Lt) ⊆ NLt ∩HsM ∩HsLt.

Since N ∩Hs = Hs
0 , we have Hs

0 ∈ Hallπ1(N). Then it follows from Lt ∈ Eπ′ ⊆ Eπ′
1

that

|NLt| = |Hs
0 | · l, where l is a π′

1-number.

Similarly, |HsM | = |Lt
0| ·m, where m is a π-number. Since |NLt ∩HsM ∩HsLt| divides |NLt|,

|HsM |, and |HsLt|, we obtain

|NLt ∩HsM ∩HsLt| ≤ |Hs
0 | · |Lt

0| = |Hs
0L

t
0|.

Hence NLt ∩HsM ∩HsLt = Hs
0L

t
0, and Hs

0L
t
0 is a subgroup of G. This fact completes the proof of

assertion 1).

2) Let the group L0 be strongly π2-closed in L ∈ Hallπ2(G) with respect to G and let π2 ⊆ π.
Consider two cases.

a) Case π1 ∩ π2 = ∅. Let θ = {π1, π2}. Then, by Lemma 2.8, the group G admits at least one Hall
θ-base. As in the proof of assertion 1), there are elements s ∈ G and t ∈ G such that Hs and Lt belong to
a Hall θ-base and HsLt = LtHs. Further, taking the equation π1 ∩ π2 = ∅ into account and following
the lines of the proof of assertion 1) of the present lemma, one can readily show that

NLt ∩HsM ∩HsLt = Hs
0L

t
0.

Thus, Hs
0L

t
0 is a subgroup of G and Hs

0L
t
0 = Lt

0H
s
0 .

b) Case π1 = π2. Since the Hall π1-subgroups of G are conjugate, there are elements s ∈ G
and t ∈ G such that Hs = Lt = H . In this case, by assertion 3 of Lemma 3.3 and by Lemma 3.4, there
are normal subgroups N and M in G such that N ∩H = Hs

0 and M ∩H = Lt
0. Hence, by Lemma 4.1

of [9],

Hs
0L

t
0 = (N ∩H )(M ∩H ) = NM ∩H.

Thus, Hs
0L

t
0 is a subgroup of G and Hs

0L
t
0 = Lt

0H
s
0 .

Corollary 3.7 (see [7]). Let G be a π-solvable group, let p and q be primes in π, and let a groupP0 be
strongly closed in P ∈ Sylp(G) with respect to G and a group Q0 be strongly closed in Q ∈ Sylq(G)
with respect to G. Then there are elements s ∈ G and t ∈ G such that

P s
0Q

t
0 = Qt

0P
s
0 .

Corollary 3.8. Let G be a π-solvable group and p ∈ π. If a group P0 is strongly closed
in P ∈ Sylp(G) with respect to G and H0 is strongly π′-closed in H ∈ Hallπ′(G) with respect to G,
then there are elements s ∈ G and t ∈ G such that

P s
0H

t
0 = Ht

0P
s
0 .
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The crucial property for the proof of the main result of the paper is as follows.

Lemma 3.9. Let G be a π-solvable group, and let F be a π-saturated Fitting set of G. Let N be a
subgroup of G such that G/N is either a π′-group or a nilpotent π-group. If W is an F-maximal
subgroup of N and if V1 and V2 are F-maximal subgroups G such that W ≤ V1 ∩ V2, then the
subgroups V1 and V2 are conjugate in G.

Proof. Let G be a group of the least order for which the lemma fails. Note that W = V1 ∩N = V2 ∩N
and Vi ≤ NG(W ) for i ∈ {1, 2}. It can readily be seen that the conditions of the lemma are satisfied
for the group NG(W ). If NG(W ) < G, then the lemma holds for NG(W ) by induction. In this case,
the lemma obviously holds for the group G. Therefore, we may assume that NG(W ) = G, i.e., W � G.
Thus,

Vi/W = Vi/Vi ∩N ∼= ViN/N ≤ G/N for i ∈ {1, 2}.

Consider two cases.

Case 1: G/N is a π′-group. In that case, Vi/W is a π′-group. Hence there are Hall π′-subgroups
Hi/W of the quotient group G/W such that Vi/W ≤ Hi/W . Since Hi/W are π′-subgroups
and W � G, it follows that Oπ′

(Hi) � W . Thus, Oπ′
(Hi) ∈ F . Since F is a π-saturated Fitting

set of G, it follows that Hi ∈ F . In this case, since Vi is F-maximal, one can conclude that Vi = Hi,
and the conjugacy of V1 and V2 follows from the conjugacy of the Hall π′-subgroups.

Case 2: G/N is a nilpotent π-group. In this case, since W is F-maximal in N and F
is π-saturated, it follows that N/W is also a π-group. Hence by the isomorphism

G/N ∼= G/W/N/W,

we see that G/W is a solvable π-group, and the proof is just like that of Lemma VIII.2.8 in [4].

The main result of the paper is the following theorem.

Theorem 3.10. Let G be a π-solvable group, and let F be a π-saturated Fitting set of G. Then the
group G contains F-injectors, and every two of them are conjugate.

Proof. Let us prove the theorem by induction on the order of the group for all pairs (G, F ) satisfying
the conditions of the theorem. Let G be a counterexample of minimal order, and let M be a maximal
normal subgroup of G. Since the group G is π-solvable, it follows that the quotient group G/M is either
a π′-group or an elementary Abelian p-group for some prime p ∈ π. Consider the following two cases.

Case 1: G/M is a π′-group for every maximal normal subgroup M of G. By the induction
assumption, there are F-injectors in M . Let V1 be an F-injector of M and let V 1 be an F-maximal
subgroup of G such that V1 ≤ V 1. We claim that V 1 ∩N is an F-injector ofN for every maximal normal
subgroup N of G.

By induction, there are F-injectors of N , and any two of them are conjugate. Let V2 be an F-injector
of N and let V 2 be a maximal F-subgroup of G such that V2 ≤ V 2. It follows from the conjugacy of
injectors of M and N , and also of M ∩N , that

W = V1 ∩M ∩N = V2 ∩M ∩N.

Then W ≤ V 1 ∩ V 2. Since G/M ∩N is a π′-group in the present case, it follows that, by Lemma 3.9,
there is an element x ∈ G for which V

x
1 = V 2. Hence

(V 1 ∩N)x = V
x
1 ∩N = V 2 ∩N = V2.

It follows now from the conjugacy of the F-injectors of N that V 1 ∩N is an F-injector of N for every
maximal normal subgroup N of G. Hence the subgroup V 1 is an F-injector of G, and this proves the
existence of F-injectors of G.
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Let us prove now the conjugacy of F-injectors of G. Let V1 and V2 be F-injectors of G. Then the
subgroups V1 ∩M and V2 ∩M are F-injectors of M . Hence, by induction, there is an element x of the
group M such that

(V1 ∩M)x = V x
1 ∩M = V2 ∩M.

Let

W = V x
1 ∩M = V2 ∩M.

Then V x
1 and V2 are F-maximal subgroups of G containing W . Moreover, the subgroup W is an

F-injector of M . Hence V x
1 and V2 are conjugate in G, and this completes the proof of the theorem

in Case 1.

Case 2. There is a maximal normal subgroup M of G such that G/M is a p-group for some
number p ∈ π. In this case, Op(G) < G. If Op(G) = 1, then the group G is solvable, and the theorem
holds by Lemma 2.3. Let Op(G) �= 1. Then, by induction, there are F-injectors in the group Op(G),
and any two of them are conjugate. If a subgroup S is an F-injector of Op(G), then the subgroup Sg is
an F-injector of Op(G) for any g ∈ G. Applying induction again, we see that Sg = Sh for some element
h ∈ Op(G). By the Frattini lemma, G = NG(S)O

p(G). Hence if P is a Sylow p-subgroup of NG(S),
then G = POp(G).

Let R be a subgroup generated by the F-subgroups of the group PS that contain S. Since every
subgroup of this kind is subnormal in PS, it follows that R ∈ F .

Let T be an F-subgroup of G such that S is contained in T . Note that T ∩Op(G) is an F-subgroup.
It follows from the F-maximality of S in Op(G) that S = T ∩Op(G). Hence T ≤ NG(S). Thus, every
Sylow p-subgroup of T is conjugate in NG(S) to a subgroup of P . Since the quotient group

T/S = T/T ∩Op(G) ∼= TOp(G)/Op(G)

is a p-group, it follows that T is conjugate to a subgroup of the form P0S in NG(S) for some subgroup P0

of P . Hence all extensions of S in F are conjugate in NG(S) to subgroups of R. In particular, if there
are F-injectors of G, then they are conjugate to R.

Thus, to complete the proof of the theorem, it remains to show that R is an F-injector of G. Since
the subgroup R is F-maximal in G, it suffices to prove that R contains an F-injector of a subgroup L
for every maximal normal subgroup L of G.

Since the group G is π-solvable, it follows that either |G : L| = q for some prime q ∈ π or |G : L| is a
π′-number.

Let T be an F-injector of the group L. The subgroups

T ∩ L ∩Op(G) = T ∩Op(G) and S ∩ L ∩Op(G) = S ∩ L

are F-injectors of the normal subgroup L ∩Op(G). Hence these subgroups are conjugate in the group
L ∩Op(G). Choose a group T in such a way that

T ∩Op(G) = L ∩ S = U.

Consider the following two cases separately.

Case 2.1. The index |G : L| is a π′-number. Let P1 ∈ Sylp(T ), and let H1 ∈ Hallπ′(S). Note that
the group

T/U = T/T ∩Op(G) ∼= TOp(G)/Op(G)

is a p-group, and the group

S/U = S/S ∩ L ∼= SL/L

is a π′-group. Hence T = P1U and S = H1U . Since S and T are subgroups of NG(U), it follows that
there are a Sylow subgroup P and a Hall π′-subgroup H of NG(U) for which P1 ≤ P and H1 ≤ H . If
g ∈ NG(U), then

(Hg
1 ∩H)U ≤ Sg ∈ F .
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Since HU/U is a π′-group, it follows that 〈Hg
1 ∩H,H1〉U/U is also a π′-group. Since the Fitting

set is π-saturated and U �HU , it follows now that the group 〈Hg
1 ∩H,H1〉U is an F-subgroup of HU .

Thus,

S ≤ 〈Hg
1 ∩H,H1〉U ≤ 〈Sg, S〉 ≤ Op(G).

It follows from the F-maximality of S in Op(G) that Hg
1 ∩H ≤ H1. Thus, H1 is strongly π′-closed in H

with respect to NG(U). It can readily be seen that (P g
1 ∩ P )U and T = P1U are subnormal subgroups

of PU and, therefore, 〈P g
1 ∩ P,P1〉U is an F-subgroup of PU . In this case,

T ≤ 〈P g
1 ∩ P,P1〉U ≤ 〈T g, T 〉 ≤ L,

and we have P g
1 ∩ P ≤ P1 because T is F-maximal in L. Thus, P1 is strongly closed in P with respect

to NG(U). Therefore, by Corollary 3.8, we conclude that there is an element g ∈ NG(U) for which the
product P g

1H1 is a subgroup of NG(U).
Let

K = P g
1H1U = (P1U)g(H1U) = T gS.

K is a subgroup. Then

K ∩Op(G) = T gS ∩Op(G) = (T g ∩Op(G))S = (T ∩Op(G))gS = UgS = US = S

and, similarly, K ∩ L = T g. Hence S and T g are normal F-subgroups of K and, therefore, K ∈ F .
Since S is contained in K, it follows that R contains a subgroup conjugate to K. Hence R contains an
F-injector of the subgroup L, and the theorem is proved in Case 2.1.

It remains to consider

Case 2.2. The index |G : L| is equal to q for some prime q ∈ π. Let

P1 ∈ Sylp(T ) and Q1 ∈ Sylq(S).

Note that the group

T/U = T/T ∩Op(G) ∼= TOp(G)/Op(G)

is a p-group, and the group

S/U = S/S ∩ L ∼= SL/L

is a q-group. In this case, T = P1U and S = Q1U . Since S and T are subgroups of NG(U), it follows
that there are Sylow subgroups P and Q of NG(U) such that P1 ≤ P and Q1 ≤ Q. If g ∈ NG(U), then

(P g
1 ∩ P )U ≤ T g ∈ F .

As in Case 2.1, P1 is strongly closed in P with respect to NG(U) and Q1 is strongly closed in Q with
respect to NG(U). By Corollary 3.7, there is an element g ∈ NG(U) such that the product P g

1Q1 is a
subgroup of NG(U).

Let

K2 = P g
1Q1U = (P1U)g(Q1U) = T gS.

K2 is a subgroup. In this case,

K2 ∩Op(G) = T gS ∩Op(G) = (T g ∩Op(G))S = (T ∩Op(G))gS = UgS = US = S.

Similarly, one can show that K2 ∩ L = T g. Hence3 S and T g are normal F-subgroups of K2

and K2 ∈ F . Since S is contained in K2, it follows that R contains a subgroup conjugate to K2. Hence
R contains an F-injector of the subgroup L.

Following Definition 3.1, we say that a Fitting class F is π-saturated if F = FEπ′ .

Corollary 3.11. Let G be a π-solvable group, and let F be a π-saturated Fitting class of G. Then
there are F-injectors in the group G, and every two of them are conjugate.
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Proof. Let

F = TrF(G) = {H ≤ G : H ∈ F}.
Then F is a π-saturated Fitting set, and the sets of F-injectors and F-injectors of the group G coincide.
The existence and conjugacy of F-injectors G now immediately follows from Theorem 3.10.

A group G is said to be (see [5, p. 251]) π-closed if it has a normal Hall π-subgroup and π-special
if it has a normal nilpotent Hall π-subgroup. It can readily be seen that the class of all π-closed groups
and the class of all π-special groups are π-saturated Fitting classes. Therefore, the following assertions
hold.

Corollary 3.12. Every π-solvable group contains a unique class of conjugate π-closed injectors.

Corollary 3.13. Every π-solvable group contains π-special injectors, and any two of them are
conjugate.

Corollary 3.14 (see [7, Theorem 3]). If F is a Fitting set of a solvable group G, then G contains
F-injectors, and every two of them are conjugate.

Corollary 3.15 (see [1, Theorem 1]). If F is a Fitting class and a group G is solvable, then G
contains F-injectors, and every two of them are conjugate.

4. INJECTORS OF GROUPS WITH π-SOLVABLE QUOTIENT GROUP

In this subsection, we extend known results of Shemetkov [2] and Ballester-Bolinches [6, Theo-
rem 2.4.27] on the existence and conjugacy of F-injectors of a group G under the assumption that the
quotient group by the F-radical is π-solvable (rather than the group G itself is π-solvable).

Theorem 4.1. Let F be a Fitting set of a group G and let G/GF be a π-solvable group, where
π = σ(F ). Then the group G contains F-injectors, and every two of them are conjugate.

Proof. By Lemma 2.5, the set

F ∗ = {H/GF : H ∈ F ∧GF ≤ H}
is a Fitting set of the group G/GF , and

F0 = {S ≤ G : SGF/GF ∈ F ∗ ∧ S � SGF}
is a Fitting set of G.

Let us show first that the equation KF = KF0 holds for every subnormal subgroup K in G.
Obviously, F0 ⊆ F and KF0 ≤ KF . Since KFGF ∈ F and KFGF/GF ∈ F ∗, it follows that
KF ∈ F0 and KF ≤ KF0 . Thus, KF = KF0 .

Note that σ(F ∗) ⊆ σ(F ), and G/GF is a π-solvable group for π = σ(F ∗). Now, applying
Lemma 2.4, we see that the π-solvable group G/GF contains an F ∗-injector V/GF . Hence, by
Lemma 2.5, V is an F0-injector of G. We claim that V is an F-injector of G. To this end, it suffices to
show that, for every subnormal subgroup K of G, the subgroup K ∩ V is F-maximal in K. Let there
be a subgroup W ∈ F such that K ∩ V ≤ W ≤ K. Then

(K ∩ V )GF /GF = (V/GF ) ∩ (KGF/GF ) ≤ WGF/GF ≤ KGF/GF .

Note that K ∩ V is an F0-injector of K. Hence

KF = KF0 ≤ V ∩K ≤ W,

and therefore KF ≤ W . Now KF = K ∩GF by Lemma 2.1, and thus

WGF ∩K = W (GF ∩K) = WKF = W.

Hence W is subnormal inWGF and WGF ∈ F , i.e., WGF/GF ∈ F ∗. Since (V/GF )∩ (KGF/GF )
is F-maximal in KGF/GF , we have the equation

(K ∩ V )GF = WGF .
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Therefore,

K ∩ V = (K ∩ V )(GF ∩K) = (K ∩ V )GF ∩K = WGF ∩K = W

and V is an F-injector of G.
Let us prove the conjugacy of injectors of G. Let V be an F-injector of G. Then, by assertion 1 of

Lemma 2.5, V/GF is an F ∗-injector of G/GF . However, by Lemma 2.4, the F ∗-injectors of G/GF
are conjugate, and thus so are the F-injectors of G.

Corollary 4.2 (see [2, Theorem 2.2]). Let F be a Fitting set of a π-solvable group G, where
π = σ(F ). Then the group G contains F-injectors, and any two of them are conjugate.

Corollary 4.3 (see [6, Theorem 2.4.27]). Let F be a Fitting set of a group G, and let G/GF be a
solvable group. Then the group G contains F-injectors, and any two of them are conjugate.

Corollary 4.4 (see [10]). Let F be a Fitting class, and let G/GF be a π-solvable group, where
π = σ(F). Then the group G contains F-injectors, and any two of them are conjugate.

Corollary 4.5 (see [11]). Let F be a Fitting class, and let G/GF be a solvable group. Then the
group G contains F-injectors, and any two of them are conjugate.

In conclusion, note that an interesting problem remains: To find characterizations of F-injectors for
a Fitting set F of a given group, by using radicals and Hall subgroups similar to the characterizations
of F-injectors for Fitting classes F that were obtained in [12] and [13].
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