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Abstract In this paper, we prove that there exists a infinite set of non-trivial
local Fitting classes every element in which is decomposable as a non-trivial
product of Fitting classes such that every factor in the product is neither local
nor a formation. In particular, this gives a positive answer to Problem 11.25 a)
in The Kourovka Notebook.
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1 Introduction

The solutions of many problems in the theory of classes of finite groups lead
to a large number of investigation on the properties of products of classes of
groups. In particular, in the theory of Fitting classes, a series of the solutions
of many problems related with normal Fitting classes depends strongly on the
properties of product of Fitting classes in which the factors have (or do not have)
a normal property (see, for example, [2,7,9,17]). In the theory of formations, the
results of Shemetkov [22,23] about the structure of formations led to the theory
of factorization of formations, and many serious and interesting results about
local formations with given inner properties of subformations were obtained by
Skiba and some other authors (see [1,12–15,21,24,27]).

In connection with this, the following problem was proposed in The Kourovka
Notebook [21].

Problem 1.1 [21, Problem 11.25 a)] Do there exist local Fitting classes
(different from the class S of all finite soluble groups) which are decomposable
into a non-trivial product of Fitting classes such that every factor in the product
is neither local nor a formation?
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In [27], by using the class defined by Berger and Cossey [3], a special example
has been given.

In this paper, we give a new and broad family of such non-trivial Fitting
classes (without using the unwieldy structure of Berger and Cossey [3]) whose
elements can be decomposed as a non-trivial product of Fitting classes such
that every factor in the product is neither local nor a formation.

All groups considered in this paper are finite and soluble. All unexplained
notation and terminology are standard. The reader is refereed to [10] if
necessary.

2 Preliminaries

Recall that a class F of groups is said to be a Fitting class if F is closed with
respect to taking normal subgroups and if the conditions

G = AB, A,B � G, A,B ∈ F

always imply
G ∈ F.

Obviously, for a non-empty Fitting class F, every group G has a largest
normal F-subgroup, which is denoted by GF and is called the F-radical of G.

For a set π of primes, we use Sπ to denote the class of all soluble π-groups.
Clearly, every group G has an Sπ-residual GSπ , which is the smallest normal
subgroup of G satisfying that the factor group G/GSπ belongs to Sπ.

A nonempty Fitting class F is said to be normal if the F-radical GF is an
F-maximal subgroup of G for every group G.

Let F and H be two Fitting classes. Then the class (G | G/GF ∈ H) is called
the Fitting product of F and H, and denoted here by FH. It is well known that
the product of two Fitting classes is also a Fitting class and the multiplication
satisfies the associative law (see [10, IX.1.12]).

If X is a class of groups, then Fit(X) denotes the Fitting class generated by
X, that is, Fit(X) is the smallest Fitting class containing X.

Let P be the set of all prime numbers. Then a map f : P → {Fitting classes}
is said to be a Hartley function (or directly, an H-function) [26]. For an
H-function f, let

π = Supp(f) = {p ∈ P | f(p) �= ∅},
which is called the support of f, and let

LR(f) = Sπ

⋂ ( ⋂

p∈π

f(p)NpSp′

)
.

A Fitting class F is called a local Fitting class [26] if F = LR(f) for some
H-function f.
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Let Ω = {fi | i ∈ I} be some non-empty set of H-functions. Suppose fi, fj

∈ Ω. Then we write fi � fj if fi(p) ⊆ fj(p) for all p ∈ P.
In our proof, we will also need to use the operators ‘∗’ and ‘∗’ which were

defined by Lockett [19]. Actually, every non-empty Fitting class F has two
associated Fitting classes F∗ and F∗, where F∗ is the smallest Fitting class
containing F such that

(G × H)F∗ = GF∗ × HF∗

for all groups G and H; F∗ is the intersection of all Fitting classes X such that
X∗ = F∗. Recall that a Fitting class F is called a Lockett class if F∗ = F. It is
well known that if F = S, then S∗ is the smallest normal Fitting class and S∗
is non-trivial, that is, S∗ is not equal to 1 nor S, and S∗ is not a formation
(see [5]).

3 Answer to Problem 1.1 in trivial case

Remark that if a local product is trivial, that is, the local product is the class
S of all soluble groups, then the following example shows that the answer to
Problem 1.1 is simple enough.

Example 3.1 Let X be an arbitrary non-trivial (that is, X is not equal to 1
nor S) normal Fitting class. We first prove that X is non-local. In fact, if X is
local, then by [25, Lemma 5], X is a Lockett class, and therefore,

X∗ = X = S

by [10, Theorem X.3.7]. This contradiction shows that no non-trivial normal
Fitting class is local.

Now, let S∗ be the smallest normal Fitting class. Then by [7, Theorem 4.3],
the Fitting class

F := XS∗ = S.

Let f be the H-function such that

f(p) = S ∀ p ∈ P.

Then, clearly, F = LR(f). Hence, F is a local Fitting class and it is
decomposable as a non-trivial product of Fitting classes such that every factor
is non-local and is not a formation.

4 Semilocal Fitting classes and their properties

In order to describe the non-trivial local product with the property in Problem
1.1, we need to use the concept of semilocal Fitting classes (see [26] or [20]). Let
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∅ �= σ ⊆ P. A Fitting class F is said to be semilocal if there exists an H-function
f such that

F = SLR(f) :=
⋂

p∈σ

f(p)Sp′ ,

where σ = Supp(f). In this case, f is said to be a semilocal H-function of F or
F is semilocally defined by the H-function f.

The following lemma characterizes the semilocal Fitting classes.

Lemma 4.1 Let F be a Fitting class. Then the following statements hold.
1) If F is a semilocal Fitting class, then F can be defined by a smallest

H-function f and f is a integrated, that is,

f(p) ⊆ F , ∀ p ∈ π = Supp(f).

2) If F = SLR(f), where f is the smallest H-function of F and π =
Supp(f), then

f(p) = Fit(G ∈ F | G � HSp′ for some H ∈ F), ∀ p ∈ π = Supp(f).

3) F is semilocal if and only if FSπ′ = F.

Proof 1) Suppose that F = SLR(h) for some H-function h. Let

ϕ(p) = h(p) ∩ F, ∀ p ∈ π.

Then
ϕ � h, SLR(ϕ) ⊆ F.

On the other hand, assume that K ∈ F. Then

K/Kh(p) ∈ Sp′ , ∀ p ∈ π,

and therefore,
KSp′ ⊆ Kh(p).

It follows that
KSp′ ∈ h(p) ∩ F = ϕ(p), ∀ p ∈ π.

This shows that K ∈ SLR(ϕ). Consequently,

F = SLR(ϕ), ϕ(p) ⊆ F, ∀ p ∈ π.

Now, let Ω be the set of all semilocal H-functions of F, and let f be the
intersection of all elements in Ω. Then, as above, we see that

f(p) ⊆ F, ∀ p ∈ π.

We prove that f is also a semilocal H-function of F. In fact, since f � ϕ and
F = SLR(ϕ), we have

SLR(f) ⊆ F.
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Let L ∈ F. Then
L/Lhi(p) ∈ Sp′ , ∀ hi ∈ Ω, ∀ p ∈ π.

This implies that

L
/ ⋂

i∈I

Lhi(p) ∈ Sp′ , ∀ p ∈ π, ∀ i ∈ I.

Since, obviously, ⋂

i∈I

Lfi(p) = Lf(p),

we have
L ∈ f(p)Sp′ , ∀ p ∈ π.

It follows that
F ⊆ SLR(f).

2) Assume that F = SLR(f), where f is the smallest H-function of F. Let

g(p) = {G ∈ F | G � HSp′ for some H ∈ F}, h(p) = Fit(g(p)), p ∈ π.

We prove that
f(p) = h(p), ∀ p ∈ π.

Put H = SLR(h). If X ∈ F, then XSp′ ∈ F. Since

XSp′ = (XSp′ )Sp′ ,

we have
XSp′ ∈ g(p).

Hence,
XSp′ ∈ h(p), ∀ p ∈ π.

This shows that
X ∈

⋂

p∈π

h(p)Sp′ = H.

Thus, F ⊆ H. In order to complete the proof of 2), we only need to prove that
h(p) ⊆ f(p) for all primes p ∈ π since f is the smallest H-function of F. Let Y

be a group in g(p) (p ∈ π). Then Y � MSp′ for some M ∈ F. Since M ∈ F, we
have

M/Mf(p) ∈ Sp′ .

It follows that
MSp′ ⊆ Mf(p),

and therefore, MSp′ ∈ f(p) since f(p) is normal closed. This means that
Y ∈ f(p) for all p ∈ π. Consequently, g � f. Hence,

h(p) = Fit(g(p)) ⊆ Fit(f(p)) = f(p), ∀ p ∈ π.
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3) Let F = SLR(f) be a semilocal Fitting class. We prove that

FSπ′ = F.

Clearly,
F ⊆ FSπ′ .

Assume that G is a group in FSπ′ . Then

G/GF ∈ Sπ′ ,

and therefore, GSπ′ is an F-subgroup of G. This implies that

GSπ′ ∈ f(p)Sp′ , ∀ p ∈ π.

But since Sπ′ ⊆ Sp′ for any p ∈ π, we have

GSp′ ⊆ GSπ′ .

By the multiplicative associative law of Fitting classes, we obtain that

G ∈ f(p)Sp′ , ∀ p ∈ π.

Hence, G ∈ F, and therefore,
FSπ′ = F.

Conversely, assume that F = FSπ′ . Let π = Supp(f), where f is the
H-function such that

f(p) = Fit{G ∈ F | G � HSp′ for some H ∈ F}, ∀ p ∈ π,

and let M = SLR(f). In order to prove 3), we only need to prove that F = M.
Assume that G ∈ M. Then

G/Gf(p) ∈ Sp′ ,

and therefore,
GSp′ ⊆ Gf(p).

Let
f1(p) = {G ∈ F | G � HSp′ (H ∈ F)}, ∀ p ∈ π.

Since f1(p) ⊆ F, we have

f(p) = Fit(f1(p)) ⊆ Fit(F) = F, ∀ p ∈ π.

Hence, GSp′ ∈ F for every prime p ∈ π, and therefore,

R =
∏

p∈π

GSp′
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is a normal F-subgroup of G. Since

G/R � (G/GSp′ )/(R/GSp′ ), ∀ p ∈ π,

we have
G/R ∈

⋂

p∈π

Sp′ = Sπ′ .

This implies that
G ∈ FSπ′ = F,

and therefore, M ⊆ F.
Now, assume that G ∈ F. Since

(GSp′ )Sp′ = GSp′ ,

we have
GSp′ ∈ f1(p) ⊆ f(p).

Hence,
G ∈

⋂

p∈π

f(p)Sp′ = M.

Therefore, F = M. This completes the proof. �
By using Lemma 4.1, we point out some classical Fitting classes semilocally

defined by H-functions.

Example 4.2 Let F be a Fitting class, ∅ �= π ⊆ P, and let Rπ(F), Lπ(F),
L′

π(F), and Kπ(F) be Fitting classes defined as follows, respectively:
(1) G ∈ Rπ(F) if and only if the F-radical of G contains some Hall

π-subgroup of G;
(2) G ∈ Lπ(F) if and only if every F-injector of G contains some Hall

π-subgroup of G;
(3) G ∈ L′

π(F) if and only if every Hall π-subgroup of G is a normal
subgroup of some F-injector of G;

(4) G ∈ Kπ(F) if and only if every Hall π-subgroup of G is an F-group.

By using the above classical semilocal Fitting classes, a series of profound
and interesting results about Fitting class with a description of the structure
of injectors and the inner structure of classes of groups were obtained (see
[10, IX-X]).

From Lockett [18], Brison [6], and Gállego [11], we know that each of above
classes (1)–(4) is a Fitting class with the property XSπ′ = X, where X ∈
{Rπ(F),Lπ(F),L′

π(F),Kπ(F)}. Therefore, by Lemma 4.1, they are all semilocal
Fitting classes, and therefore, they have an H-function as in Lemma 4.1.

The well-known class NπSπ′ of π-special groups and the class SπSπ′ of
π-closed groups introduced by Čunihin [8] are also Fitting classes semilocally
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defined as in Lemma 4.1. In fact, for example, the class of π-closed groups is a
special case of L′

π(F) since if F = S, then L′
π(F) = SπSπ′ .

Proposition 4.3 The Fitting classes Rπ(F), Lπ(F), L′
π(F), and Kπ(F) are

not local, in general.

Proof We first prove that Lπ(F) is not local.
Let p and q be two primes such that p | (q − 1), and let G = Dp

qn be
a monolitic group (see [4, p.3]) with a normal abelian Sylow q-subgroup of
exponent qn and a cyclic Hall q′-subgroup of order p. Let π = π(G), and let S∗
be the smallest normal Fitting class. By [4, Property 3], the group G does not
belong to S∗. Since Lπ(S∗) is the class of all groups G such that every Hall
π-subgroup of G is contained in an S∗-injector of G, we have

G �∈ Lπ(S∗),

and therefore,
Lπ(S∗) �= S.

Assume that the Fitting class Lπ(S∗) is local. Then by [25, Lemma 5], Lπ(S∗)
is a Lockett class, that is,

(Lπ(S∗))∗ = Lπ(S∗).

Since S∗ is normal, by [10, Theorem X.1.37], we know that Lπ(S∗) is also a
normal Fitting class. Hence, by [10, Theorem X.3.7]), we have

Lπ(S∗) = S,

which contradicts the fact that there exists a group G ∈ S \ Lπ(S∗). Thus,
Lπ(S∗) is non-local.

Obviously,
Kπ(F) = Lπ(F ∩ Sπ)

(see [10, Theorem IX.1.25(a)]) and

Kπ(F∗) = (Kπ(F))∗

(see [10, Theorem X.1.37]. Hence, we can analogously prove that the Fitting
class Kπ(F) is non-local for F = S∗.

Note that for a non-trivial normal Fitting class F, by [10, Theorem X.1.37],
we have

Rπ(F) = Lπ(F).

Hence, in general, Rπ(F) is not local.
Finally, by [11, Corollary 3.3], we know that

L′
π(X ∩ SπSπ′) = Kπ(X).

Hence, the Fitting class L′
π(F) = Kπ(X∗) is not local for X = S∗ and F =

S∗ ∩ SπSπ′ . �
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5 Main results

In this section, we give the following theorem in which we construct out a wide
family of local Fitting classes in which every element is decomposable as a non-
trivial product of Fitting classes such that every factor in the product is neither
local nor a formation.

Theorem 5.1 There exists an infinite set of non-trivial local Fitting classes,
every element in which is decomposable into a non-trivial product of Fitting
classes such that every factor in the product is neither local nor a formation,
but the product is semilocal.

Proof First, we prove that for an arbitrary set π of primes with |π| � 2, the
class

F = (Sπ)∗Sπ′

is semilocally defined, but F is neither local nor a formation.
If π = P, then F = S∗, and therefore, F is neither local nor a formation by

Example 3.1. Let
SLR(f) =

⋂

p∈P

f(p)Sp′ ,

where f is the H-function such that f(p) = S∗ for all primes p. Then

SLR(f) = S∗
( ⋂

p∈P

Sp′

)
= S∗(1) = S∗.

Thus, S∗ is semilocal.
Now, assume that π ⊂ P. Then F = FSπ′ . Hence, by Lemma 4.1(3), F is

semilocal.
Assume that the Fitting class F is local. Then by [25, Lemma 5], F is a

Lockett class, and therefore,

F = F∗ = ((Sπ)∗Sπ′)∗.

Then by [25, Lemma 3] and the property of the operator ‘*’ (see [10, Theorem
X.1.15]), we have

F = ((Sπ)∗)∗Sπ′ = S∗
πSπ′ .

But Sπ = LR(f), where f is an H-function such that

f(p) =

{
Sπ, p ∈ π,

∅, p ∈ π′.

Hence, by [25, Lemma 5], we have

S∗
π = Sπ,
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and therefore,
F = SπSπ′ .

On the other hand, by [16, Theorem B], the local Fitting class Sπ satisfies
the Lockett conjecture. Hence,

(Sπ)∗ = S∗
π ∩ S∗

(see [16]), and therefore,
(Sπ)∗ = Sπ ∩ S∗.

This implies that

F = (Sπ ∩ S∗)Sπ′ = SπSπ′ ∩ S∗Sπ′ = SπSπ′ .

It follows that
SπSπ′ ⊆ S∗Sπ′ ,

and consequently,

Sπ ⊆ S∗Sπ′ ∩ S∗Sπ = S∗(Sπ ∩ Sπ′) = S∗.

Since |π| � 2, we have NpNq ⊆ Sπ for some different primes p, q ∈ π. But
by [10, Theorem X.5.32], we have Sπ � S∗, which contradicts Sπ ⊆ S∗.

This contradiction shows that the Fitting class F is not local.
We now prove that F is not a formation. Assume that F is a formation.

Then F is a Lockett class by [10, Theorem X.1.25]. As above, we may obtain
that Sπ � S∗ and a contradiction.

Let π be a set of primes such that |π′| � 2. Let F and H be the Fitting
classes such that

F = (Sπ)∗Sπ′ , H = (Sπ′)∗Sπ.

Then by Lemma 4.1 (3), we see that H is a semilocal Fitting class. We have just
proved above that each of the classes F and H is neither local nor a formation.
Moreover, by [10, Theorem X.1.15],

(Sπ′)∗ ⊆ Sπ′ .

Let X = FH. Then, by the multiplicative associative law of Fitting classes, we
have

X = (Sπ)∗Sπ′Sπ.

It is easy to see that X = LR(ϕ), where ϕ is the H-function such that

ϕ(p) =

{
X, p ∈ π′,
(Sπ)∗Sπ′ , p ∈ π.

Thus, X is local. By the choice of π, the set of such Fitting classes is infinite.
This completes the proof. �
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Now, using our main theorem and its proof, we give a concrete example
(which is different from the example in [27]) which gives a positive answer to
Problem 1.1.

Example 5.2 Let

L = {G | (G/GSσ )S2′ ∈ SnD0(X)} ∩ S7S3S2,

where
X = Y P, P = Z(Q8), Y = W � R,

W is a faithful irreducible [RQ8]-module over the field GF (7) of dimension
3, R is a extraspecial group (see [10, p.77]) of exponent 3 and order 27, and
σ = {2, 3}. By [3, Theorems 4.5 and 4.7]), we know that L is a Lockett class
and X ∈ (L ∩ S∗)\L∗. Let

π = π(X), F = Lπ(L∗),

that is, F is the class of all groups every Hall π-subgroup of every group G in
which are contained in some L∗-injector of G. By Lemma 4.1 and Example 4.2,
we see that F is a semilocal Fitting class. Obviously,

X ∈ Lπ(L)\F.

If F = Lπ(L∗) is a Lockett class, then, by [25, Lemma 5] and [10, Theorems
X.1.37 and X.1.15], we have

Lπ(L∗) = (Lπ(L∗))∗ = Lπ((L∗)∗) = Lπ(L),

which contradicts the fact that

Lπ(L) �= Lπ(L∗).

Hence, Lπ(L∗) is not a Lockett class. It follows from [25, Lemma 5] and
[10, Theorem X.1.25] that Lπ(L∗) is neither local nor a formation.

Now, let
H = (Sπ′)∗Sπ.

In this case, |π′| � 2. Hence, by the proof of Theorem 5.1, we see that H is
neither local nor a formation. Put

FH = (FSπ′)((Sπ′)∗Sπ).

Then by the multiplicative associative law of Fitting classes, we have

FH = FSπ′Sπ.

As in the proof of Theorem 5.1, we can see that FH is a local Fitting class.
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