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1. Introduction

In the theory of finite soluble groups, many well known results related to research of struc-
tures of Fitting classes and canonical subgroups are closed connected with the operators ”∗”
and ”∗” defined by Lockett [13] (see also [8, chapter X]). In fact, every nonempty Fitting
class F has the associated Fitting classes F∗ and F∗, where F∗ is the smallest Fitting class
containing F such that the F∗-radical of the direct product G×H of any two groups G and
H is equal to the direct product of the F∗-radical of G and the F∗-radical of H; F∗ is the
intersection of all Fitting classes X such that X∗=F∗ (see [13] or [8, Chapter X]). If F∗ = F,
then the Fitting class is called a Lockett class. The interest for the research of F∗ and F∗
is determined mainly by the following circumstances. Firstly, the family of Fitting classes
satisfying F∗ = F is vast. In fact, by [8, Theorem X.1.25], every Fitting class closed about
homomorphic images or closed about finite subdirect products, and every Fischer class (see
[8, IX.3.3]) are all Lockett classes. Secondly, Lockett [13] formulated the conjecture that
for every Fitting class F, there exists a normal Fitting class X such that F = F∗∩X. Later, in
this case, we say that F satisfies Lockett conjecture in S, where S is the class of all soluble
groups.

About the Lockett conjecture, Bryce and Cossey [6] proved that Lockett conjecture holds
for all soluble S-closed local Fitting classes and that every soluble Fitting class F satisfies
Lockett conjecture if and only if F∗ = F∗ ∩S∗, where S∗ is the smallest normal Fitting
class. In the paper [6], Bryce and Cossey also gave the concept of Lockett pair (F,H) (see
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[6, 5.1]). They call an ordered pair (F,H) of two Fitting classes F and H a Lockett pair (or
in brevity, an L-pair) if F∩H∗ = (F∩H)∗.

It is easy to see that if F is a Lockett class, F ⊆ H and (F,H) is a Lockett pair, then
F satisfies Lockett conjecture in H. In particular, if F is a Lockett class, F ⊆ S, H = S
and (F,H) is a Lockett pair, then F satisfies Lockett conjecture in S. We say that F is an
LH-class if F satisfies Lockett conjecture in H. If F satisfies Lockett conjecture in S, then
F is called an L-class. Recall that a Fitting class F is said to be S-closed if every subgroup
of G ∈ F is in F.

Bryce and Cossey [6] in the universe S proved the existence of Lockett pairs. They
showed that if F and H are S-closed Fitting classes, then (F,H) is a Lockett pair. In connec-
tion with this, the following problem arises.

Problem 1.1. Which Fitting classes F and H satisfy that (F,H) is a Lockett pair? In par-
ticular, which Fitting classes F satisfies Lockett conjecture in H?

Note that, up to now, the problem was resolved only in the following special cases:

(1) F ∈ {XN,XSπ}, where X is some nonempty soluble Fitting class, H is FSπ -
injector and Lp(F)-injector closed for all primes p (see Beidleman and Hauck [1]);

(2) F = Sπ and H⊇Sπ (see Brison [4]);
(3) F is an arbitrary soluble local Fitting class, and H is ψ-injector closed, where ψ is

a local function of F (see Vorob’ev [15]);
(4) F = S, and H = E is the class of all finite groups (see Berger [3]);
(5) H is a Fischer class(i.e., H is a Fitting class which is closed under taking subgroups

of the form PN where P is a Sylow subgroup and N is a normal subgroup) or
is closed under taking F-subgroups, whose intersection with F-radical of G is a
normal subgroup of G, F satisfies the property that XEp ⊆ F ⊆ XEpEp′ for some
Fitting class X and all p ∈ Char(X) (see Gallego [9]);

(6) F is ω-local with char(F)⊆ ω and H = E is the class of all finite groups (see [12]).

In this paper, we will construct a new family of Lockett pairs in the class Sπ of all finite
π-soluble groups. In order to achieve the purpose, in Section 3, we will give the concept
of π-HR-closed Fitting class for some Fitting class X, which, in fact, is a generalized S-
closed Fitting class. Base on this, in Section 4, we obtain a family of Lockett pairs and also
give a new characteristic of the validity of Lockett conjecture. As application, some known
results in [1,3,4,9,12,15] are obtained as corollaries of our results. Throughout this paper,
all groups are finite. All unexplained notation and terminology are standard. The reader is
referred to [8,10] if necessary.

2. Preliminaries

Recall that a class F of groups is called a Fitting class provided the following two conditions
are satisfied:

(i) if G ∈ F and N E G, then N ∈ F.
(ii) if N1,N2 E G and N1,N2 ∈ F, then N1N2 ∈ F.

From the condition (ii) in the definition, we see that, for every non-empty Fitting class
F, every group G has a largest normal F-subgroup which is called the F-radical of G and
denote by GF. The product FH of two Fitting classes F and H is the class (G : G/GF ∈ H).
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It is well known that the product of any two Fitting classes is also a Fitting class and the
multiplication of Fitting classes satisfies associative law (see [8, IX.1.12]).

Recall that a class H of groups is said to be a saturated homomorph if the following
conditions hold:

(1) H is closed about homomorphic images, that is, if G∈H and N EG, then G/N ∈H;
(2) If G/Φ(G) ∈ H, then G ∈ H.

A nonempty Fitting class H is said to be a Fischer class if H ∈ H whenever K EG ∈ H and
H/K is a nilpotent subgroup of G/K (see [8, IX.3.3]). Obviously, any S-closed Fitting class
is a Fischer class.

We here cite some properties of the operators ”∗” and ”∗”, which are used in later proof.

Lemma 2.1. ([13] and [8, X]). Let F and H be two non-empty Fitting classes. Then:
(a) If F⊆ H, then F∗ ⊆ H∗ and F∗ ⊆ H∗;
(b) (F∗)∗ = F∗ = (F∗)∗ ⊆ F⊆ F∗ = (F∗)∗ = (F∗)∗;
(c) F∗ ⊆ F∗A, where A is the class of all abelian groups;
(d) If {Fi | i ∈ I} is a set of Fitting classes, then (∩i∈IFi)∗ = ∩i∈IF

∗
i .

(e) If H is a saturated homomorph, then (FH)∗ = F∗H.
(f) If F is a homomorph (in particular, a formation) or a Fischer class, then F is a

Lockett class.

Suppose that G is a group, X is a class of groups and P is the set of all primes. Then we
let σ(G) = {p ∈ P : p||G|}, σ(X) = ∪{σ(G) : G ∈ X} and Char(X) = {p ∈ P : Zp ∈ X}.

Lemma 2.2. [8, X.1.20]. Char(F∗) = Char(F) and σ(F∗) = σ(F) for every Fitting class F.

Let /0 6= ω ⊆ P. We denote by Eω the class of all finite ω-groups, N denotes the class of
all finite nilpotent groups, S denotes the class of all finite soluble groups. For a class F of
groups, put Fω = F∩Eω . Following [14], a map

f : ω ∪{ω ′} −→ {Fitting class}

is said to be a ω-local Hatley function (or in brevity, a ω-local H-function). Then LRω( f )
denotes the Fitting class (∩p∈π2Ep′)∩(∩p∈π1 f (p)NpEp′)∩Eω f (ω ′), where π1 = Supp( f )∩
ω, π2 = ω\π1. Here, Supp( f ) := {a ∈ ω ∪{ω} : f (a) 6= /0} is called the support of the ω-
local H-function f . A Fitting class F is said to be a ω-local if there exists an ω-local
H-function f such that F = LRω( f ). If ω = P, then the ω-local Fitting class F is said to be
local.

Lemma 2.3. [17, Theorem]. If F is an ω-local Fitting class and a Lockett class as well,
then F = LRω(F) and F(a) is a Lockett class for all a ∈ ω ∪{ω ′}. Moreover, F(p)Np =
F(p)⊆ F⊆ F(p)Ep′ , for all p ∈ ω.

For constructing Lockett pairs, we need the concept of the normal subgroup N(G) of
G and its properties which given by Gallego [9]. We use H sn G to denote that H is a
subnormal subgroup of G. A subnormal embedding of a subnormal subgroup S of G is a
monomorphism α : S→ G such that Sα sn G. Let Snemb(S→ G) denote the set of all
subnormal embedding of S in G. Then let N(G) = 〈x−1xα : x ∈ S sn G and α ∈ Snemb(S→
G)〉.

Lemma 2.4. [9, Proposition (3.1)(3.2)]. Let G be a group and F a Fitting class. Then
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(i) N(G) is a characteristic subgroup of G.
(ii) N(G)⊆ GF∗ for all G ∈ F.

Lemma 2.5. [9, Proposition (4.1)]. Suppose that F, H and X are Fitting classes. Then the
following statements are equivalent:

(a) F∗∩H⊆ X.
(b) N(G)∩GH ≤ GX, for all G ∈ F.

Lemma 2.6.
(1) (Čunihin [7]) Every π-soluble group G has a Hall π-subgroup and any two Hall

π-subgroups of G are conjugate in G.
(2) [11] If F is a Fitting class, then Kπ(F) = (G∈Sπ : Hallπ(G)⊆ F) is a Fitting class.

We use Hallπ(G) to denote the set of all Hall π-subgroups of a π-soluble group G. In
this connection, we have the following generalized result of [9, Proposition 4.3].

Lemma 2.7. Let G be a group, H ∈ Hallπ(G), H ∈ N and F a Fitting class. Then H ∩
N(G)⊆ N(HGF).

Proof. Let

H0 = 〈x−1xα : x ∈ S sn G,α ∈ Snemb(S→ G) and x,xα ∈ H〉.
We first prove that H∩N(G) = H0. By the definition of N(G), every generator of N(G) has
the form g−1gα , where g ∈ S sn G and α ∈ Snemb(S→G). Let g = xy, where x,y ∈ 〈g〉 ≤ S
such that x is a π-element and y is a π ′-element. Since H ∈ Hallπ(G), there exist elements
a and b of G such that xa ∈ H and (xα)b ∈ H. It is clear that

g−1gα Oπ(G)G′ = x−1xα Oπ(G)G′ = (xa)−1(xα)bOπ(G)G′.

Note that Sa sn G, (Sα)b sn G and there exists an isomorphism from Sa onto (Sα)b such
that the image of xα is (xα)b. Therefore (xa)−1(xα)b ∈ H0 and so g−1gα ∈ H0Oπ(G)G′.
Since N(G) is generated by such elements g−1gα , we have N(G)≤ H0Oπ(G)G′ and hence
H ∩N(G)≤ H0(H ∩Oπ(G)G′). Since Oπ(G)G′/G′ is a π ′-group, H ∩Oπ(G)G′ = H ∩G′.
By [2, 21.3(2)], H ∩G′ ⊆ H0. Hence H ∩N(G) ≤ H0. On the other hand, obviously, H0 ≤
H ∩N(G). Therefore H ∩N(G) = H0. This shows that H ∩N(G) is generated by the
elements x−1xα , where x∈ S sn G, α ∈ Snemb(S→G) and x,xα ∈H. Note that the subgroup
〈x〉SF = 〈x〉(S∩GF) = S∩〈x〉GF is subnormal in HGF. Analogously, (〈x〉SF)α = 〈xα〉Sα

F

is subnormal in HGF. Therefore x−1xα ∈ N(HGF) and H ∩N(G)≤ N(HGF).

3. HR-classes

In order to construct a new family of Lockett pairs, in this section, we will define the fol-
lowing generalized S-closed Fitting classes.

Definition 3.1. Suppose that π ⊆ P and X is a Fitting class.
(a) A subgroup T of G is called a π-HR-subgroup if T = HGX for some Hall π-

subgroup H of G.
(b) A Fitting class F is called π-HR-closed if every π-HR-subgroup of G belongs to F

whenever G ∈ F. If F is σ -HR-closed for any σ ⊆ P, then F is called an HR-class.
(c) If X = (1), we write ”π-H-class” instead ”π-HR-class”, and write ”H-class” in-

stead ”HR-class”.
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The following examples show that the family of the Fitting classes defined in Definition
3.1 is wide.

Example 3.1.
(1) Suppose that F is a S-closed Fitting class. Then, obviously, F is an π-HGX-class,

for any nonempty Fitting class X.
(2) Recall that for a Fitting class F and a group G∈F, if H ∈F for every H ∈Hallπ(G),

then F is said to be π-Hall closed [4]. Obviously, a Fitting class F is a π-H-class if
and only if it is π-Hall closed.

(3) Let π = P and S∗ be the smallest normal Fitting class. By the result in [6], S∗ is
an H-class.

(4) For any set π ⊆ P and any Fitting class H, the Fitting class Kπ(H) = (G ∈ Sπ :
Hallπ(G) ⊆ H) was defined in [11] (see Lemma 2.6(2)). Obviously, Kπ(H) is π-
H-closed if and only if H⊆ Kπ(H). Moreover, by the proof of [5, Proposition 4.4],
we can see that for any τ ⊆ π , the Fitting class Kτ(H)Z is π-H-closed for any
π-H-closed Fitting class Z.

4. On problem of the construction of L-pairs and L-classes

In this section, we construct a family of Lockett pairs and give a new characteristic of the
validity of Lockett conjecture.

Definition 4.1. Let F and H be two Fitting classes.

(i) We say that F and H satisfy Property (ασ ) if σ ⊆ π and there exists a Fitting class
X such that XSσ ⊆ F⊆ XSσ Sπ

σ ′ , H⊆ Kσ (N) and H is a σ -HR-class.
(ii) Let Char(F) be the characteristic of F and Char(F) = ∪i∈Iσi, where σi 6= /0 and

σi∩σ j = /0 for all i, j ∈ I(i 6= j). We say that F and H satisfy Property (α) if F and
H satisfy Property (ασi) for all i ∈ I.

Lemma 4.1. Let F and H be Fitting classes. If F and H satisfies Property (ασ ), then
F∩H∗ ⊆ (F∩H)∗Sπ

σ ′ .

Proof. Let (F∩H)∗Sπ

σ ′ =M. In order to prove F∩H∗⊆M, by Lemma 2.5, we only need to
prove that N(G)∩GF ≤GM for every G∈H. Suppose that G∈H and H ∈Hallσ (G). Then
HGX/GX ∈ Hallσ (G/GX) and so HGX/GX ∈ Sσ . Hence, from [8, IX, 1.11], we have
H ∈ XSσ ⊆ F. Since H is a σ -HR-class by hypothesis, HGX ∈ H. Hence, HGX ∈ F∩H.
Besides, since H is a Hall σ -subgroup, by Lemma 2.7, we have H ∩N(G) ⊆ N(HGX).
Hence, H ∩N(G)∩GF ⊆ N(HGX)∩GF.

We claim that N(HGX)∩GF ⊆ (HGX ∩GF)(F∩H)∗ . In fact, since HGX ∈ F∩H, by
Lemma 2.4 N(HGX) ⊆ (HGX)(F∩H)∗ and so N(HGX)∩GF ⊆ (HGX)(F∩H)∗ ∩GF. But,
because HGX∩GF EHGX, by [8, IX.1.1((a)], we have

(HGX∩GF)(F∩H)∗ = (HGX)(F∩H)∗ ∩ (HGX∩GF) = (HGX)(F∩H)∗ ∩GF.

Hence N(HGX)∩GF ⊆ (HGX)(F∩H)∗ ∩GF = (HGX∩GF)(F∩H)∗ .
Now we prove HGX∩GF E G. In fact, since GF ∈ XSσ Sπ

σ ′ , GF/GXSσ
∈Sπ

σ ′ . Then,
by theorem [8, IX.1.12],

(GF/GX)/(GXSσ
/GX) = (GF/GX)/(G/GX)Sσ

∈Sπ

σ ′
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and so GXSσ
/GX ∈Hallσ (GF/GX). On the other hand, since H ∈Hallσ (G), (H∩GF)GX/

GX ∈ Hallσ (GF/GX). Hence GXSσ
= (H ∩GF)GX = HGX ∩GF and HGX ∩GF E G.

This implies that (HGX ∩GF)(F∩H)∗ ≤ G(F∩H)∗ . Therefore, H ∩N(G)∩GF ⊆ G(F∩H)∗ ∩
N(G)∩GF. But by Lemma 2.4(i), N(G)E G. Hence G(F∩H)∗ ∩ (N(G)∩GF) = (N(G)∩
GF)(F∩H)∗ by [8, IX, 1.1 (a)]. It follows that H∩(N(G)∩GF)⊆ (N(G)∩GF)(F∩H)∗ . Since
H1 := H ∩ (N(G)∩GF) is a Hall σ -subgroup of N(G)∩GF, |(N(G)∩GF) : H1| is a σ ′-
number. But since |H1| | |(N(G)∩GF)(F∩H)∗ |, (N(G)∩GF)/(N(G)∩GF)(F∩H)∗ ∈ Sπ

σ ′ .
Hence N(G)∩GF ∈ (F∩H)∗Sπ

σ ′ = M. Consequently N(G)∩GF ≤ GM. This completes
that proof.

The following theorem describes a new and wide family of Lockett pairs. In particular,
the theorem give some new Fitting classes which satisfy Lockett conjecture.

Theorem 4.1. Let F and H be two Fitting classes. If F and H satisfy Property (α), then
(F,H) is an L-pair. In particularly, if F ⊆ H, then F is an LH-class, that is, F satisfies
Lockett conjecture in H.

Proof. By Lemma 4.1, we only need to prove that if F∩H∗ ⊆ (F∩H)Sπ

σ ′i
for every i ∈ I,

then F∩H∗ = (F∩H)∗. Firstly, by Lemma 2.1, we have (F∩H)∗ ⊆ F∩H∗.
Conversely, assume that it is not true and let G be a group in F∩H∗ \(F∩H)∗ of minimal

order. Then G has a unique maximal normal subgroup M = G(F∩H)∗ . Since G∈ F∩H∗, G∈
F∩H by Lemma 2.1(a)(b). Then by using Lemma 2.1(b)(c), we obtain that G ∈ (F∩H)∗A,
where A is the class of all abelian groups. Hence, G/M has a unique maximal normal
subgroup of order p and so G/M ' Zp. Since G ∈ F∩H, p ∈ Char(F∩H) by [8, Lemma
IX.1.7]. It follows from Lemma 2.2 that there exists σi0 ⊆ Char(F∩H) for i0 ∈ I such that
p ∈ σi0 ⊆ Char((F∩H)∗). Therefore G/M ∈Sσi0

.
On the other hand, since σ , F and H satisfy conditions of Lemma 4.1, F∩H∗ ⊆ (F∩

H)∗Sπ

σ ′i0
. Since G ∈ F∩H∗ and M = G(F∩H)∗ , we have G/M ∈ Sπ

σ ′i0
. This implies that

G = M ∈ (F∩H)∗. This contradiction shows that (F,H) is an L-pair.
Now assume that F⊆H. In order to prove that F is an L-class (that is, F satisfies Lockett

conjecture), clearly, we only need to prove that F is a Lockett class (that is, F∗ = F). By the
hypothesis, F satisfies Property (α). Hence XSσi ⊆ F ⊆ XSσiS

π

σ ′i
for all i ∈ I. Then by

Lemma 2.1(a), we see that F∗ ⊆ (XSσiS
π

σ ′i
)∗. But by [15, Corollary], XSσiS

π

σ ′i
is local and

so it is a Lockett class by [15, Lemma 5]. Therefore, (XSσiS
π

σ ′i
)∗ = XSσiS

π

σ ′i
and thereby

F∗ ⊆ FSπ

σ ′i
for all i ∈ I. By Lemma 2.2, Char(F) = Char(F∗). Now analogous proof from

F∗ ∩H ⊆ (F∩H)∗Sπ

σ ′i
to F∗ ∩H ⊆ (F∩H)∗, we obtain that F∗ = F. This completes the

proof.

5. Applications

By using Theorem 4.1, we immediately obtain the following known results about descrip-
tion of L-pair and L-class.

Corollary 5.1. (Bryce, Cossey [6]). If F and H are soluble S-closed Fitting classes, then
(F,H) is an L-pair. In particularly, (F,S) is an L-pair, that is, every S-closed Fitting class
is an L-class.
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Proof. By [17, Theorem], F and H are local Fitting classes. Put σi = {p} in Theorem 4.1,
for all p ∈ Char(F) and i ∈ I. Since H is S-closed, H is an HR-class for any Fitting class
X. Besides, by Lemma 2.3, for ω = P and every p ∈ Char(F), we have F(p)Np ⊆ F ⊆
F(p)NpSp′ . Thus, by Theorem 4.1, (F,H) is an L-pair. Besides, by Lemma 2.1(f), F = F∗.
If H = S, then F is an L-class, that is, F satisfies Lockett conjecture.

Corollary 5.2. [see 12, Theorem B]. If F = LRω(F) is ω-local Fitting class with Char(F)⊆
ω , then (F,Sπ) is an L-pair and F is an L-class.

Proof. By Lemma 2.3, F(p)Np ⊆ F ⊆ F(p)NpS
π

p′ for all p ∈ Char(F). Hence, if put
σi = {p} for all p ∈ Char(F) and i ∈ I and let H = Sπ , the F and H satisfy the hypothesis
of Theorem 4.1. Thus, by Theorem 4.1, (F,Sπ) is an L-pair and so, clearly, F is an L-class
since F⊆ H.

Put ω = π , then by Corollary 5.2, we have

Corollary 5.3. If F is a local Fitting class, then (F,Sπ) is an L-pair.

Put ω = π = P, then by Corollary 5.2, we obtain

Corollary 5.4. [15]. Lockett conjecture holds for every soluble local Fitting class F, that
is, if F⊆S, then pair (F,S) is an L-pair.

Corollary 5.5. [1]. Let F ∈ {XN,XSπSπ ′}, where X is some nonempty soluble Fitting
class. Then F satisfies Lockett conjecture.

Proof. By [15, Corollary], XN and XSπSπ ′ are all local Fitting classes. Hence by Corol-
lary 5.3, the statement holds.

Corollary 5.6. Let σ ⊆ π and F, H be Fitting classes such that F = Sσ ⊆ H. Then (F,H)
is an L-pair and Sσ is an LH-class.

Proof. Obviously, F is local. By Lemma 2.3, for ω = P, F satisfies the related conditions
of Theorem 4.1 for F if put σi = {p} for all p ∈ Char(F) and i ∈ I. Besides, by [15, Lemma
5], F is a Lockett class, that is, F∗ = F.

Now we prove that (F,H) is an L-pair, that is, F∩H∗ = (F∩H)∗. If σ = φ , then F = (1)
and so it is trivial. If σ = {p}, then by [8, X.1.23], (Np)∗ = Np and so Np ∩H∗ = (Np ∩
H)∗ = (Np)∗. Put |σ | ≥ 2. Since Sσ ⊆ H, then H is a p-H-class and H⊆ Kp(N) for every
p ∈ Char(F) = σ . Thus by Theorem 4.1, (Sσ ,H) is an L-pair.

For π = P we have

Corollary 5.7. [4]. Let F, H be soluble Fitting classes and σ ⊆ P. If F = Sσ ⊆ H, then
(F,H) is an L-pair and F is an LH-class.
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