Local factorisations of nonlocal Fitting classes

V. V. SHPAKOV and N. T. VOROBYEV

Abstract — We consider general rules of constructing of local products of the Fitting classes with the use of nonlocal factors determined by the minimal elements of the Lockett section. We give a simple method to construct local Fitting classes which are factorised by nonlocal Fitting classes of some classes of π -groups and π' -groups. Applying the class \mathfrak{B} , we simplify the procedure of construction of a nonlocal factor in the local product. It is shown that in the construction of the local product the nonlocal factor for the appropriate set of primes π is the Fitting class of the form $\mathfrak{B}_*\mathfrak{S}_{\pi}$, where \mathfrak{B}_* is the minimal element of the Lockett section of the class \mathfrak{B} . In this paper, we consider only finite solvable groups.

1. INTRODUCTION

The product of Fitting classes \mathfrak{F} and \mathfrak{H} is the class of all groups *G* whose factorgroups with respect to \mathfrak{F} -radical are \mathfrak{H} -subgroups [1]. It is well known that a product of two Fitting classes is also a Fitting class and the operation of multiplication of Fitting classes is associative (see, for example, IX.1.12 in [1]). Among the products of Fitting classes, the best known by their applications are local products, that is, such products which are local Fitting classes. In [2], it is proved that a product of any two local Fitting classes is local.

Recall that any mapping f of the set P of all prime numbers into the set of Fitting classes is called a Hartley function or an H-function [3]. A Fitting class \mathfrak{F} is called local if there exists an H-function f such that

$$\mathfrak{F} = \mathfrak{S}_{\pi(\mathfrak{F})} \cap \left(\bigcap_{p \in \pi(\mathfrak{F})} f(p)\mathfrak{N}_p\mathfrak{S}_{p'}\right).$$

Examples of local Fitting classes and local formations which are factorised by nonlocal factors were first constructed by N. T. Vorobyev and A. N. Skiba (see [4]), and V. A. Vedernikov (see [5]), N. T. Vorobyev (see [6]), respectively, and thereby they gave a positive solution of problems 11.25 a) and 9.58 in [7].

In this paper, we consider general rules of constructing local products of Fitting classes with the use of nonlocal factors which are determined by the minimal elements of Lockett sections [8] (see X.1.12 (b) and X.1.16 in [1]). First of all, we suggest a simple method of constructing local Fitting classes factorised by nonlocal Fitting classes of some classes of

Originally published in *Diskretnaya Matematika* (2008) **20**, No. 3, 111–118 (in Russian). Received June 4, 2007.

 π -groups and π' -groups (Theorem 1, case 1). In this case, as distinct from [4], we do not use the complicated construction of the Fitting class \mathfrak{B} which is defined in [9]. Moreover, applying the class \mathfrak{B} , we simplify, in comparison with [4], the procedure of constructing a nonlocal factor in a local product. It is shown that in construction of a local product, differing from the product in the example in [4], the nonlocal factor for an appropriate set of prime numbers π is the Fitting class of the form $\mathfrak{B}_*\mathfrak{S}_{\pi}$, where \mathfrak{B}_* is the minimal element of the Lockett section of the class \mathfrak{B} . Note also that in addition to [4] we show that each factor of a local product is defined semilocally. In this paper, we consider only finite solvable groups.

Note that the absent definitions and notation can be found in [1, 10] if necessary.

2. AUXILIARY RESULTS

A class of groups \mathfrak{F} is called a Fitting class [1] if \mathfrak{F} is closed with respect to taking normal subgroups and products of normal \mathfrak{F} -subgroups. If \mathfrak{F} is a nonempty Fitting class, then the subgroup $G_{\mathfrak{F}}$ of the group G is called an \mathfrak{F} -radical of the group G if G is the maximal normal subgroups of G belonging to \mathfrak{F} .

In lemmas below, we give some known properties of F-radicals and products of Fitting classes which will be used later.

A class of groups \mathfrak{F} is called a homomorph [10] if each factor group of any groups of \mathfrak{F} also belong to \mathfrak{F} .

Lemma 1 (Lemma 2.1 in [11]). Let \mathfrak{F} be a nonempty Fitting class. Then the following assertions are true:

- (1) $\mathfrak{F} \subseteq \mathfrak{FS}$ for any Fitting class $\mathfrak{S} \neq \emptyset$;
- (2) if a Fitting class \mathfrak{S} is a homomorph, then $\mathfrak{S} \subseteq \mathfrak{F}\mathfrak{S}$
- (3) if $\{\mathfrak{S}_i \mid i \in I\}$ is a nonempty set of Fitting classes, then

$$\bigcap_{i\in I}\mathfrak{FS}_i=\mathfrak{F}\left(\bigcap_{i\in I}\mathfrak{S}_i\right).$$

Lemma 2 ([2]). A product of any two local Fitting classes is local.

A homomorph \mathfrak{F} is saturated [10] if the condition $G/\Phi(G) \in \mathfrak{F}$ implies the inclusion $G \in \mathfrak{F}$. A class of groups \mathfrak{F} is called a radical homomorph [10] if it is simultaneously a homomorph and a Fitting class.

Recall that Lockett [8] for any Fitting class \mathfrak{F} defines the class \mathfrak{F}^* as the minimal Fitting class containing \mathfrak{F} and such that for all groups G, H the equality $(G \times H)_{\mathfrak{F}^*} = G_{\mathfrak{F}^*} \times H_{\mathfrak{F}^*}$ is true and the class \mathfrak{F}_* as the intersection of all Fitting classes \mathfrak{X} such that $\mathfrak{X}^* = \mathfrak{F}^*$. A Fitting class \mathfrak{F} is called the Lockett class if $\mathfrak{F} = \mathfrak{F}^*$.

We give the known properties of the Lockett operators * and * in the following lemma.

Lemma 3 (X.1.2, IX.1.8 in [1]; [8], [11]). For any nonempty Fitting class \mathcal{F} the following assertions are true:

(1) the action of the operators * and * on the class \mathfrak{F} are characterised by the relations

$$\mathfrak{F}_* = (\mathfrak{F}_*)_* = (\mathfrak{F}^*)_* \subseteq \mathfrak{F} \subseteq \mathfrak{F}^* = (\mathfrak{F}_*)^* = (\mathfrak{F}^*)^*$$

(2) for any nonempty Fitting class 55 the equality

$$(\mathfrak{F}\cap\mathfrak{H})^*=\mathfrak{F}^*\cap\mathfrak{H}^*$$

is true;

(3) if \mathfrak{F} is a homomorph, then $\mathfrak{F}^* = \mathfrak{F}$;

(4) if \mathfrak{H} is a radical saturated homomorph, then $(\mathfrak{F}\mathfrak{H})^* = \mathfrak{F}^*\mathfrak{H}$.

Lemma 4 ([11]). Each local Fitting class is a Lockett class.

A Fitting class \mathcal{F} is called normal [1] if the \mathcal{F} -radical of a group G is the \mathcal{F} -maximal subgroup of the group G for any group G. Note that the intersection of any set of non-unit normal Fitting classes is non-unit normal Fitting class. The minimal non-unit Fitting class is denoted by \mathfrak{S}_* .

Lemma 5 (X.5.32 in [1]). If p and q are different prime numbers, then $\mathfrak{N}_p\mathfrak{N}_q \not\subseteq \mathfrak{S}_*$.

Recall that some classes have standard notations: \mathfrak{S} is the class of all solvable groups; \mathfrak{B}_{π} is the class of all solvable π -groups; \mathfrak{N} is the class of all nilpotent groups; \mathfrak{N}_{π} is the class of all nilpotent π -groups.

Lemma 6 ([8]). If \mathcal{F} is nonempty Fitting class, then the following assertions are equivalent:

- (1) \mathfrak{F} is a normal Fitting class;
- (2) $\mathfrak{FN} = \mathfrak{S};$
- (3) $\mathfrak{F}^* = \mathfrak{S}$.

A Fitting class \mathfrak{F} satisfies the Lockett hypothesis or is an \mathfrak{L} -class if $\mathfrak{F}_* = \mathfrak{F}^* \cap \mathfrak{S}_*$ (see [11]).

Lemma 7 ([11]). Each local Fitting class is an \pounds -class.

A Fitting class \mathfrak{F} is called π -saturated [12] if $\mathfrak{FS}_{\pi'} = \mathfrak{F}$, where $\emptyset \neq \pi \subseteq P$ and $\mathfrak{S}_{\pi'}$ is the class of all solvable π' -group.

3. CLASS $R_{\pi}(\mathfrak{F})$ AND ITS PROPERTIES

Let

$$\pi = \operatorname{Supp}(f) = \{ p \in P \colon f(p) \neq \emptyset \}$$

be the support of an H-function f. Then, following [12], we set

$$SLR(f) = \bigcap_{p \in \pi} f(p)\mathfrak{S}_p$$

and say that the Fitting class \mathfrak{F} is defined semilocally [13] if $\mathfrak{F} = SLR(f)$ for some H-function f. If $\pi = \emptyset$, the we set $SLR(f) = \emptyset$.

The following assertion gives a criterion that a Fitting class is defined semilocally.

Lemma 8. A Fitting class \mathcal{F} is defined semilocally if and only if \mathcal{F} is π -saturated for some $\pi, \emptyset \subset \pi \subseteq P$.

Proof. Let $\emptyset \subset \pi \subseteq P$ and \mathfrak{F} be a π -saturated Fitting class. Then $\mathfrak{FS}_{\pi'} = \mathfrak{F}$. We construct the H-function f in the following way:

$$f(p) = \begin{cases} \mathfrak{F}, & p \in \pi, \\ \varnothing, & p \in \pi'. \end{cases}$$

Let us show that f defines semilocally the Fitting class \mathfrak{F} . Let

$$SLR(f) = \bigcap_{p \in \pi} f(p)\mathfrak{S}_{p'},$$

where $\pi = \text{Supp}(f)$. By the definition $f(p) = \mathcal{F}$ for all $p \in \pi$, therefore the equality

$$SLR(f) = \bigcap_{p \in \pi} \mathfrak{FS}_{p'}$$

is true. Thus, according to assertion 3 of Lemma 1

$$SLR(f) = \mathfrak{F}\left(\bigcap_{p\in\pi}\mathfrak{S}_{p'}\right) = \mathfrak{F}\mathfrak{S}_{\pi'} = \mathfrak{F},$$

and \mathfrak{F} is a Fitting class defined semilocally.

Now let \mathfrak{F} be a Fitting class defined semilocally. Then there exists an H-function f with support π such that

$$\mathfrak{F} = \bigcap_{p \in \pi} f(p) \mathfrak{S}_{p'}.$$

Let us show that $\mathfrak{FS}_{\pi'} = \mathfrak{F}$. Since

$$\mathfrak{FS}_{\pi'} = \left(\bigcap_{p \in \pi} f(p)\mathfrak{S}_{p'}\right)\mathfrak{S}_{\pi'},$$

Brought to you by | The University of Auckland Library Authenticated Download Date I 6/3/15 10:47 PM by virtue of assertion 3 of Lemma 1

$$\mathfrak{FS}_{\pi'} = \bigcap_{p \in \pi} (f(p)) \mathfrak{S}_{p'} \mathfrak{S}_{\pi'}.$$

But $p \in \pi$, and therefore $\pi' \subseteq p'$. Hence, $\mathfrak{S}_{\pi'} \subseteq \mathfrak{S}_{p'}$ for all prime numbers $p \in \pi$. Moreover, $\mathfrak{S}_{p'}\mathfrak{S}_{\pi'} = \mathfrak{S}_{p'}$. Therefore,

$$\mathfrak{FS}_{\pi'} = \bigcap_{p \in \pi} f(p)(\mathfrak{S}_{p'}\mathfrak{S}_{\pi'}) = \bigcap_{p \in \pi} f(p)\mathfrak{S}_{p'} = \mathfrak{F}.$$

The lemma is proved.

Definition 1. Let $\pi \subseteq P$. We define the class of groups $R_{\pi}(\mathfrak{F})$, setting

$$G \in R_{\pi}(\mathfrak{F}) \iff G_{\pi} \subseteq G_{\mathfrak{F}}.$$

If $\mathfrak{F} = \emptyset$, then we set $R_{\pi}(\mathfrak{F}) = \emptyset$. In the case where $\pi = \emptyset$ and $\pi = P$, we set $R_{\emptyset}(\mathfrak{F}) = \mathfrak{S}$ and $R_{P}(\mathfrak{F}) = \mathfrak{F}$ respectively.

Note that if \mathfrak{F} is a normal Fitting class, then $R_{\pi}(\mathfrak{F}) = L_{\pi}(\mathfrak{F})$, where $L_{\pi}(\mathfrak{F})$ is the class of all groups G whose \mathfrak{F} -injections contain the Hall π -group G (see IX.1.14 in [1]).

Lemma 9. If \mathcal{F} is a Fitting class and $\pi \subseteq P$, then $R_{\pi}(\mathcal{F}) = \mathcal{FS}_{\pi'}$ is a π -saturated (semilocal) Fitting class. In particular, if \mathcal{F} is a local Fitting class, then $R_{\pi}(\mathcal{F})$ is a local Fitting class.

Proof. Let $G \in R_{\pi}(\mathfrak{F})$. Then $G_{\pi} \subseteq G_{\mathfrak{F}}$, and therefore $G/G_{\mathfrak{F}}$ is a π' -group. Since $G_{\mathfrak{F}} \in \mathfrak{F}$ and $G/G_{\mathfrak{F}} \in \mathfrak{S}_{\pi'}$, the inclusion $G \in \mathfrak{FS}_{\pi'}$ is true. Therefore, $R_{\pi}(\mathfrak{F}) \subseteq \mathfrak{FS}_{\pi'}$. Let $H \in \mathfrak{FS}_{\pi'}$. Then $H/H_{\mathfrak{F}} \in \mathfrak{S}_{\pi'}$ and therefore $H_{\pi} \subseteq H_{\mathfrak{F}}$. Hence, $H \in R_{\pi}(\mathfrak{F})$ and $\mathfrak{FS}_{\pi'} \subseteq R_{\pi}(\mathfrak{F})$. Therefore $R_{\pi}(\mathfrak{F}) = \mathfrak{FS}_{\pi'}$ is a Fitting class. Since $R_{\pi}(\mathfrak{F})\mathfrak{S}_{\pi'} = (\mathfrak{FS}_{\pi'})\mathfrak{S}_{\pi'} = \mathfrak{F}(\mathfrak{S}_{\pi'}\mathfrak{S}_{\pi'}) = \mathfrak{FS}_{\pi'} = R_{\pi}(\mathfrak{F})$, we see that $R_{\pi}(\mathfrak{F})$ is a π -saturated Fitting class. Let \mathfrak{F} be a local Fitting class. Since $\mathfrak{S}_{\pi'}$ is a local Fitting class, according to Lemma 2 $R_{\pi}(\mathfrak{F}) = \mathfrak{FS}_{\pi'}$ is a local Fitting class. The lemma is proved.

Note that in the general case a Fitting class $R_{\pi}(\mathfrak{F})$ is not local. This fact is confirmed by the following example.

Example 1. Let $\mathfrak{F} = \mathfrak{S}_*$ be the minimal normal Fitting class and $\emptyset \neq \pi \subset P$. Let us show that that in this case the class $R_{\pi}(\mathfrak{F})$ is not local. Suppose that $R_{\pi}(\mathfrak{F})$ is a local Fitting class. Since the class \mathfrak{F} is normal, it follows from Lemma 6 that $\mathfrak{F}\mathfrak{N} = \mathfrak{S}$. Since $\mathfrak{F} \subseteq R_{\pi}(\mathfrak{F})$, we see that $\mathfrak{S} = \mathfrak{F}\mathfrak{N} \subseteq R_{\pi}(\mathfrak{F})\mathfrak{N} \subseteq \mathfrak{S}$. Therefore, $R_{\pi}(\mathfrak{F})\mathfrak{N} = \mathfrak{S}$ and by Lemma 6 $R_{\pi}(\mathfrak{F})$ is a normal Fitting class. By Lemma 9 $R_{\pi}(\mathfrak{F}) = \mathfrak{F}\mathfrak{S}_{\pi'}$ and by assertion 4 of Lemma 3 $(R_{\pi}(\mathfrak{F}))^* = (\mathfrak{F}\mathfrak{S}_{\pi'})^* = \mathfrak{F}^*\mathfrak{S}_{\pi'}$. But by Lemma 6 and assertion 1 of Lemma 3 $\mathfrak{F}^* = \mathfrak{S}$ and $(R_{\pi}(\mathfrak{F}))^* = \mathfrak{S}$. Now, since $R_{\pi}(\mathfrak{F})$ is local, by Lemma 4 $R_{\pi}(\mathfrak{F})$ is a Lockett class, and therefore, $R_{\pi}(\mathfrak{F}) = \mathfrak{S}$.

Now let p and q be prime numbers such that $p \mid (q-1), G = D_{q^n}^n$ be a monolithic group with normal abelian Sylow q-subgroup of exponent q^n and cyclic Sylow q'-subgroup

of order *p*. Let $\pi = \pi(G)$. Then $G_{\pi} = G$ and according to T. K. Berger's result (see property 3 in [14]) $G \notin \mathfrak{S}_*$. Therefore, $G_{\mathfrak{S}_*} \subset G$. Thus, $G \notin R_{\pi}(\mathfrak{F})$ and $R_{\pi}(\mathfrak{F}) \neq \mathfrak{S}$. The obtained contradiction proves that the Fitting class $R_{\pi}(\mathfrak{F})$ is not local.

4. LOCAL FACTORISATIONS

Lemma 10. If $\pi \subset P$ and $|\pi| \geq 2$, then the product $(\mathfrak{S}_{\pi})_* \mathfrak{S}_{\pi'}$ is not a Lockett class.

Proof. Suppose that $(\mathfrak{S}_{\pi})_*\mathfrak{S}_{\pi'}$ is a Locket class. Then with the use of assertions 1 and 4 of Lemma 3 we obtain $(\mathfrak{S}_{\pi})_*\mathfrak{S}_{\pi'} = ((\mathfrak{S}_{\pi})_*\mathfrak{S}_{\pi'})^* = ((\mathfrak{S}_{\pi})_*\mathfrak{S}_{\pi'} = (\mathfrak{S}_{\pi})^*\mathfrak{S}_{\pi'} = \mathfrak{S}_{\pi}\mathfrak{S}_{\pi'}$. The Fitting class $\mathfrak{S}_{\pi} = LR(f)$ for the H-function f is such that

$$f(p) = \begin{cases} \mathfrak{S}_{\pi}, & p \in \pi, \\ \emptyset, & p \in \pi'. \end{cases}$$

Therefore, by Lemma 7 the class \mathfrak{S}_{π} is an \mathfrak{L} -class. But then $(\mathfrak{S}_{\pi})_*\mathfrak{S}_{\pi'} = (\mathfrak{S}_{\pi}\cap\mathfrak{S}_*)\mathfrak{S}_{\pi'} = \mathfrak{S}_{\pi}\mathfrak{S}_{\pi'} \cap \mathfrak{S}_*\mathfrak{S}_{\pi'} \cap \mathfrak{S}_*\mathfrak{S}_{\pi'} = \mathfrak{S}_{\pi}\mathfrak{S}_{\pi'} \cap \mathfrak{S}_*\mathfrak{S}_{\pi'} \text{ and } \mathfrak{S}_{\pi}\mathfrak{S}_{\pi'} \subseteq \mathfrak{S}_*\mathfrak{S}_{\pi'}.$ Hence we obtain $\mathfrak{S}_{\pi} \subseteq \mathfrak{S}_*\mathfrak{S}_{\pi} \cap \mathfrak{S}_*\mathfrak{S}_{\pi'} = \mathfrak{S}_*(\mathfrak{S}_{\pi} \cap \mathfrak{S}_{\pi'})$. Thus, $\mathfrak{S}_{\pi} \subseteq \mathfrak{S}_*\mathfrak{S}_{\pi'}$. Hence by Lemma 5, this is impossible for $|\pi| \ge 2$. The obtained contradiction shows that the Fitting class $(\mathfrak{S}_{\pi})_*\mathfrak{S}_{\pi'}$ is not a Locket class. The lemma is proved.

Lemma 11. If \mathfrak{F} is a Lockett class, then the class $R_{\pi}(\mathfrak{F})$ is a Lockett class.

Proof. By Lemma 9, $R_{\pi}(\mathfrak{F}) = \mathfrak{FS}_{\pi'}$. Hence, $(R_{\pi}(\mathfrak{F}))^* = (\mathfrak{FS}_{\pi'})^*$. Then by assertion 4 of Lemma 3 $(\mathfrak{FS}_{\pi'})^* = \mathfrak{F}^*\mathfrak{S}_{\pi'}$. But \mathfrak{F} is a Lockett class, and therefore, $\mathfrak{F}^* = \mathfrak{F}$. Hence, $\mathfrak{F}^*\mathfrak{S}_{\pi'} = \mathfrak{FS}_{\pi'}$. Thus, we obtain $(R_{\pi}(\mathfrak{F}))^* = R_{\pi}(\mathfrak{F})$ and $R_{\pi}(\mathfrak{F})$ is a Lockett class. The lemma is proved.

Note that by virtue of a result of [14] the trivial local Fitting class \mathfrak{S} can be represented in the form of local product $\mathfrak{S} = \mathfrak{FS}_*$ for any non-unit normal Fitting class $\mathfrak{F} \neq \mathfrak{S}$. In this case, in view of Lemmas 4 and 6 it easy to see that each of the factors \mathfrak{F} and \mathfrak{S}_* is not local and is not a formation.

In order to construct local products (differing from \mathfrak{S}) of nonlocal non-normal Fitting classes which are not formations, in particular, we will use Fitting class \mathfrak{B} introduced in [9].

Recall that the construction of the class \mathfrak{B} reduces to finding some group X contained simultaneously in the classes \mathfrak{B} and \mathfrak{S}_* , but not belonging to the class \mathfrak{B}_* . For this purpose we use the description of representations of extra-special p-groups over an arbitrary field of characteristic not equal to p (see [1], pp. 166–168). Now let p = 3 and R be an extra-special group of order 27 and exponent 3. Then by assertion (ii) of Theorem 9.16 in [1] R has exact absolutely irreducible module W of dimension 3 over the field GF(7) (existence of such module is proved in [9]). Let Y = [W]R. We denote by A the group of automorphisms of the group R. Let $B = C_A(Z(R))$, Q be the subgroup of quaternions of the group Band X = Z(Q)Y. Then we denote by \mathfrak{M} the class $(G \mid O^{2'}(G/O_{\{2,3\}}(G)) \in S_n D_o(X))$, where $D_o(X)$ is the class of all finite direct products of isomorphic copies of the group X. We introduce the notation $\mathfrak{B} = \mathfrak{M} \cap \mathfrak{S}_7 \mathfrak{S}_3 \mathfrak{S}_2$. By Theorem 4.5 in [9], the class \mathfrak{B} is a Lockett class and is not a Fisher class. Moreover, \mathfrak{B} possesses the property given in the following assertion.

Lemma 12 (Theorem 4.4 in [9]). If \mathfrak{S}_* is the minimal normal Fitting class, then $X \in (\mathfrak{B} \cap \mathfrak{S}_*) \setminus \mathfrak{B}_*$.

Lemma 13. If $\pi(X) \subseteq \sigma \subset P$, then the Fitting class $R_{\sigma}(\mathfrak{B}_*)$ is not a Lockett class.

Proof. We suppose that $(R_{\sigma}(\mathfrak{B}_*))^* = R_{\sigma}(\mathfrak{B}_*)$. Since by assertion 1 of Lemma 3 $(\mathfrak{B}_*)^* = \mathfrak{B}^*$, making use of Lemma 9 and assertion 4 of Lemma 3, we obtain the equality $(R_{\sigma}(\mathfrak{B}_*))^* = (\mathfrak{B}_*\mathfrak{S}_{\sigma'})^* = (\mathfrak{B}_*)^*\mathfrak{S}_{\sigma'} = \mathfrak{B}^*\mathfrak{S}_{\sigma'} = R_{\sigma}(\mathfrak{B}^*)$. By Lemma 12, \mathfrak{B} is a Lockett class. Therefore, $R_{\sigma}(\mathfrak{B}_*) = R_{\sigma}(\mathfrak{B})$. By virtue of Lemma 12, $X \in \mathfrak{B}$, therefore, $X = X_{\sigma} = X_{\mathfrak{B}}$. Thus, $X \in R_{\sigma}(\mathfrak{B}) = R_{\sigma}(\mathfrak{B}_*)$. But then $X = X_{\sigma} \subseteq X_{\mathfrak{B}_*} \subseteq X$. Hence it follows that $X = X_{\mathfrak{B}_*}$ and $X \in \mathfrak{B}_*$. We obtain a contradiction. Therefore, $R_{\sigma}(\mathfrak{B}_*)$ is not a Lockett class. The lemma is proved.

Theorem 1. Let $\emptyset \neq \sigma \subset P$ and $|\sigma'| \geq 2$. If \mathfrak{F} and $\mathfrak{H} = (\mathfrak{S}_{\sigma'})_*\mathfrak{S}_{\sigma}$ are Fitting classes, then the product $\mathfrak{F}\mathfrak{H}$ is local and each of the factors \mathfrak{F} and \mathfrak{H} is nonlocal, the product is defined semilocally and is not a formation for each following values of \mathfrak{F} :

(1)
$$\mathfrak{F} = (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'}$$
 for $|\sigma| \ge 2$;

(2)
$$\mathfrak{F} = R_{\sigma}(\mathfrak{B}_*)$$
 for $\sigma \supseteq \pi(X)$.

Proof. Let $\mathfrak{F} = (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'}$, where the sets of prime numbers σ and σ' are such that $|\sigma| \geq 2$ and $|\sigma'| \geq 2$. Since $\mathfrak{FS}_{\sigma'} = \mathfrak{F}$ and $\mathfrak{SS}_{\sigma} = \mathfrak{S}$, by Lemma 8 the classes \mathfrak{F} and \mathfrak{S} are defined semilocally. Taking into account Lemma 10, we conclude that the classes \mathfrak{F} and \mathfrak{S} are not Lockett classes. Therefore, \mathfrak{F} and \mathfrak{S} by virtue of assertion 3 of Lemma 3 are not formations.

Taking into account assertion 1 of Lemma 3, we see that $\mathfrak{FS} = (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'}(\mathfrak{S}_{\sigma'})_* \mathfrak{S}_{\sigma} = (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'} \mathfrak{S}_{\sigma}$. Let f be an H-function such that

$$f(p) = \begin{cases} (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'} & \text{if } p \in \sigma' \\ (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'} \mathfrak{S}_{\sigma} & \text{if } p \in \sigma. \end{cases}$$

Let us show that $\mathfrak{FS} = LR(f)$. Indeed,

$$LR(f) = \left(\bigcap_{p \in \sigma'} (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'} \mathfrak{N}_p \mathfrak{S}_{p'}\right) \cap \left(\bigcap_{p \in \sigma} (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'} \mathfrak{S}_{\sigma} \mathfrak{N}_p \mathfrak{S}_{p'}\right).$$

Since $\mathfrak{S}_{\sigma'}\mathfrak{N}_p = \mathfrak{S}_{\sigma'}$ for all $p \in \sigma'$ and $\mathfrak{S}_{\sigma}\mathfrak{N}_p = \mathfrak{S}_{\sigma}$ for all $p \in \sigma$, we see that

$$LR(f) = \left(\bigcap_{p \in \sigma'} (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'} \mathfrak{S}_{p'}\right) \cap \left(\bigcap_{p \in \sigma} (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'} \mathfrak{S}_{\sigma} \mathfrak{S}_{p'}\right).$$

Using assertion 3 of lemma 1, we obtain

$$LR(f) = (\mathfrak{S}_{\sigma})_* \mathfrak{S}'_{\sigma} \left(\bigcap_{p \in \sigma'} \mathfrak{S}_{p'} \right) \cap \left((\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'} \mathfrak{S}_{\sigma} \left(\bigcap_{p \in \sigma} \mathfrak{S}_{p'} \right) \right).$$

Taking into account that

$$\bigcap_{p\in\sigma'}\mathfrak{S}_{p'}=\mathfrak{S}_{\sigma},\qquad\bigcap_{p\in\sigma}\mathfrak{S}_{p'}=\mathfrak{S}_{\sigma'},$$

we obtain

$$LR(f) = (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'} \mathfrak{S}_{\sigma} \cap (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'} \mathfrak{S}_{\sigma} \mathfrak{S}_{\sigma'} = (\mathfrak{S}_{\sigma})_* \mathfrak{S}_{\sigma'} \mathfrak{S}_{\sigma} = \mathfrak{F}\mathfrak{S}.$$

Thus, in case 1 \mathcal{FS} is a local product of Fitting classes \mathcal{F} and \mathcal{S} .

In the case where $\mathfrak{F} = R_{\sigma}(\mathfrak{B}_*)$, the theorem can be proved similarly with the use of Lemmas 8, 9, 11, and 12.

The theorem is proved.

REFERENCES

- 1. K. Doerk and T. Hawkes, Finite Solvable Groups. Walter de Gruyter, Berlin, 1992.
- 2. N. T. Vorob'ev, Local products of the Fitting classes. *Vestsī Acad. Sci. Byelorussian SSR, Ser. Phys.-Math. Sci.* (1991), No. 6, 28–32 (in Russian).
- N. T. Vorob'ev, On the Hawkes conjecture for radical classes. *Siberian Math. J.* (1996) 37, 1137– 1142.
- N. T. Vorob'ev and A. N. Skiba, On local Fitting classes represented as the product of two nonlocal Fitting classes. *Probl. Algebra* (1995), No. 8, 55–58 (in Russian).
- 5. V. A. Vedernikov, Local formations of finite groups. Math. Notes (1989) 46, 910-913.
- N. T. Vorob'ev, On the factorization of local and non-local products of finite groups of non-local formations. In: *Proc. 7th Reg. Sci. Sess. Math., Sect. Algebra Number Theory, Kalsk/Pol.*, 1990, pp. 9–13.
- Kourovka Notebook: Unsolved Problems in Group Theory, 11th Edition (V. D. Mazurov, ed.). Inst. Math., Siberian Branch Acad. Sci. USSR, Novosibirsk, 1990 (problems 11.25 a) and 9.58, in Russian).
- 8. P. Lockett, The Fitting class 37*. Math. Z. (1974) 137, No. 2, 131–136.
- 9. R. Berger and J. Cossey, An example in theory of normal Fitting classes. *Math. Z.* (1978) **154**, 573–578.
- 10. L. A. Shemetkov, Formations of Finite Groups. Nauka, Moscow, 1978 (in Russian).
- N. T. Vorob'ev, Radical classes of finite groups with the Lockett condition. *Math. Notes* (1988) 43, 91–94.
- 12. N. T. Vorob'ev, On local radical classes. Probl. Algebra (1986), No. 2, 41-50 (in Russian).
- N. T. Vorob'ev, Gaschutz's method in the theory of Fitting classes of finite soluble groups. *Probl. Algebra* (2000), No. 16, 155–166.
- 14. T. K. Berger, More normal Fitting classes of finite solvable groups. Math. Z. (1976) 151, 1–3.
- 15. J. Cossey, Products of Fitting classes. Math. Z. (1975) 141, 289-295.