Discrete Math. Appl.\ol. 18, No. 4, pp. 439-446 (2008) DOI 10.1515/DMA.2008.032
© de Gruyter 2008

Local factorisations of nonlocal Fitting classes

V. V. SHPAKOV and N. T. VOROBYEV

Abstract — We consider general rules of constructing of local proslofthe Fitting classes with the

use of nonlocal factors determined by the minimal elemehtiseoLockett section. We give a simple

method to construct local Fitting classes which are fastatiby nonlocal Fitting classes of some
classes ofr-groups andr’-groups. Applying the clas®, we simplify the procedure of construction

of a nonlocal factor in the local product. It is shown thathe tonstruction of the local product the
nonlocal factor for the appropriate set of primess the Fitting class of the for, &, , whereB,

is the minimal element of the Lockett section of the cl&ssIn this paper, we consider only finite

solvable groups.

1. INTRODUCTION

The product of Fitting classe§ and $ is the class of all group& whose factorgroups
with respect tog-radical are$-subgroups [1]. It is well known that a product of two
Fitting classes is also a Fitting class and the operationudfiptication of Fitting classes is
associative (see, for example, 1X.1.12 in [1]). Among thedurcts of Fitting classes, the
best known by their applications are local products, thasush products which are local
Fitting classes. In [2], it is proved that a product of any tecal Fitting classes is local.

Recall that any mapping of the setP of all prime numbers into the set of Fitting
classes is called a Hartley function or an H-function [3]. igifrg class3 is called local if
there exists an H-functiof such that

F=Cxxn| [ f(PIGCy
PER(F)

Examples of local Fitting classes and local formations Wwhice factorised by non-
local factors were first constructed by N. T. Vorobyev and A.3¥iba (see [4]), and
V. A. Vedernikov (see [5]), N. T. Vorobyev (see [6]), respeely, and thereby they gave
a positive solution of problems 11.25 a) and 9.58 in [7].

In this paper, we consider general rules of constructingllpmducts of Fitting classes
with the use of nonlocal factors which are determined by th@nral elements of Lockett
sections [8] (see X.1.12 (b) and X.1.16 in [1]). First of &k suggest a simple method of
constructing local Fitting classes factorised by nonld€ting classes of some classes of
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m-groups andt’-groups (Theorem 1, case 1). In this case, as distinct frgnwj@ do not
use the complicated construction of the Fitting cl&@sw/hich is defined in [9]. Moreover,
applying the clas$3, we simplify, in comparison with [4], the procedure of camsting
a nonlocal factor in a local product. It is shown that in comstion of a local product,
differing from the product in the example in [4], the nonlbfeector for an appropriate set of
prime numberg is the Fitting class of the fori.. &, where., is the minimal element of
the Lockett section of the clag. Note also that in addition to [4] we show that each factor
of a local product is defined semilocally. In this paper, wasider only finite solvable
groups.

Note that the absent definitions and notation can be fount, ih(] if necessary.

2. AUXILIARY RESULTS

A class of groups is called a Fitting class [1] if§ is closed with respect to taking normal
subgroups and products of norn@isubgroups. 1§ is a nonempty Fitting class, then the
subgroupGg of the groupG is called ang-radical of the grougs if G is the maximal
normal subgroups af belonging to®.

In lemmas below, we give some known propertiegefadicals and products of Fitting
classes which will be used later.

A class of group$ is called a homomorph [10] if each factor group of any group§ o
also belong tggs.

Lemma 1(Lemma 2.1 in [11]).Let & be a nonempty Fitting class. Then the following
assertions are true:

(1) & < &5 for any Fitting classh # @;
(2) if a Fitting class$ is a homomorph, the$ € §%

(3) if {H; | i € I}isanonempty set of Fitting classes, then

(&9 = %(ﬂ@)

iel iel
Lemma 2 ([2]). A product of any two local Fitting classes is local.

A homomorph is saturated [10] if the conditio&/ ®(G) € ¥ implies the inclusion
G € %. A class of groupss is called a radical homomorph [10] if it is simultaneously a
homomorph and a Fitting class.

Recall that Lockett [8] for any Fitting clags defines the clasg§™* as the minimal Fitting
class containings and such that for all grougs, H the equalitf G x H ) g+ = Gg+ x Hg+
is true and the clasg . as the intersection of all Fitting class&ssuch thatx* = §*. A
Fitting classy is called the Lockett class § = §*.

We give the known properties of the Lockett operatoand. in the following lemma.
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Lemma 3(X.1.2, 1X.1.8 in [1]; [8], [11]). For any nonempty Fitting clas$ the follow-
ing assertions are true:

(1) the action of the operatorsand.. on the class§ are characterised by the relations
T =@ =@FNHCFSF =) =EF)%
(2) for any nonempty Fitting clas$ the equality
FNo)" =g Ns*
is true;

(3) if & is a homomorph, the§* = F;
(4) if  is aradical saturated homomorph, thég$H)* = F*5.

Lemma 4 ([11]). Each local Fitting class is a Lockett class.

A Fitting class$ is called normal [1] if the§-radical of a grougs is theF-maximal

subgroup of the grou@ for any groupG. Note that the intersection of any set of non-unit

normal Fitting classes is non-unit normal Fitting classe Tiinimal non-unit Fitting class
is denoted bye..

Lemma 5(X.5.32in [1]). If p andq are different prime numbers, thén, 9%, Z G..
Recall that some classes have standard notati®ris:the class of all solvable groups;

G, is the class of all solvable-groups;Jt is the class of all nilpotent group$i,; is the
class of all nilpotenir-groups.

Lemma 6 ([8]). If ¥ is nonempty Fitting class, then the following assertiore equi-
valent:

(1) % is a normal Fitting class;
(2) FN = G;
@) F* =6.

A Fitting class® satisfies the Lockett hypothesis or is @rclass if . = §* N G,
(see [11]).

Lemma 7 ([11]). Each local Fitting class is a®-class.

A Fitting classg is calledr-saturated [12] if8©,,, = &, whereg # n € P andG,
is the class of all solvable’-group.



442 V. V. Shpakov and N. T. Vorobyev

3. CLASS R, (%) AND ITS PROPERTIES
Let

m =Suplf) ={p € P: f(p) # &}
be the support of an H-functiofi. Then, following [12], we set

SLRf) =) f(P)&p

pem

and say that the Fitting clas$ is defined semilocally [13] it = SLR f) for some
H-function f. If = = @, the we seBLR /) = @.
The following assertion gives a criterion that a Fittingsslas defined semilocally.

Lemma 8. A Fitting class$ is defined semilocally if and only & is w-saturated for
somer, @ Cw C P.

Proof. Let @ € = € P and be ar-saturated Fitting class. Th@©,, = §. We
construct the H-functiorf in the following way:

& peEm,
g, pen.

f(p)=

Let us show thayf defines semilocally the Fitting clags Let
SLR/) = () /(1.
peET
wherer = Supp /). By the definitionf(p) = & for all p € n, therefore the equality
SLRf) = () &y
pET

is true. Thus, according to assertion 3 of Lemma 1
SLRAH =& ) @pf) = &G = .
(S 4

andg is a Fitting class defined semilocally.
Now let § be a Fitting class defined semilocally. Then there exists dandtion f
with supportr such that

F=)/0&y.

pem

Let us show thag &, = &. Since

FGn = (ﬁ f(p)pr) .

pET
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by virtue of assertion 3 of Lemma 1

FGw = [ (/(P)CpCr.

pem

But p € =, and thereforer’ € p’. Hence,&,» € &, for all prime numbery € .
Moreover,&, &, = &,. Therefore,

G =) f(P)CpCr) =) [(PCy = F.

PDET PET

The lemma is proved.

Definition 1. Letw € P. We define the class of grougs; (%), setting
G € Ry (F) & G CGyg.

If & = @, then we setR,(F) = . Inthe case where = @ andn = P, we set
Rz (%) = G andRp(F) = & respectively.

Note that if% is a normal Fitting class, theR, (%) = L, (&), whereL (%) is the
class of all group& whoseg-injections contain the Halt-groupG (see IX.1.14 in [1]).

Lemma 9. If § is a Fitting class andr € P, thenR,(§) = §S, is aw-saturated
(semilocal) Fitting class. In particular, i is a local Fitting class, themk, (%) is a local
Fitting class.

Proof. Let G € R,(%). ThenG, C Gg, and therefores/Gg is an’-group. Since
Gg € & andG/Gg € Gy, the inclusionG € §G, is true. ThereforeR; (F) € F.
Let H € §&,. ThenH/Hg € ©, and therefored, € Hg. Hence,H € R, (%)
andFS, € R, (F). ThereforeR, (F) = §S, is a Fitting class. SincR, ()G, =
(FG1)Cr = F(Gr6Gr) = FG = Ry (F), we see thak, (F) is arx-saturated Fitting
class. Let¥ be a local Fitting class. Sincg, is a local Fitting class, according to Lemma
2 R, (%) = §G, is alocal Fitting class. The lemma is proved.

Note that in the general case a Fitting cldss(F) is not local. This fact is confirmed
by the following example.

Example 1. Let § = G, be the minimal normal Fitting class aml # 7 C P.
Let us show that that in this case the cldgs(¥) is not local. Suppose th&, (F) is a
local Fitting class. Since the clagsis normal, it follows from Lemma 6 thgg9t = ©.
SinceF C R, (F), we see tha® = FIN C R, (F)It € &. Therefore,R, (F)N = &
and by Lemma &, (%) is a normal Fitting class. By LemmaR, () = §©,/ and by
assertion 4 of Lemma@R; (%))* = (§G)* = §*S,». Butby Lemma 6 and assertion 1
of Lemma 3%* = G and(R,(%))* = ©. Now, sinceR, (%) is local, by Lemma &R, (%)
is a Lockett class, and therefoR, (¥) = ©.

Now let p andg be prime numbers such that| (¢ — 1), G = Dy, be a monolithic
group with normal abelian Sylog+subgroup of exponegt® and cyclic Sylowy’-subgroup
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of orderp. Letx = n(G). ThenG, = G and according to T. K. Berger’s result (see
property 3 in [14])G ¢ ©.. ThereforeGe, C G. Thus,G ¢ R, (%) andR,(F) # ©.
The obtained contradiction proves that the Fitting clRg$:%) is not local.

4. LOCAL FACTORISATIONS

Lemma 10. If # C P and|x| > 2, then the product®;,,).S, is not a Lockett class.

Proof. Suppose that©,)«©,- is a Locket class. Then with the use of assertions 1
and 4 of Lemma 3 we obtaii®,; )« G = ((67)xG2)* = ((62)+)* G = (6,)* Gy =
©,©,. The Fitting classs, = LR(f) for the H-functionf is such that

p Em,

Cx,
/(p) = @, penr.

Therefore, by Lemma 7 the cla8s; is anf-class. Buttheli©,)«©, = (6,NG4)G, =
G;6, NG,6, . Therefore©,6, = 6,6, N ©,6, andG,, &, C ©,6,,. Hence
we obtainG,, C 6.6, N G.6, = G.(G,; N &,). Thus,&, C &,. However, by
Lemma 5, this is impossible fgrr| > 2. The obtained contradiction shows that the Fitting
class(©,)«©, is not a Locket class. The lemma is proved.

Lemma 11. If F is a Lockett class, then the clags (¥) is a Lockett class.

Proof. By Lemma 9,R,(F) = §S,/. Hence(R,(F))* = (§S,/)*. Then by asser-
tion 4 of Lemma 3FG,/)* = §*G,. ButF is a Lockett class, and therefogr = F.
Hence,§*©, = §&,/. Thus, we obtai(R,(F))* = R (F) and R, (F) is a Lockett
class. The lemma is proved.

Note that by virtue of a result of [14] the trivial local Fiitj classS can be represented
in the form of local produc® = F&. for any non-unit normal Fitting clas§ # &. In
this case, in view of Lemmas 4 and 6 it easy to see that eacte dathorsy and©, is not
local and is not a formation.

In order to construct local products (differing fro®) of nonlocal non-normal Fitting
classes which are not formations, in particular, we will Bigeng class® introduced in [9].

Recall that the construction of the cla8sreduces to finding some group contained
simultaneously in the class&sand®.., but not belonging to the clag3.. For this purpose
we use the description of representations of extra-spgeigbups over an arbitrary field of
characteristic not equal i@ (see [1], pp. 166—168). Now lgt = 3 andR be an extra-special
group of ordeR7 and exponeri. Then by assertion (ii) of Theorem 9.16 in [R]has exact
absolutely irreducible modul® of dimension3 over the fieldGF(7) (existence of such
module is proved in [9]). LetY = [W]R. We denote by4 the group of automorphisms
of the groupR. Let B = C4(Z(R)), Q be the subgroup of quaternions of the graBip
andX = Z(Q)Y. Then we denote byt the clasqG | 02’(G/0{2,3}(G)) € S, Dy (X)),
whereD,(X) is the class of all finite direct products of isomorphic cepié the groupX'.
We introduce the notatio® = 9t N ©;,63&,. By Theorem 4.5 in [9], the clas® is a
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Lockett class and is not a Fisher class. Moreofepossesses the property given in the
following assertion.

Lemma 12(Theorem 4.4 in [9]).If ©, is the minimal normal Fitting class, then
X € (BNGy)\ Be.

Lemma 13. If z(X) € o C P, then the Fitting clas®, (*B+) is not a Lockett class.

Proof. We suppose thatR, (Bx))* = R,(B«). Since by assertion 1 of Lemma 3
(B4)* = B*, making use of Lemma 9 and assertion 4 of Lemma 3, we obtaieghality
(Ry(B4))* = (BxGy)* = (Bu)* Gy = B*Gy = R, (B*). By Lemma 12,8 is a
Lockett class. Therefor&l, (B+) = R,(B). By virtue of Lemma 12X < B, therefore,
X = Xs = Xg. Thus, X € R;(B) = Rs(B«). ButthenX = X, € Xg, € X. Henceit
follows thatX = Xy, andX € B.. We obtain a contradiction. ThereforR, (B ) is not
a Lockett class. The lemma is proved.

Theorem 1. Let@ # o C P and|o’| = 2. If F andH = (©4).&, are Fitting
classes, then the produ@t$ is local and each of the factorg and $ is nonlocal, the
product is defined semilocally and is not a formation for eftlowing values of3:

(1) & = (©5)«Gy for o] > 2;
(2) ® = Ro(By) foro 2 7(X).

Proof. Let ¥ = (©4)«S,/, where the sets of prime numbersands’ are such that
o] > 2 and|o’| > 2. SinceFG, = F andHG, = H, by Lemma 8 the classé$ and
$ are defined semilocally. Taking into account Lemma 10, wekate that the classg$
and$ are not Lockett classes. Therefoeand$ by virtue of assertion 3 of Lemma 3 are
not formations.

Taking into account assertion 1 of Lemma 3, we seedfiat= (©4) Gy (Gy/) G =
(G6)+x©e©¢. Let f be an H-function such that

(G6)xGo if pea’,

P =9 606w, it peo

Let us show thaf$ = LR(f). Indeed,

LR(]() = (m (@0)*6a/mp@p’ N (m(@g)*gg/@gmpgp/> .

pea’ DEC

SinceGy/ N, = G, forall p € o’ andG,N, = &, forall p € o, we see that

LR(f) = (ﬂ(@a)*cea/@pf N (ﬂ(@a)*caa/@a@p/).

pea’ DEC
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Using assertion 3 of lemma 1, we obtain

LR(f) = (Bo)s&; [ [ &y | N ((@a)*%@a (ﬂ @,,)) :

peo’ PEC

Taking into account that

(G =Cs. [)G» =060,

peo’ peo
we obtain
LR(f) = (G4)sG5 G5 N (G5)sByGsGyo = (B5)sGo©y = F9H.

Thus, in case §$ is a local product of Fitting class& and$.

In the case wherg& = R,(*B«), the theorem can be proved similarly with the use of
Lemmas 8, 9, 11, and 12.

The theorem is proved.
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