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Abstract—In the theory of formations of finite solvable groups, there is a well-known result
due to Blessenohl claiming that, for any local formation F , the class of groups for which every
Hall π -subgroup belongs to F also is a local formation. In the present paper, we obtain a
result exactly dual to that indicated in the theory of Fitting classes. We prove that if a Fitting
class F is local, then the class of all groups all of whose Hall π -subgroups belong to F is also
local.

Key words: Hall subgroup, formation of finite groups, local formation, Fitting class, Hartley
function, Lockett class, Sylow subgroup.

INTRODUCTION

Several investigations of canonical subgroups of finite solvable groups are related to the study of
classes (of finite groups) defined by given properties of Hall subgroups. In the theory of formations,
the construction of the class Bπ(X) of all groups all of whose Hall π -subgroups belong to a given
local formation X is well known in connection with its applications to the study of the properties
of Hall subgroups. This is caused first of all by Blessenohl’s result [1] implying that the class
Bπ(X) is a local formation for any local formation X . In the theory of Fitting classes, Hauck [2]
introduced a similar construction of the class Kπ(F) of all groups all of whose Hall π -subgroups
belong to the Fitting class F . As is known (see, e.g., [3, Chap. 9, Sec. 1.24]), a class of this kind is a
Fitting class. Later on, Brison [4] described the F-radicals of the Hall π -subgroups in terms of the
class Kπ(F) . However, the problem of whether the Fitting class Kπ(F) is local or not remained
open. In the present paper, we dualize the above Blessenohl result, namely, we prove that the class
Kπ(F) is local for any solvable local Fitting class F . Moreover, we prove that this result remains
valid for partially local Fitting classes as well.

Recall that if π is a set of primes, then the symbol Gπ denotes a Hall π -subgroup of G , i.e.,
a subgroup whose order is a π-number and the index is a π′-number.

A class of groups F is called a Fitting class if F is closed with respect to taking normal subgroups
and products of normal F-subgroups. It follows from the definition that, for any nonempty Fitting
class F , any group G admits a unique F-maximal normal subgroup GF of G . This subgroup is
referred to as the F-radical of G . Denote by FH the product of the Fitting classes F and H , i.e.,
the class of all groups G for which G/GF ∈ H . As is well known, the product of Fitting classes is
a Fitting class, and the multiplication operation for Fitting classes is associative.

We shall use the concept of Shemetkov–Skiba partial localization [5], which is as follows.
Let ∅ �= w ⊆ P , where P is the set of all prime numbers and w′ = P \ w . Every mapping

f : w ∪ {w′} → {the Fitting classes}
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is referred to as a w-local Hartley function or a w-local H-function [5]. For any w-local H-
function f , we introduce the support of f by the rule

Supp(f) = {a ∈ w ∪ {w′} | f(a) �= ∅}.
Following [5], we set

LRw(f) =
( ⋂

p∈π2

Sp′

)
∩

( ⋂
p∈π1

f(p)NpSp′

)
∩ f(w′)Sw ,

where π1 = Supp(f) ∩ w , π2 = w \ π1 , and Sw is the class of all solvable w-groups.
The Fitting class F is said to be w-local [5] if F = LRw(f) for some w-local H-function f .
Note that, in the case of w = P , any w-local Fitting class is said to be local and any w-local

Hartley function is said to be a local Hartley function or a local H-function.
In the paper, we consider finite and solvable groups only.
Other definitions and notation can be found in [3, 6] if necessary.

1. PROPERTIES OF THE CLASS Kπ(F)

Recall that if F is a Fitting class and π is a set of primes, then the symbol Kπ(F) denotes the
class of all groups in which every Hall π -subgroup is an F-group, i.e.,

Kπ(F) = (G ∈ S : Gπ ∈ F).

If F = ∅ , then we set Kπ(F) = ∅ . If π = ∅ and π = P , then we set K∅(F) = S and
KP(F) = F , respectively.

We shall repeatedly make use of certain known properties of the class Kπ(F) . These properties
are listed in the following lemma.

Lemma 1.1 [4]. Let F and X be Fitting classes, let π be a set of primes, let G be a group, and
let Gπ be a Hall π -subgroup of G . Then

(1) Kπ(F ∩ X) = Kπ(F) ∩ Kπ(X) and, if F ⊆ X , then Kπ(F) ⊆ Kπ(X) ;
(2) if F is a nonempty class, then GKπ(F) ∩ Gπ = (Gπ)F ;
(3) Kπ(FX) = Kπ(F)Kπ(X) .

Lemma 1.2. Let F be a Fitting class, and let π be a set of primes. Then
1) if p ∈ π , then Kπ(Sp′) = Sp′ ;
2) if F �= ∅ and FNp = F for some prime p , then Kπ(F)Np = Kπ(F) .

Proof. Obviously, Sp′ ⊆ Kπ(Sp′) . Let G ∈ Kπ(Sp′) , and let Gπ be a Hall π -subgroup of G .
Then |Gπ| is a p′-number. However, p ∈ π , and, therefore, π′ ⊆ p′ . Hence G ∈ Sp′ and
Kπ(Sp′) ⊆ Sp′ . This proves assertion (1).

Let us prove assertion (2). Let G ∈ Kπ(F)Np . Since Gπ ∩ GKπ(F) = (Gπ)F by assertion (2) of
Lemma 1.1, it follows from the isomorphism

GπGKπ(F)/GKπ(F)
∼= Gπ/(Gπ ∩ GKπ(F)) = Gπ/(Gπ)F

that
Gπ/(Gπ)F

∼= GπGKπ(F)/GKπ(F).

However, the Hall π -subgroup GπGKπ(F)/GKπ(F) of the group G/GKπ(F) is a p-group. Hence
Gπ/(Gπ)F ∈ Np and Gπ ∈ F , and we have the inclusion

Kπ(F)Np ⊆ Kπ(F).

The converse inclusion is obvious. This proves the lemma. �
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Lemma 1.3. Let F be a nonempty Fitting class, and let π and σ be sets of prime numbers such
that σ ∩ π = ∅ . Then

Kσ(F)Sπ = Kσ(F).

Proof. It is clear that Kσ(F) ⊆ Kσ(F)Sπ .
Let G ∈ Kσ(F)Sπ . By assertion (2) of Lemma 1.1, we have Gσ ∩ GKσ(F) = (Gσ)F . Using the

isomorphism
GσGKσ(F)/GKσ(F)

∼= Gσ/(Gσ ∩ GKσ(F)) = Gσ/(Gσ)F ,

we obtain
Gσ/(Gσ)F

∼= GσGKσ(F)/GKσ(F).

In this case, it follows from the relation G/GKσ(F) ∈ Sπ that Gσ/(Gσ)F ∈ Sπ , and, therefore,
Gσ = (Gσ)F . Hence Gσ ∈ F and G ∈ Kσ(F) . This proves the lemma. �
Corollary 1.4. Let F be a nonempty Fitting class, and let π and σ be sets of prime numbers
such that σ ∩ π = ∅ . Then

Kσ(F)Nπ = Kσ(F).

Proof. The proof follows from the relation

Kσ(F)Nπ ⊆ Kσ(F)Sπ = Kσ(F),

which holds by Lemma 1.3. �
Corollary 1.5. If F is a nonempty Fitting class and π is a set of prime numbers, then

Kπ(F)Sπ′ = Kπ(F).

2. LOCAL PROPERTY OF THE CLASS Kπ(F)

The main result of the present paper is the following theorem.

Theorem 2.1. If F is a w-local Fitting class and if π is a set of prime numbers, then Kπ∩w(F)
is a w-local Fitting class.

Proof. Suppose that F = ∅ . Since the Fitting class ∅ is w-local (see, [5, Example 10]), it follows
that the Kπ∩w(∅) is w-local, and the theorem holds in this case.

Suppose that F �= ∅ . If w∩π = ∅ , then K∅(F) = S by definition. Introduce an H-function f
as follows: f(a) = S for any a in w ∪ {w′} . Then we clearly have

LRw(f) =
( ⋂

p∈w

SNpSp′

)
∩ SSw = S,

and the Fitting class Kπ∩w(F) is w-local.
Suppose that w ∩ π �= ∅ . Since F is a w-local Fitting class, it follows from Theorem 9 in [5]

that there is a w-local H-function F such that F = LRw(F ) , F (p) = F (p)Np ⊆ F for any p
in w , and F (w′) = F .

Write
π1 = Supp(F ) ∩ w, π2 = w \ π1.

In this case,

F = LRw(F ) =
( ⋂

p∈π2

Sp′

)
∩

( ⋂
p∈π1

F (p)NpSp′

)
∩ FSw.
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Let us construct a w-local H-function as follows:

f(p) =

⎧⎪⎨
⎪⎩

Kπ1∩π(F (p)) if p ∈ π1 ∩ π ;
Kπ∩w(F) if p ∈ w \ π ;
∅ if p ∈ π2 ∩ π,

and f(w′) = Kπ∩w(F) .
It can readily be seen that Supp(f) = (π1 ∩ π) ∪ (w \ π) ∪ {w′} . Hence

LRw(f) =
( ⋂

p∈π2∩π

Sp′

)
∩

( ⋂
p∈π1∩π

Kπ1∩π(F (p))NpSp′

)

∩
( ⋂

p∈w\π

Kπ∩w(F)NpSp′

)
∩ Kπ∩w(F)Sw.

Let us first show that ⋂
p∈π1∩π

Kπ1∩π(F (p))NpSp′ = Kπ1∩π(F). (1)

Since F is a w-local Fitting class and F (p) = F (p)Np for any p in w , we have the inclusion
F ⊆ ⋂

p∈π1∩π F (p)Sp′ . In this case,

Kπ1∩π(F) ⊆ Kπ1∩π

( ⋂
p∈π1∩π

F (p)Sp′

)
=

⋂
p∈π1∩π

Kπ1∩π(F (p)Sp′)

by assertion (1) of Lemma 1.1. Hence, by assertion (3) of Lemma 1.1 and by assertion (1) of
Lemma 1.2, we obtain

⋂
p∈π1∩π

Kπ1∩π(F (p)Sp′) =
⋂

p∈π1∩π

Kπ1∩π(F (p))Sp′ .

Moreover, by assertion (2) of Lemma 1.2, for any p ∈ π1 ∩ π we have

Kπ1∩π(F (p)) ⊆ Kπ1∩π(F (p))Np.

Thus,
Kπ1∩π(F) ⊆

⋂
p∈π1∩π

Kπ1∩π(F (p))NpSp′ .

Let us prove the converse inclusion. Indeed, since F (p) ⊆ F for any p in w , it follows from
assertion (1) of Lemma 1.1 that

Kπ1∩π(F (p)) ⊆ Kπ1∩π(F).

Thus,
Kπ1∩π(F (p))Sp′ ⊆ Kπ1∩π(F)Sp′

and, by assertion (2) of Lemma 1.2, we have

Kπ1∩π(F (p)) = Kπ1∩π(F (p))Np

for any p in π1 ∩ π . Hence
⋂

p∈π1∩π

Kπ1∩π(F (p))NpSp′ ⊆
⋂

p∈π1∩π

Kπ1∩π(F)Sp′ = Kπ1∩π(F)S(π1∩π)′ .
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Moreover, by Corollary 1.5,
Kπ1∩π(F)S(π1∩π)′ = Kπ1∩π(F).

Thus, ⋂
p∈π1∩π

Kπ1∩π(F (p))NpSp′ ⊆ Kπ1∩π(F),

and this proves relation (1).
Let us now prove that

⋂
p∈w\π

Kπ∩w(F)NpSp′ = Kπ∩w(F)S(w\π)′ . (2)

By Lemma 1.3, Kπ∩w(F) = Kπ∩w(F)Sw\π . Moreover, Sw\πNp = Sw\π for any p in w \ π .
Hence

⋂
p∈w\π

Kπ∩w(F)NpSp′ =
⋂

p∈w\π

Kπ∩w(F)Sw\πNpSp′ =
⋂

p∈w\π

Kπ∩w(F)Sw\πSp′

and ⋂
p∈w\π

Kπ∩w(F)Sw\πSp′ =
⋂

p∈w\π

Kπ∩w(F)Sp′ = Kπ∩w(F)S(w\π)′ ,

which proves relation (2).
Thus, we have proved the validity of the relation

LRw(f) = S(π2∩π)′ ∩ Kπ1∩π(F) ∩ Kπ∩w(F)S(w\π)′ ∩ Kπ∩w(F)Sw. (3)

With regard to (3), to prove the theorem, it now suffices to justify the relation

S(π2∩π)′ ∩ Kπ1∩π(F) = Kπ∩w(F). (4)

Let G ∈ Kπ∩w(F) . Then it follows from F = LRw(F ) that Gπ∩w ∈ F ⊆ Sπ′
2
, and, therefore,

|Gπ∩w| is a (π′
2 ∩ π ∩ w)-number. Moreover, |G : Gπ∩w| is a (π ∩ w)′-number. It can readily

be seen that (π ∩ w)′ ∪ (π′
2 ∩ π ∩ w) = (π2 ∩ π)′ , and thus G ∈ S(π2∩π)′ . Since π1 ⊆ w , we

have (π ∩ w)′ ⊆ (π1 ∩ π)′ , and |G : Gπ∩w| is a (π1 ∩ π)′-number. Further, it follows from the
relation π1 ∩ π ∩ w ⊆ π1 ∩ π that |Gπ∩w| is a (π1 ∩ π)-number. In this case, every (π ∩ w)-Hall
subgroup Gπ∩w of G is also a (π1∩π)-Hall subgroup of G . Thus, Gπ1∩π ∈ F and G ∈ Kπ1∩π(F) .
Hence

Kπ∩w(F) ⊆ S(π2∩π)′ ∩ Kπ1∩π(F).

Let us prove the converse inclusion. Suppose that G ∈ S(π2∩π)′ ∩Kπ1∩π(F) . Then Gπ1∩π ∈ F .
Since (π2 ∩ π)′ \ (π1 ∩ π) = (π ∩w)′ , it follows that |G : Gπ1∩π| is a (π ∩w)′-number. Now, since
π1∩π ⊆ π∩w , we see that |Gπ1∩π| is a (π∩w)-number. Thus, every (π1∩π)-Hall subgroup of G
is a (π ∩ w)-Hall subgroup of G , and, therefore, Gπ∩w ∈ F . Hence G ∈ Kπ∩w(F) . This means
that

S(π2∩π)′ ∩ Kπ1∩π(F) ⊆ Kπ∩w(F),

which proves relation (4).
This completes the proof of the theorem. �

For w = P , the theorem implies a result which is exactly dual to Blessenohl’s result [1] mentioned
in the introduction.
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Corollary 2.2. If F is a local Fitting class and π is a set of prime numbers, then Kπ(F) is a
local Fitting class.

It follows from the corollary that the family of all Fitting classes F for which Kπ(F) is local is
large because it contains all local Fitting classes. However, in the general case, the Fitting class
Kπ(F) need not be local for a given Fitting class F . This is justified by the following example.

Example 2.3. Let F be an arbitrary nontrivial (distinct from the classes (1) and S ) normal
Fitting class. Let us show that F is not local. Indeed, if F is local, then F is a Lockett class
by Lemma 5 in [7], and, therefore, F∗ = F = S by [3, Theorem X.3.7]. The contradiction thus
obtained shows that every nontrivial normal Fitting class is nonlocal.

Let now p and q be prime numbers such that p | (q − 1) , and let G = Dp
qn be a monolithic

group with normal Abelian Sylow q-subgroup of exponent qn and a cyclic Hall q′-subgroup of
order p . Let π = π(G) , and let S∗ be a minimal normal Fitting class. In this case, by Berger’s
result (see property 3 in [8]), we have G /∈ S∗ , and, therefore, G /∈ Kπ(S∗) . Hence Kπ(S∗) �= S ,
and the Fitting class Kπ(S∗) is nontrivial. However, by Hauck’s theorem (see [2, Theorem 3.4]),
Kπ(S∗) is a normal Fitting class, and hence it is nonlocal.

In conclusion we note that if F is a nonempty w-local Fitting class and π is a set of prime
numbers, where w∩π = ∅ , then the class Kπ(F) is also w-local. Indeed, in this case, defining the
values of a w-local H-function by the relation f(a) = Kπ(F) for any a in w ∪ {w′} , we obtain

LRw(f) =
( ⋂

p∈w

Kπ(F)NpSp′

)
∩ Kπ(F)Sw = Kπ(F)NwSw′ ∩ Kπ(F)Sw.

Using Corollary 1.4, we now see that Kπ(F)Nw = Kπ(F) and

LRw(f) = Kπ(F)Sw′ ∩ Kπ(F)Sw = Kπ(F)(Sw′ ∩ Sw) = Kπ(F).

REFERENCES
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